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Abstract

A novel transform calling smoothing, which can improve interpolation and reduce approximation error, is introduced

in this paper. This method can be applied to various formulas, including interpolation and approximation methods,

which are denoted in the process of order manipulation. Subsequently, the paper shows how to achieve higher degree

polynomial approximations through fewer interpolation points, which is impossible with ordinary methods of interpolation.

In fact, this leads to an alternative solution to oscillatory behavior and Runge’s phenomenon occurring in polynomial

interpolations or methods of least squares approximation when the number of points is increased significantly to achieve

higher degree polynomials with the aim of error reduction. Several ideas—in the form of theorems and their proofs—are

therefore studied on the basis of smoothing process of the interpolation. Finally, a comprehensive comparison, with the

intention of showing the advantage of the new trasnform over other methods in the form of MSE v. number of samples,

is provided.

Keywords— Approximation, interpolation methods, extrapolation, order manipulation

I. Introduction

A method for smoothing interpolation points to significantly
reduce error is introduced in this paper. With this approach,
the interpolation formulas obtained can be polynomial or ex-
ponential with regard to the smoother function (SF), which
is varied by the given points. It’s as well shown that the
interpolation error is directly proportional to high values
and order of the points of the available function, and can
be reduced by manipulating the order of the interpolation
equation from the given points; then, it’s proved that error
diminution by assumption of equality of the order of the
original function and interpolation form leads to a new class
of interpolation formulas in which the parameters differ dy-
namically by observing the order of function from at-hand
points. New formulas are employed to develop an approx-
imation to MISO as well as MIMO systems. At long last,
this paper collates new approach of interpolation methods
with classical formulas, and shows that some improvements
are achieved at the expense of complexity.

The main application of interpolation nowadays is in the
field of multi-rate signal processing for purposes of sample
rate conversion and reconstruction of continuous signals by
stored, digitized values used for a specific signal process-
ing application. For instance, symbol synchronization in
receivers, speech coding with synthesis, and computer simu-

lation of continuous time systems, apart from certain uses,
are well-known applications of interpolation in multi-rate
signal processing. Readers can be familiar to basic concepts
of multi-rate signal processing by checking [1].

For more on applications of approximation and inter-
polation in classic signal processing, readers referred to [2];
Chapters 4. Sampling of Continuous-Time signals, and part
7.7 Optimum Approximation of FIR Filters. In fact, Filter
design techniques involve interpolation both in classic and
modern forms, and as an application to interpolation for
array filters, readers can check [3].

In addition to the abovementioned applications, inter-
polation is intrinsically used in numerical analysis and ap-
proximation theory, such as the Newton-Cotes formula used
in numerical integration. For other elementary theorems of
numerical analysis, readers may consider [8].

Sampling theorem, discovered by Shannon and Nyquist
as one of the most useful theorems in signal processing, has a
new rival called Compressed Sensing/Sampling, abbreviated
as CS, presented by Donoho. In fact, it deals with asymmet-
ric sampling which leads to better compression. For more
on history and developments of sampling theorems, please
check [4]. Nowak and others have a useful paper on basics of
CS [5]. Structured CS with dictionary based method is the
latest development in this field. Supper resolution, as an im-
portant application of CS, with recourse to a mathematical
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framework such as the one presented in [6] by E. Candes and
C. Fernandez-Granda, can be considered as an active sub-
field for future researches. Spectral and complex functions
can also be integrated into CS frameworks as mentioned in
[7].

Apart from the different kinds of engineering usages
mentioned, one may need polynomial and exponential ap-
proximations; hence, accuracy is necessary. Accuracy, some-
times, results in complexity of algorithms. For example,
Neville-Aitken algorithm suffers from this and in [9] a faster
approach to polynomial interpolation is presented. In this
paper, we don’t try to optimize algorithms presented, but
study a new theory that yields a new class of interpolation
formulas.

The polynomial form of interpolation has some disad-
vantages; for instance, edge oscillation usually referred to
as the oscillating theorem, occurs when the degree of the
polynomial increases. Another well-known problem is the
increase in interpolation error for highly exponential func-
tions in accordance with Rolle’s Theorem used to derive the
error function. This theorem states: “at least one zero exists
in the derivative of a function which is between two zeros
of it.” Certain considerations are required for exponential
functions to have lessened approximation error, because the
nth derivative of an exponential function is itself unlike the
power of polynomials diminishing by differentiation. Read-
ers can reach similar idea by comparing two polynomial
interpolation methods of Lagrange and Newton discussed in
[10].

