Finding The Next Term Of Any Sequence Using Total Similarity \& Dissimilarity \{Version 5\}

ISSN 1751-3030

Authored By
Ramesh Chandra Bagadi
Affiliation 1:
Data Scientist
INSOFE (International School Of Engineering)
Gachibowli, Hyderabad, Telengana State, India
Affiliation 2:
Founder, Owner, Director \& Advising Scientist In Principal
Ramesh Bagadi Consulting LLC (R420752), Madison, Wisconsin 53726
United States Of America
Email: rameshcbagadi@uwalumni.com
Telephone: +919440032711

Abstract

In this research investigation, the author has detailed a novel scheme of finding the next term of any given sequence.

Theory

Rule 1

For any given sequence of two numbers $S=\left\{a_{1}, a_{2}\right\}$ we write we write a Truth Statement Equation regarding a_{3} as follows:
$a_{3}=\frac{\{\overbrace{\left.\sum_{i=1}^{n=2}\left\{\operatorname{Smaller}\left(a_{i}, a_{3}\right)\right\}\right\}}^{\text {DirectSimilarity }}\}+\{\overbrace{\sum_{i=1}^{n=2}\left\{\operatorname{Larg} \operatorname{er}\left(a_{i}, a_{3}\right)-\operatorname{Smaller}\left(a_{i}, a_{3}\right)\right.})\}}{\text { DirectDissimilaity }}\}$
The above is a special kind of Congruence Part (Direct Similarity) and Non-Congruence Part Average (Direct Dissimilarity) of a_{3} with respect to a_{1} and a_{2}.
The above Equation cannot be solved for a_{3} but can be used to find a_{3} by guessing its value. For the correct guess, i.e., the true value of a_{3}, i.e., the next Term of the Sequence, the above Equation is satisfied, i.e., LHS=RHS.
One can note that this Grand Equation can be used to find the Next Prime as well, given a sequence of Primes from the beginning, while considering 1 as Prime as well, i.e., the beginning or first Prime. One can note the concepts of Similarity \& Dissimilarity from
author's [1]. The author calls $\sum_{i=1}^{n=2}\left\{\operatorname{Smaller}\left(a_{i}, a_{3}\right)\right\}$ as Direct Dissimilarity and $\sum_{i=1}^{n=2}\left\{\operatorname{Larger}\left(a_{i}, a_{3}\right)-\operatorname{Smaller}\left(a_{i}, a_{3}\right)\right\}$ as Direct Dissimilarity.
For Guessing, we can usually start with a Guess value much smaller than the smallest data value of the dataset and keep increasing its value by very small increments till the value of the δ_{j} tends to zero within the limits of our computational ability to guess. The δ_{j} is given by
$\delta_{j}=a_{3 \text { Guess }}=\frac{\{\overbrace{\sum_{i=1}^{n=2}\left\{\operatorname{Smaller}\left(a_{i}, a_{3 \text { Guess }}\right)\right.}^{\text {DirectSimilarity }}\}\}+\{\overbrace{\sum_{i=1}^{n=2}\left\{\operatorname{Larg} \operatorname{er}\left(a_{i}, a_{3 \text { Guess }}\right)-\operatorname{Smaller}\left(a_{i}, a_{3 \text { Guess }}\right)\right.})\}}{\text { DirectDissimilaity }}\}$
Equation 3
where a_{3} is the $j^{\text {th }}$ Guess for a_{3}

We now consider any given Sequence of the kind,
$S=\left\{y_{1}, y_{2}, y_{3}, \ldots \ldots ., y_{n-1}, y_{n}\right\}$ which can be further denoted as
$S_{1 A}=\left\{{ }_{L 1 A} y_{1},{ }_{L 1 A} y_{2},{ }_{L 1 A} y_{3, \cdots} \cdots \cdots,{ }_{L 1 A} y_{n-1},{ }_{L 1 A} y_{n}\right\}$ where $L 1 A$ stands for Level One Actual.
We now prepare a table of differences as follows

