Finding The Next Term Of Any Given Sequence Using Total Similarity \& Dissimilarity

ISSN 1751-3030

Authored By
Ramesh Chandra Bagadi
Affiliation 1:
Founder, Owner, Director \& Advising Scientist In Principal Ramesh Bagadi Consulting LLC, Madison, Wisconsin 53726
United States Of America
Email: rameshcbagadi@uwalumni.com
Telephone: +919440032711

Abstract

In this research investigation, the author has detailed a novel scheme of finding the next term of any given sequence.

Theory

Given any Sequence of the kind,
$S=\left\{y_{1}, y_{2}, y_{3}, \ldots \ldots, y_{n-1}, y_{n}\right\}$ which represent some Time Series data of concern, we write the
Next Term of this sequence as
$y_{n+1}=\frac{\{\overbrace{\sum_{i=1}^{n}\left\{\operatorname{Smaller}\left(y_{i}, y_{n+1}\right)\right\}}^{\text {Similarity }}\}+\{\overbrace{\sum_{i=1}^{n}\left\{\operatorname{Larg} \operatorname{er}\left(y_{i}, y_{n+1}\right)-\operatorname{Smaller}\left(y_{i}, y_{n+1}\right)\right\}}^{\text {Dissimiaity }}\}}{n}$

Equation 1

Solving the above Equation 1 for y_{n} gives us the Next Term of the given Sequence $S=\left\{y_{1}, y_{2}, y_{3}, \ldots \ldots, y_{n-1}, y_{n}\right\}$.
One can note that this Grand Equation can be used to find the Next Prime as well, given a sequence of Primes from the beginning, while considering 1 as Prime as well. One can note the concepts of Similarity \& Dissimilarity from author's [1].

References

1. Bagadi, R. (2017). Total Intra Similarity And Dissimilarity Measure For The Values Taken By A Parameter Of Concern. \{Version 2\}. ISSN 1751-3030. PHILICA.COM Article number 1153.
http://www.philica.com/display_article.php?article_id=1153
2. http://vixra.org/author/ramesh_chandra_bagadi
3. http://philica.com/advancedsearch.php?author=12897