Another issue in numerical analysis is that there are few
chances of choosing another set of points in some applica-
tions; it means that points are dictated by a constraint, thus,
Chebyshev Points—which are used to have lower error—are
not available, and error reduction fails in this case too; how-
ever, by using these points, only the minimization of the
product part of the error function is achieved. Piecewise-
polynomial splines in subintervals primarily invented to solve
Runge’s phenomenon, which occurs for long-intervals in ∞-
norm, and not error reduction; thence, issues of less number
of points and infPn∈ Π ||f − Pn||∞ error minimization still
prevail.

Another topic of interest is the minimax polynomial,
where the theorem may be renewed for non-polynomial ap-
proximation formulas too; so any certain form of exponential
interpolation can satisfy minimax existence theorem neces-
sarily in R

n+1 [11] for
∑n
i=0 ηix

i contained within the space
of polynomials of degree ≤ n with point η = (η0, . . . , ηn).
The best approximation of non-linear type for L∞ norm also
exists by existence theorem extension, which is, however,
not studied in this manuscript.

The Vallèe-Poussin theorem is useful for error bounding,
while its infinite norm is just another error minimization
problem. This is also true for polynomial-based interpo-

lation formulas, yet it’s used for characterizing minimax
methods. The literature contains many interpolation meth-
ods together with rich theories; for example, Lagrange and
Newton forms of polynomial interpolation, nonsingular Van-
dermonde matrix for finding polynomial coefficients, linear
approximation, piecewise Splines (as a solution to remove
interfering extremas caused by high-degree polynomials)
and Hermite interpolating polynomials, which are for both
the function and its derivatives. But often, since the main
function points are available, it simplifies to polynomial in-
terpolation. In fact, this paper suggests order manipulation
as a step prior to interpolation rather than providing just
another formula [11].

The important concern of non-oscillatory Taylor series is
convergence; moreover, the fact is that Taylor polynomials
are not applicable to functions that are not differentiable
infinite times. This leads to many continuous functions
being disregarded. Choosing a set of interpolation points
that converge to x0 gives the Taylor series at that point, if
the function is also differentiable.

The Neville-Aitken method is a soft, iterative algorithm
used for evaluating interpolating polynomial of degree n
using n+ 1 abscissas with the corresponding values of func-
tions. In this case, the problem is how to optimize this
algorithm for many values of x, which means running an
algorithm with lower complexity if one needs many values
of interpolating polynomial.

Choosing the best approximation concerns many inter-
esting topics such as minimax approximation, Legendre and
Chebyshev Polynomials, Lebesgue function, and many other
subjects that are ignored here in this paper.

Studying order manipulation and error reduction in the
matter of different types of functions is the main objective
of this paper, while the comparison is carried out for both
introduced and other interpolation formulas. The paper
starts by presenting the order manipulation theorem, defin-
ing average error and order detection for signals, and then
investigates smoothing transforms (STs) and improvements
for two important smoothers. Several theorems with their
proofs are added with the hope they would be useful. Sys-
tem approximation is also an important part of this paper.
Ultimately, this paper collates new methods with classic
types for several main function types.

II. Average error and Order definitions

In this section, Mean Square Error and formal order def-
initions are presented. The next part discusses new error
factor by using an integral and it employs a special inter-
pretation of order definition to build theories based on the
aforementioned ideas.

MSE for N -point discrete function is defined as
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MSE =
1

N

N−1∑

m=0

(x (n)− x̂ (n))
2
, (1)

where x (n) is a discrete signal with its approximation
x̂(n). In Part 3, this definition will be changed to get an
integral error factor. The next thing that will be redefined
later is the Big−O notation. The usage of Big−O notation
in this paper is a little different from the usual applications,
as in

f (x) =

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 +O
(
x3
)
, (2)

which denotes canceled terms by indicating the next
term’s degree. The next usual application is showing the
function’s behavior in infinity, e.g. for a polynomial, and so
we have

m∑

n=0

anx
n = O (xm) , as x→ ∞. (3)

The specific definition of Big−O notation is studied in
definition 1 of the next part. In this paper, the continuous
variable x is replaced by t to resemble time domain variable
compatible with signal processing standards.

III. Order manipulation and Average

Error

III.1 Theory of Order Manipulation

In this part, the theory of order manipulation is studied
as a separate, new idea, so as to apprehend the reasons
producing error and showing order convergence as the pref-
erence intended for function and its approximation. In fact,
this means limt→∞ ord(x (t))/ord (x̂ (t)) must converge to
a constant. Indeed, accurate approximation based on order
detection for the sample’s vector (interpolation points), with
a general form of interpolation, cannot diminish error for
all forms of functions. In this case, we first introduce the
familiar definition of Big−O notation.