${ }_{L 1 A} y_{1}$	${ }_{L 1 A} y_{2}$	${ }_{L 14} y_{3}$	${ }_{L 1 A} y_{4}$			${ }_{L 1 A} y_{n-1}$	${ }_{L 1 A} y_{n}$
		${ }_{L 1 R} y_{3}$	${ }_{L 1 R} y_{4}$			${ }_{L 1 R} y_{n-1}$	${ }_{L 1 R} y_{n}$
		$\begin{aligned} & \delta_{L 1 A R 3}= \\ & L 1 A \\ & y_{3}-{ }_{L 1 R} y_{3} \end{aligned}$	$\begin{aligned} & \delta_{L 1 A R 4}= \\ & L 1 A y_{4}-{ }_{L 1 R} y_{4} \end{aligned}$			$\begin{aligned} & \delta_{L 1 A R(n-1)}= \\ & L 1 A y_{n-1}-{ }_{L 1 R} y_{n-1} \end{aligned}$	$\begin{aligned} & \delta_{L 1 A R n}= \\ & L 1 A y_{n}- \\ & \text { L1R } y_{n} \end{aligned}$

where ${ }_{L 1 R} y_{3},{ }_{L 1 R} y_{4}, \ldots,{ }_{L 1 R} y_{n-1},{ }_{L 1 R} y_{n}$ are found applying the aforestated Rule 1 , considering two consecutive terms at a time to find the next term.
We now write $S_{2 A}$ as
$S_{2 A}=\left\{\delta_{L 1 A R 3}, \delta_{L 1 A R 4} \ldots \ldots, \delta_{L 1 A R(n-1)}, \delta_{L 1 A R(n)}\right\}$. For the convenience of notation, we write
$S_{2 A}=\left\{{ }_{L 2 A} y_{3, L 2 A} y_{\left.3, \cdots \cdots \cdots,{ }_{L 2 A} y_{n-1},{ }_{L 2 A} y\right\}}\right.$
We now prepare a table of differences as follows

	${ }_{L 2 A} y_{3}$	$L_{L 2 A} y_{4}$	${ }_{L 2 A} y_{5}$		${ }_{L 2 A} y_{n-1}$	${ }_{L 2 A} y_{n}$
			${ }_{L 2 R} y_{5}$		${ }_{L 2 R} y_{n-1}$	${ }_{L 2 R} y_{n}$
			$\begin{aligned} & \delta_{L 2 A R 5}= \\ & L 2 A y_{5}-{ }_{L 2 R} y_{5} \end{aligned}$		$\begin{aligned} & \delta_{L 2 A R(n-1)}= \\ & L 2 A \\ & y_{n-1}-{ }_{L 2 R} y_{n-1} \end{aligned}$	$\begin{aligned} & \delta_{L 2 A R n}= \\ & L 2 A y_{n}-L 2 R y_{n} \end{aligned}$

Bagadi, R. (2017). Finding The Next Term Of Any Sequence Using Total Similarity \& Dissimilarity \{Version 5\}. PHILICA.COM Article number 1174.
http://philica.com/display_article.php?article_id=1174
where ${ }_{L 2 R} y_{5},{ }_{L 2 R} y_{6}, \ldots,,_{L 2 R} y_{n-1},{ }_{L 2 R} y_{n}$ are found applying the aforestated Rule 1 , considering two consecutive terms at a time to find the next term.
We now write $S_{3 A}$ as
$S_{3 A}=\left\{\delta_{L 2 A R 5}, \delta_{L 2 A R 6} \ldots \ldots ., \delta_{L 2 A R(n-1)}, \delta_{L 2 A R(n)}\right\}$. For the convenience of notation, we write
$S_{3 A}=\left\{{ }_{L 3 A} y_{5, L 3 A} y_{6, \cdots \cdots,{ }_{L 3 A}} y_{n-1}, L 3 A y_{n}\right\}$
In a similar fashion, we keep writing till we can no more do so. That is, till we get
$S_{k A}=\left\{\delta_{L k A R(n-1)}, \delta_{L k A R(n)}\right\}$
$S_{k A}=\left\{{ }_{L k A} y_{n-1},{ }_{L k A} y_{n}\right\}$ for some k, a positive integer.
Using the aforestated Rule 1, we now find ${ }_{L 2 R} y_{n+1},{ }_{L 3 R} y_{n+1}, \ldots \ldots \ldots, L_{L(k-1) R} y_{n+1}$ and ${ }_{L k R} y_{n+1}$ as we have the previous two terms for each of them. Finally, we now add all these to get

$$
y_{n+1}==_{L 1 A} y_{n+1}=\left({ }_{L 2 R} y_{n+1}+{ }_{L 3 R} y_{n+1}+\ldots \ldots . .++_{L(k-1) R} y_{n+1}++_{L k R} y_{n+1}\right)
$$

The author will detail in the next following version of this research manuscript, the mathematics of analysis of the same if the cases of negative differences crop up.

References

Bagadi, R. (2017). Total Intra Similarity And Dissimilarity Measure For The Values Taken By A Parameter Of Concern. \{Version 2\}. ISSN 1751-3030. PHILICA.COM Article number 1153.
http://www.philica.com/display_article.php?article_id=1153
http://vixra.org/author/ramesh_chandra_bagadi
http://philica.com/advancedsearch.php?author=12897

