Conjecture that any square of a prime p^2 can be written as $p+q+(n q-n \pm 1)$ where q and $n q-n \pm 1$ primes

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following conjecture: Any square of a prime $p^{\wedge} 2$, where $p>3$, can be written as $p+q+(n * q-n+1)$ or as $p+q+(n * q-n-1)$, where q and $n * q-n+1$ respectively $n * q-n-1$ are primes and n positive integer. Examples: $11^{\wedge} 2=121=11+37+$ $(2 * 37-1)$, where 37 and $2 * 37-1=73$ are primes; $13^{\wedge} 2=$ $169=13+53+(2 * 53-3)$, where 53 and $2 * 53-3=103$ are primes. An equivalent formulation of the conjecture is that for any prime p, p > 3, there exist n positive integer such that one of the numbers $q=\left(p^{\wedge} 2-p+n-\right.$ $1) /(n+1)$ or $\left.q=p^{\wedge} 2-p+n+1\right) /(n+1)$ is prime satisfying also the condition that $p^{\wedge} 2-p-q$ is prime.

Conjecture:

Any square of a prime $p^{\wedge} 2$, where $p>3$, can be written as $p+q+(n * q-n+1)$ or as $p+q+(n * q-n-1)$, where q and $n * q-n+1$ respectively $n * q-n-1$ are primes and n positive integer.

Note that $p^{\wedge} 2-p-(6 * k-1)$ is divisible by 3 for p of the form $6 * h-1$ so in this case q can only be of the form 6*h +1 while both $p^{\wedge} 2-p-(6 * k \pm 1)$ are not divisible by 3 for p of the form $6 * h+1$.

Verifying the conjecture:

(up to p = 41)

```
: p p^2 = 5^2 = 25 = 5 + 7 + (2*7 - 1) and [7, 13]
    primes;
: }\mp@subsup{p}{}{\wedge}2=7^2=49=7 + 5 + (9*5 - 8) and [5, 37]
    primes; also p^2 = 7^2 = 49=7 + 11 + (3*11 - 2)
    and [11, 31] primes;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=11^2=121=11+37+(2*37-1) and [37,73
    primes;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=13^2=169=13+53+(2*53-3) and [53
    103] primes;
```

$: \quad \mathrm{p}^{\wedge} 2=17 \wedge 2=289=17+31+(8 * 31-7)$ and $[31$, 241] primes;
$: \quad \mathrm{p}^{\wedge} 2=19^{\wedge} 2=361=19+11+(31 * 11-30)$ and [11, 331] primes;
: $\quad \mathrm{p}^{\wedge} 2=23^{\wedge} 2=529=23+7+(83 * 7-82)$ and $[7,499]$ primes; also $\mathrm{p}^{\wedge} 2=23^{\wedge} 2=529=23+9+(27 * 19-$ 26) and [23, 487] primes; also $\mathrm{p}^{\wedge} 2=23^{\wedge} 2=529=23$ $+43+(11 * 43-10)$ and $[43,463]$ primes; also $\mathrm{p}^{\wedge} 2=$ $23^{\wedge} 2=529=23+73+(6 * 73-5)$ and $[73,433]$ primes; also $\mathrm{p}^{\wedge} 2=23^{\wedge} 2=529=23+127+(3 * 127-$ 2) and [127, 379] primes;
: $\mathrm{p}^{\wedge} 2=29 \wedge 2=841=29+271+(2 * 271-1)$ and [271, 541] primes;
$: \mathrm{p}^{\wedge} 2=31^{\wedge} 2=961=31+11+(92 * 11-93)$ and [11, 919] primes; also $\mathrm{p}^{\wedge} 2=31^{\wedge} 2=961=31+311+$ (2*311 - 3) and [311, 619] primes;
: $\quad \mathrm{p}^{\wedge} 2=37 \wedge 2=1369=37+223+(5 * 223-6)$ and [223, 1109] primes; also $\mathrm{p}^{\wedge} 2=37 \wedge 2=1369=37+11+$ (132*11 - 131) and [223, 1109] primes;
$: \quad \mathrm{p}^{\wedge} 2=41^{\wedge} 2=1681=41+19+(90 * 19-89)$ and [19, 1621] primes; also $\mathrm{p}^{\wedge} 2=41^{\wedge} 2=1681=41+43+$ (38*43-37) and [43, 1597] primes; also $\mathrm{p}^{\wedge} 2=41^{\wedge} 2$ $=1681=41+43+(38 * 43-37) ;$ also $\mathrm{p}^{\wedge} 2=41^{\wedge} 2=$ $1681=41+547+(2 * 547-1)$.

Note that $\mathrm{p}^{\wedge} 2=23 \wedge 2$ can be written the way mentioned for five different pairs of primes [q, $n * q-n+1] ;$ also p^2 $=41^{\wedge} 2$ can be written the way mentioned for four different pairs of primes [q, $n * q-n+1]$

Note that, from the primes above, 13, 31 and 37 can be written as $p+q+(n * q-n-1)$ and $5,7,11,17,19$, 23, 29, 41 can be written as $p+q+(n * q-n+1)$ and 37 can be written in both ways.