Definition 1: Assume that limx→α f (x) /g (x) = 0,
so it can be written by means of subset’s notation as
O(f (x)) ∈ O(g (x)) and read as order of f(x) is subset
to order of g(x).

With this definition mentioned above, it’s easy to write

O(

N∑

i=0

aix
i) ∈ O (ax) ∈ O (Γ (x)) , (4)

as limit converges to zero for consequent functions. Now,
by assuming x as the main function, x̂ as its approximation,
and both f and y as arbitrary functions, the next idea can
be formed. Now check the following

∀ x, x̂, y ∈ O (f) , O (x) ∈ O (x̂) ∈ O (y)

⇔

{O (x) ∈ O (x̂)} ∧ {O (x̂) ∈ O (y)} ∧ {O (x) ∈ O (y)}

⇔
{

n
∧
i=0

{O (xi) ∈ O (x̂i)
}

∧
{

n
∧
i=0

{O (x̂i) ∈ O (y)
}

(4)

∧
{

n
∧
i=0

{O (xi) ∈ O (y)
}

∈ O (f) ,

thus, approximation of x, which is
∧
x, can be accurate enough

if we assume the order of main function equaling or sub-
setting to the order of interpolation formula denoted by f ,
and also subsetting to the order of this function itself. By
this logic, the reverse case is not possible. To clarify this,
consider p;h ∧ h ⇒ p ≡ p<h, where p is the proposi-
tion for the existence of an accurate polynomial approx-
imation while h is the proposition for the existence of a
highly exponential function. In this case, and by previ-
ous discussion on order sub-setting, h ⇒ p is possible by
notation O (x) ∈ O (y), but the reverse case is not; as a
result, the deduction is: non-polynomial and polynomial
interpolations do not yield equal errors in the sense of the
infinity norm. The last three lines of (4) affirm that a class
of functions called xi, with their approximations x̂i, can
be subset to f which is not inevitably a polynomial. Of
course, it’s clear that certain conditions are necessary for
this to be valid; for instance, a class of sinusoidal func-
tions of the form xi (t) = sin(ωit) can have approximations
like x̂i (t) = Aisin(Bit) ∈ O (f (t)), and this is sufficient
condition to parametrically reconstruct a wide-range of func-
tions from f(t), by assumption in the first line of (4).

III.2 Average Error

A modified interpretation of MSE is used in this paper,
which is denoted by EA. To define this factor, consider
d (n) = x (n)− x̂(n) with N bounded values; then MSE is

MSE :=
1

N

N−1∑

m=0

d2 (m) . (5)

Now, for every integer and non-integer point of difference

function d, and by dt = limN→∞

t′2−t
′
1

N
, the outlined sum

becomes an integral

lim
N→∞

1

N

N−1∑

m=0

d2(t′1 +mdt) =
1

t′2 − t′1

∫ t′2

t′1

d2 (t) dt:=EA.

(6)
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If x is also analytical for every t′1 +mdt value, the right
side integral converges absolutely for the range t ∈ (t

′

1, t
′

2),
if and only if x̂ has no singularities in this interval. Analyti-
cal assumption for x is rational, but x̂ may be unbounded,
as is completely related to interpolation form; therefore,
convergence of (6) relies to a great extent on x̂.

IV. Smoothing Transforms and

Applications

Several theorems are studied under the title of smoothing1

transforms. In this case, and by the first theorem, we show
the way a polynomial interpolator transformed into another
form—for instance, exponential—while it still interpolates
given points. In the proof of Theorem 1, an attempt to
show the possibility of reducing error by manipulating the
order of the interpolator is presented. The next theorem also
uses the first one to transform Newton and Lagrange forms
into exponential types by selecting logarithmic smoothing
function indicated by g. The third theorem extends the
concept of uniqueness for exponential interpolation forms
as proved in the literature for polynomial interpolations.
Theorem 4 studies an application of Theorem 2 and (14)
to estimate the nth derivative of a function by at least two
points (N = 2) out of regard for certain conditions. Finally,
Theorem 5 shows modified existence theorem extension to
improve certain algorithms that are derived from algebraic
equations.

Theorem 1. If Pn (t) > 0 is a polynomial interpolation

in closed interval
[

t
′

1, t
′

2

]

, with N bounded points of x (t) > 0

as follows

Pn (t)=f (x (t0) ,x (t1) , . . . , x (tN−1) ,t) := f (x (ti) ,t) , (7)

by the assumption of order manipulation that was discussed
earlier, and for smoothing x (ti) points, this polynomial is
transformed to P

′

n as follows in (8) by a function g, which is
selected in accordance with the order of interpolation points.

