A set of Poulet numbers defined by an interesting relation between their prime factors

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following conjecture on Poulet numbers: There exist an infinity of Poulet numbers P2 obtained from Poulet numbers P1 in the following way: let $d 1$ and dn be the least respectively the largest prime factors of the number P1, where P1 is a Poulet number; than there exist an infinity of Poulet numbers P 2 of the form $\mathrm{P} 1+\left|\mathrm{P} 1-\mathrm{dn}^{\wedge} 2\right| * d 1$, where |P1 dn^2| is the absolute value of $P 1$ - dn^2. Example: for Poulet number $\mathrm{P} 1=1729=7 * 13 * 19$ is obtained through this operation Poulet number $\mathrm{P} 2=11305(1729-19 \wedge 2=$ 1368 and $1729+1368 * 7=11305)$. Note that from 11 from the first 30 Poulet numbers (P1) were obtained through this method Poulet numbers (P2).

Conjecture:

There exist an infinity of Poulet numbers $P 2$ obtained from Poulet numbers $P 1$ in the following way: let di and dn be the least respectively the largest prime factors of the number P1, where P1 is a Poulet number; than there exist an infinity of Poulet numbers P 2 of the form $\mathrm{P} 1+$ $\left|P 1-d n^{\wedge} 2\right|^{*} d 1$, where $\left|P 1-d n^{\wedge} 2\right|$ is the absolute value of P1 - $\mathrm{dn}^{\wedge} 2$.

The set of Poulet numbers P2:
(ordered by the size of P1)

```
: 11305, obtained from P1 = 1729 = 7*13*19 (1729 -
    19^2 = 1368 and 1729 + 1368*7 = 11305);
: 137149, obtained from P1 = 2047 = 23*89 (89^2 - 2047
    = 5874 and 2047 + 5874*23 = 137149);
: 10585, obtained from P1 = 2465 = 5*17*29 (2465 -
    29^2 = 1624 and 2465 + 1624*5 = 10585);
: 15841, obtained from P1 = 2821 = 7*13*31 (2821 -
    31^2 = 1860 and 2821 + 1860*7 = 15841);
: 278545, obtained from P1 = 3277 = 29*113 (113^2 -
    3277 = 9492 and 3277 + 9492*29 = 278545);
```

```
: 294409, obtained from P1 = 4033 = 37*109 (109^2 -
    \(4033=7848\) and \(4033+7848 * 37=294409)\);
: 464185, obtained from P1 = 5461 = 43*127 (127^2 -
    \(5461=10668\) and \(5461+10668 * 43=464185)\);
: 41041, obtained from P1 = 6601 = 7*23*41 (6601 -
    \(41^{\wedge} 2=4920\) and \(\left.6601+4920 * 7=41041\right)\);
: 294409, obtained from P1 = 7957 = 73*109 (109^2 -
    \(7957=3924\) and \(7957+3924 * 73\) = 294409);
: 39865, obtained from P1 = 8911 = 7*19*67 (8911 -
    \(67 \wedge 2=4422\) and \(8911+4422 * 7=39865)\);
: 149281, obtained from P1 = \(13981=11 * 31 * 41\) (13981 -
    \(41^{\wedge} 2=12300\) and \(\left.13981+12300 * 11=149281\right)\);
    (...)
```


Notes:

The same Poulet number P2 can be obtained through this method from more than one Poulet number P1 (see 294409 obtained from both 4033 and 7957).

From 11 from the first 30 Poulet numbers (P1) were obtained through this method Poulet numbers (P2).