P
′

n (t) := g−1 (f (g (x (ti)) ,t)) . (8)

Proof. To show that the defined equation moderates
error to a considerable degree by certain g, recall the error
function e for a polynomial interpolation Pn as shown in

e (t) = x(t)− Pn (t) =
x(n+1) (ξ)

(n+ 1)!

n∏

i=0

(t− ti) . (9)

According to this, the error is directly proportional to
magnitudes of x(n+1) (ξ) , as stated in (9); now, if g−1 =
O (x) is chosen correctly, then it indicates property (10):

|O(x (t))| ≈
∣
∣O
(
g−1 (f (g (x (ti)) , t))

)∣
∣ , t1′ ≤ t ≤ t2′

(10)

Notification is required, because, by this process, O
(

P
′

n

)

is not necessarily equal to O (x), where limit is not in ∞,
and this is the reason for having a special definition for order
as explained before. But, here, the deduction is that

logtx(t) ∝ αlogtP
′

n(t) , (11)

for constant α which is independent of order meaning
P

′

n has almost an equal order compared to x for t ∈ [t′1, t
′

2].
Interpolation is done for smoothed magnitudes of x rather
than main points right away, and to recover preserved am-
plitudes, g−1 is applied to it. By presented order definition
and detecting order of x, the best choice is g = O(x−1).�

This theorem is employed by the next theorems to gen-
erate interpolation formulas as examples of the ST.

Theorem 2. Let x (t) > 0 for t ∈ [t′1, t
′

2] with N ≥ 2
bounded points of equally spaced by T = tm − tm−1 ,
then IN (t), IL (t) , and IR (t) in (12–14) interpolate given
points almost equalling to original function x (t). First,

IN (t) :=

N−1∏

i=0

a
ϕ(i,t)
i , ϕ (m, t) =

1

Tmm!

m−1∏

i=0

(t− ti) , (12)

Second,

IL (t) :=

N−1∏

i=0

xψ(i,t) (ti) , ψ (m, t) =

N−1∏

i = 0
i 6= m

t− ti
tm − ti

,

(13)
And finally,

IR (t) :=
(

f
(
c
√

x (ti), t
))c

, (14)

where ai factors are calculated by Forward Division
Algorithm (FDA). FDA is very similar to Newton’s For-
ward Difference, so a modified algorithm for extraction of
the a_i values is used as a modified Newton’s Forward
Difference (NFD) [11] followed in Fig. 1.

1 There are certain cases in which the word “smoothing” used in mathematics and signal processing. In this paper, applying specific functions
on data sets and then their inverses on the resulting trasnform/algorithm is the meaning of smoothing.
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t x (t)
t0 x (t0)=a0
t1 x (t1)

x(t1)
x(t0)

=a1

t2 x (t2)
x(t2)
x(t1)

x(t2)
x(t1)

x(t0)
x(t1)

=a2
...

...
...

. . .

tN−1 x (tN−1)
x(tN−1)
x(tN−2)

. . .

Fig. 1. Forward Division Algorithm presented for calculat-

ing ai factors of interpolation equation (12).

f(x(ti), t) is a polynomial interpolation similar to Equa-
tion (7), where c is smoothing parameter and for (14); c is
calculated via the signal’s order, as in (15)2

if ({max (x (t)) = x (tm′)} ∧ {tm′ > 0 }) ⇒ c =
log (x (tm′))

log (tm′)
,

(15)
Proof. A formal proof based on mathematical induction

for these interpolation formulas can be found by substituting
t = ti for 0 ≤ i < N to check equality of IN (ti), IL(ti), and
IR (ti) to x(ti) in certain sampling points. Consequently, for
the rest of the points, the signal is almost equal to (12− 14),
but to use Theorem 1 for re-proving these identities in-
directly, the base interpolation method is NFD in (12),
Lagrange Interpolating Polynomial (LIP ) in (13), and any
polynomial approximation for (14) with parameter c, which
is the polynomial’s degree and is given by n = c′(N − 1),
where c′ = ⌈c⌉. So, by applying theorem 1 on NFD, we get

IN (t) = exp

(

log (x (t0))

0!T0
+

log (x (t1)) − log (x (t0))

1!T1
(t − t0) + . . .

)

= exp









log

(

x

1
0!T0 (t0)

)

+ log









(

x (t1)

x (t0)

)

(t−t0)

1!T1









+ . . .









= exp









log









x

1
0!T0 (t0)

(

x (t1)

x (t0)

)

(t−t0)

1!T1
. . .

















=

N−1∏

i=0

a
ϕ(i,t)
i Tmm!

m−1

i=0

(t− ti) .

Furthermore, application of theorem 1 on LIP yields

IL (t) = exp(log (x (t0))
(t− t1) · · · t− tN−1)

(t0 − t1) · · · (t0 − tN−1)
+

· · ·+ log (x (tN−1))
(t− t0) · · · (t− tN−2)

(tN−1− t0) · · · (tN−1− tN−2)
)

= exp(log

(

x
(t−t1)···(t−tN−1)

(t0−t1)···(t0−tN−1) (t0)

)

+

. . . + log













x

(t−t0)···(t−tN−2)
(

tN−1−t0

)

···
(

tN−1−tN−2

)

(

tN−1

)













)

=

N−1
∏

i=0

x
ψ(i,t) (

ti
)

, ψ (m, t) =

N−1
∏

i = 0
i 6= m

t − ti

tm − ti

The same proof can be found for (14) too. Now consider

lim
t→∞

x
1
c (t)

logx(t)
→ ∞, (16)

which shows that a nth root function smoother is not befit-
ting a higher order type of signal, though it still keeps errors
lessened to a better extent than pure polynomial-based in-
terpolation as O

(
tN−1

)
∈ O

(
tc(N−1)

)
∈ O (at). �

This theorem is an application of Theorem 1 employing
two main SFs in an algebraic form. Matrix form can be used
with regard to this fact that g needs to be an one-to-one
correspondence function and satisfy Property (10). We have
to notice the assumption in Theorem 2 that states x (t) > 0,
but if signals are both positive and negative, a constant b0
can be added to make x(ti) positive and then subtracted
after interpolation as shown in (17)

I (t) := g−1
(

f
(

c
√

g (x (ti) + b0),t
))

− b0, (17)

by adding/subtracting b0, this issue is solved in a simple
manner; now we can study the next theorem which considers
the concept of uniqueness.

Theorem 3. There exists a unique exponential interpo-
lation of the form (12) or (13) for a set of N bounded points
of the function x.3

Proof. Uniqueness of exponential interpolation is a direct
consequence of the uniqueness of a polynomial interpolation,
so if Newton and Lagrange interpolation forms are denoted
by N(t) and L (t) , then

N(t)=L (t) → smoothing → IN (t)= IL (t) . (18)

In this case, smoothing is equivalent to applying a func-
tion like g on the points’ magnitudes. �

This theorem suggests that both of the forms of the
polynomial interpolation can be chosen as a base equation
for (8) resulting in an equality regardless of g as the SF.

One of the applications of (14) can be an estimation
of the nth derivative of x for t = t0, which is studied in
Theorem 4 in the wake of Theorem 2.

2 Please note that by shifting t, it’s possible to change the domain of validity. In this paper, a simple interpretation by max{} function is used.
3 Uniqueness of a polynomial interpolation simply states that “only a unique polynomial of degree n for a set of n+ 1 points exists.” Readers

may question that “if it’s so, why do we compare interpolating polynomials?” In fact, uniqueness theorem asserts existence of such polynomial,
however, extraction of it by various algorithms produces different errors, so it’s rational to compare methods.

1
, ϕ (m, t) =

∏
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Theorem 4. Assume x (t) = at, then the nth derivative
is estimated by

x(n) (t) ∼=
dn

dtn

(

f
(
c
′√

x (ti), t
)c

′
)

, (19)

where n ≤ c′(N − 1) applies.
Proof. Polynomial interpolation of a set of abscissas that

tends to t0 and their corresponding x values led to a Taylor
series of differentiable x. In fact, it’s easy to prove by induc-
tion that the nth derivative is calculated on the strength of
the preceding derivatives, and in (19) , the nthcoefficient is
calculated by virtue of all x(i) (t0) values where 0 ≤ i < n.
�

A special case of (19), where N = 2 and c = c′ are chosen
in (14) with recourse to binomial expansion of IR, is

IR (t) =
c∑

k=0

(
c
k

)

(x (t0))
( c−kc )

(

x
1
c (t1)− x

1
c (t1)

t1 − t0

)k

tk,

(20)
where tk coefficients are almost equal to x(k) (t0) /k!, so
x(n) (t0) can be written as

x(n) (t0) ∼=
Γ(c+ 1)

Γ(c− n+ 1)
(x (t0))

( c−nc )

(

x
1
c (t1)− x

1
c (t1)

t1 − t0

)n

.

(21)
In contrast to the Existence Theorem and with an eye

on the Existence Theorem Extension—which requires much
work and is not analyzed in this document—a Modified
Existence Theorem Extension is studied by Theorem 5 in
combination with previous theorems and to make headway
for the purpose of showing that an approximation of any kind
(and not only polynomials) can have an existence theorem of
its own. But to clarify distinction by dint of the existence of
minimax polynomial, recall that if Pn is a minimax polyno-
mial that certainly exists, and f ∈ C0[a, b], then ||f − Pn||∞
is minimized for any n ∈ N. Indeed, Equation (14) in The-
orem 2 gives polynomial interpolation of any degree, but
it does not verify that IR is Pn; in support of this, we
may say that (14) generates polynomials of any degree, but
polynomials of high degree do not always reduce error.

Theorem 5. Assume that g (x (t)) exists for t ∈ [t′1, t
′

2]
with N ≥ 2 bounded values, then Ig (t) in (22) usually in-
terpolates given points with lowest possible error.

Ig (t) = g−1
(

f
(
c
√

g (x (ti) + a (t)), t
))

− a (t) . (22)

In (22), a is an arbitrary function chosen with regard
to x , and g is a smoothing function chosen with respect to
x(ti) and its magnitudes. Proof. An ordinary proof based
on mathematical induction for these interpolation formulas
can be found by substituting t = ti for 0 ≤ i < N to check
equality. �

The application of Theorem 5 is vital if we consider x(ti)
as inputs to an algorithm, g , a as our modifications to it,
and finally f as the algorithm itself that needs improving.
Of course, choosing appropriate a is a must. In fact, in (17),
b0 was a special case of a while choosing g also studied exten-
sively in previous theorems. Indeed, (22) asserts that error
produced in a chosen algorithm f can be reduced greatly if
SF g and additive function a are selected according to the
input data or seeds called x(ti).

Approximation formulas developed so far employ sim-
ple forms of SF g, instead, it’s possible to derive a variety
of other formulas based on different forms of SF. For ex-
ample, we choose g (t) = x(m)(t) in order to have integral
approximation formulas as

x̂ (t) =

∫

. . .

︸ ︷︷ ︸

m

∫

f
(

x(m) (ti) ,t
)

dtm, (23)

where f(αi, t) is any form of approximation. Another choice
for SF is g (t) = log

(
x(m) (t)

)
used in Lagrange interpo-

lating polynomial and resulted in the following repeated
integral

x̂ (t) =

∫

. . .

︸ ︷︷ ︸

m

∫ N−1∏

i=0

(

x(m)(ti)
)ψ(i,t)

dtm, (24)

where ψ (i, t) is defined in (13). If we apply n-fold integral
formula, we get

x̂ (t) =
1

Γ(m+ 1)

∫

(t− α)
m−1

N−1∏

i=0

(

x(m)(ti)
)ψ(i,α)

dα.

(25)

IV.1 MISO/MIMO System Approxima-
tion

Current trends in system approximation are divided into
several categories as: 1) Fuzzy systems 2) Neural networks
3) Adaptive fuzzy neural networks 4) SVD-based method 5)
Krylov method 6) Moment matching 7) SVD-Krylov method,
and some other methods. Each of these may suffer from
certain problems that are outlined in summary by following.

An important problem restricting the applicability of
ordinary fuzzy controllers is the rule-explosion problem; it
means, the number of rules in the database increases expo-
nentially with the number of input variables to the controller
itself. A hierarchical fuzzy controller as a universal approx-
imator is a prime solution to this problem [12]. We can
suggest formulas developed in this part or any other system
approximator based on theorem 6 as a universal approxima-
tor if and only if interpolation form is selected well. So, in
this case, readers firstly construct a system approximation,
and secondly prove that it as a universal approximator by
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an arbitrarily small error bound [12]. Many system approx-
imations are provided in the literature such as recursive
and non-recursive mathematical approximators, neural ap-
proximators, fuzzy approximators and more, but among
them, fuzzy controllers as universal approximators have an
important property of uniform convergent. This property
shows that fuzzy based MIMO systems with defined approx-
imation accuracy can always be acquired by separating the
input space into finer regions [13]. It’s done specifically for
MIMO systems satisfying uniform approximation bounds.
The fuzzy system approximators working well, however, by
adding the adaptively of learning inherited from neural net-
works as a new feature to these systems, they can be more
effective. In [14], authors showed that fuzzy systems with
high dimensions can be implemented with fewer number of
rules compared to the Takagi-Sugeno fuzzy systems. These
new systems are called adaptive fuzzy neural networks.

Van Dooren and others in [15] showed that it’s possible
to derive the gradients of the H2-norm of the approximation
error via tangential interpolation. Krylov method, mainly
for solving linear systems of equations, is accordingly stud-
ied in details by Grimme in [16]. Other model reduction
methods such as SVD and moment matching are considered
by Antoulas and others in [17]. In [18], authors compared
SVD-based, Krylov-based, and SVD-Krylov-based methods
extensively for approximation of large-scale systems.

In this part, we would like to develop a simple approach
towards MIMO system approximation. Indeed, several pure,
mathematical applications of mentioned theorems studied
so as to ensure the development of a framework to express
a MISO system. A simple key idea, for a modification on
MISO system approximation, will be applied on this frame-
work to develop MIMO system approximations. In fact, a
MISO system Si, consisted of N inputs with M values each,
can be shown as a multi-variable function

Yi = Si (X11 . . . X1M , . . . , XN1 . . . XNM ) , 1 ≤ i ≤M,
(26)

where Xij and Yi denote input and the only output’s ith

values respectively. We should stress, however, that in gen-
eral,






Y1
...
YM




 =






X11 · · · X1N

...
. . .

...
XM1 · · · XMN











a1
...
aN




 (27)

is an equivalent matrix formulation to the MISO systems.
Recall that the square matrices of this form (, where M =
N), are not easily invertible resulting in singular, near singu-
lar solutions and many researcher have tried to acquire ai by
the use of different algorithms. So for large values of M = N ,
we cannot rely on ai coefficients extracted by badly condi-

tioned matrix





a1
...
aM




 =






X11 · · · X1N

...
. . .

...
XM1 · · · XMN






−1




Y1
...
YN




 . (28)

This fact must not be neglected that an alternative solu-
tion to this system representation is vital. One of the aims
of this part is to indirectly solve this issue by interpolation
and employment of a supplementary mapping function that
is called T , instead of finding ai coefficients. At this stage,
and specifically for MIMO system, (26) can be generalized
as

Yji = Sji

(

X11, . . . , X1M . . .XN1, . . . , XNM

)

, 1 ≤ i ≤ M, 1 ≤ j ≤ P. (29)

where P is the number outputs of the specified system. Now,
with next theorem, we enable many interpolation formulas
to be used as system approximations, that is, trying to con-
vert multi-variable functions to non-unique single variable
functions. Bijectivity condition, for the supplementary func-
tion that maps a set of input points (X1i, . . . , XNi) to T (X)
as

(X1i, . . . , XNi) → T (X), (30)

is the main purpose of the following theorem.
Theorem 6. The necessary and sufficient condition for

the existence of the invertible mapping function T , to map
a multi-variable function to a single-variable function, is
bijection as shown in

i 6= j ⇔ T (X1j , . . . , XNj) 6= T (X1i, . . . XNi) . (31)

Proof. Assume that T−1, the inverse of the mapping
function T , defined as

Xij :=T
−1 (T (Xj1, . . . , XjN ) , i) .

We can summarize this notation as

Xij = T−1 (T (Xji) , i) , 1 ≤ j ≤ N.

Now, assume that some i, j, and k, where i 6= j, exist such
that the equality

T (Xik) = T (Xjk) ,

holds. Clearly, the system maps inputs to wrong outputs as

T−1 (T (Xik) , i) = T−1 (T (Xjk) , j) ,

where bijectivity condition is violated, so, in this case, ap-
proximation of the system with T doesn’t exist. This ends
the proof of the theorem by contradiction. �

In order to use this theorem efficiently, choose (25) as
main interpolation method with a bijective function T .
Then, for a MISO system, we have

S (X1, . . . XN ) =

N∏

i=1

Y
ψ(i,T (X))
i ,
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ψ (m,T (X)) =

N∏

i = 1
i 6= m

T (X)− T (X1i)

T (X1m)− T (X1i)
. (32)

Clearly, for MIMO system, the multiple outputs should be
used as

Sj (X1, . . . XN ) =

N∏

i=1

Y
ψ(i,T (X))
ij ,

ψ (m,T (X)) =

N∏

i = 1
i 6= m

T (X)− T (X1i)

T (X1m)− T (X1i)
. (33)

V. Comparison of Interpolation

Formulas

In this part, an examination of the interpolation methods is
carried out to detect the pertinence of each formula based
on signal types. In fact, NFD v.LIP was always a hot topic
of research. For example, a more classical comparison can
be found in [19] that was done by Werner in 1984. In [19],
the errors are rounded in a specific way, so the readers may
notice that for certain exponential functions these rounded
errors can make much distinction in final comparisons. For
specific reasons such as complexity, Aitken’s and Neville’s
algorithms were not part of many interpolation comparison
benchmarks. To resolve this privation, readers may use [20]
that compares the Lagrange representation, the Barycentric
formula, Aitken’s algorithm, and Neville’s algorithm. Krogh
in [9] compared algorithms such as polynomial interpolation
with derivatives in certain points, simple interpolation, and
piecewise polynomials having a continuous first derivative.

The comparison in this part considers 8 interpolation
methods/formulas. These formulas are I(t) which is (12)
or (13), N(t) and L(t) as both forms of polynomial interpo-
lations, NRS(t) and LRS(t) as both root smoothed forms
shown in (14), CSpl(t) and CHer(t) as cubic Spline and
Hermite piece-wise interpolation and finally Lin(t) is the
linear type. Therefore, to clarify the following comparison,
all parameters are fixed except N , interpolation methods,
and also test signal for t ∈ [1, 20].

V.1 Sinusoidal

Signal form: x (t) = sin
(
πt
10

)
, 1 ≤ t ≤ 20.

N

0 10 20 30 40

Lo
g1

0(
M

SE
)

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

Error v sampling rate

I(t)
N(t)
L(t)
NRS(t)
LRS(t)
CSpl(t)
CHer(t)
Lin(t)

Fig. 2. Comparison of log10MSE for 8 interpolation meth-

ods for sinusoidal test signal.

V.2 Logarithmic

Signal form: x (t) = loge t , 1 ≤ t ≤ 20

N

0 10 20 30 40

Lo
g1

0(
M

SE
)

-1
4

-1
2

-1
0

-8
-6

-4
-2

Error v sampling rate

I(t)
N(t)
L(t)
NRS(t)
LRS(t)
CSpl(t)
CHer(t)
Lin(t)

Fig. 3. Comparison of log10MSE for 8 interpolation meth-

ods for logarithmic test signal.

V.3 Polynomial

Signal form: x (t) = 10t6 − t5 +2t4 − 3t3 +2t2 − t+1, 1 ≤
t ≤ 20.

N

0 10 20 30 40

Lo
g1

0(
M

SE
)

-3
0

-2
0

-1
0

0
10

Error v sampling rate

I(t)
N(t)
L(t)
NRS(t)
LRS(t)
CSpl(t)
CHer(t)
Lin(t)

Fig. 4. Comparison of log10MSE of methods for polyno-

mial test signal.
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V.4 Exponential

Signal form: x (t) = et, 1 ≤ t ≤ 20.

N

0 10 20 30 40

Lo
g1

0(
M

SE
)

-1
0

-5
0

5
10

15
20

Error v sampling rate

I(t)
N(t)
L(t)
NRS(t)
LRS(t)
CSpl(t)
CHer(t)
Lin(t)

Fig. 5. Comparison of log10MSE for 8 interpolation meth-

ods for exponential test signal.

The four previous comparisons showed the response of
different interpolation equations with regard to given points
that were generated by polynomial, sinusoidal, logarithmic,
and exponential functions. As depicted in Fig. 2–5, root
smoothed based formula shows better performance and it
adjusts itself better to new signals. In fact, an increase
in sampling rate cannot always dictate lessen error even
for a large variety of signals, and this has a connection to
Chebyshev Points. But another consideration can be the
time of calculation, which is shown in Fig. 6.

N
0 2 4 6 8 10 12 14 16 18 20

L
o

g
1

0
(C

a
lc

u
la

tio
n

 t
im

e
)

-4

-3

-2

-1

0

1
Interpolation Time v Number of samples

I(t)
N(t)
L(t)
NRS(t)
LRS(t)
CSpl(t)
CHer(t)
Lin(t)

Fig. 6. Comparison of computation time of interpolation

formulas versus N .

Calculation times for NRS(t), LRS(t), and I(t) are
higher than other methods because of the complexity of
the SF gin these alorithms.

VI. Conclusion

This paper studied a novel approach improving approxima-
tion and interpolation of classical formulas by means of order
manipulation. The order manipulation, as a prior step to
interpolation, is used to reduce error in MSE sense. The
paper studied several theorems with their proofs to support
the new method of order manipulation in order to use them

for MIMO system approximations. The general idea consid-
ered by this paper called ST which led to generating various
interpolation formulas by use of smoothers or SFs. They
were also compared to other methods of interpolation. This
was done in comparison part with 8 interpolation formu-
las and resulted in high performance of new methods with
respect to their smoothing functions.
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