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0. Abstract

Herein we present the “surround” function, which is intended to produce a set
of “surround codes” which enhance the sparsity of integer sets which have 
discrete derivatives of lesser Shannon entropy than the sets themselves. In 
various cases, the surround function is expected to provide further entropy 
reduction beyond that provided by straightforward delta (difference) 
encoding alone.

We then present the simple concept of “densification”, which facilitates the 
elimination of entropy overhead due to masks (symbols) which were 
considered possible but do not actually occur in a given mask list (set of 
symbols).

Finally we discuss the ramifications of these techniques for the sake of 
enhancing the speed and sensitivity of various entropy scans. 

1. The First Delta (Discrete Derivative)

Suppose we have a mask list H, which we define as a set of Q whole numbers
less than Z, where (Q>0) and (Z>1). For example:

H= {2,3, 6,5,2,0,1,3,2 }



such that (Q=9) and (Z=7). Its Shannon entropy EH is then given by

EH≡(Q lnQ)−∑
M=0

Z−1

FH (M) ln FH (M )

where (0 ln 0) terms are treated as zero, and FH(M) is the frequency of mask 
M in H:

FH (M )≡∑
K =0

Q−1

(H K=M)

where (HK=M) is one if HK equals M, else zero. (For its part, HK is the mask 
at zero-based index K of mask list H.) So in this case, we have

FH= {1,1,3,2,0,1,1 }

because there is one zero, one one, 3 2s, 2 3s, etc. Therefore

EH=(9 ln 9)−(1 ln 1)−(1 ln1)−(3 ln 3)−(2 ln 2)−(0 ln 0)−(1 ln1)−(1 ln1)

EH≈15.1

We could encode this sequence with less entropy by starting with an implicit 
zero and “deltafying” from left to right, resulting in the “first delta” H1 of H:

H1={2,1,3,−1,−3,−2,1,2,−1 }

Note that, for all components H1K of H1

(−Z)<H1K<Z

due to the fact that (HK<Z) for all K. Furthermore, the first (leftmost) masks 
of H and H1 are always equal because “deltafication” begins from an implied 
first source mask of zero, which is sufficient to guarantee invertibility. So if 
we consider the frequency list FH1 of H1, starting with the frequency of (-6) 
on the left and ending with the frequency of 6 on the right, we have

FH 1={0,0,0,1,1,2,0,2,2,1,0,0, 0 }



because H1 contains one (-3), one (-2), etc. Therefore

EH1=(9 ln 9)−(1 ln 1)−(1 ln 1)−(2 ln2)−(0 ln 0)−(2 ln2)−(2 ln 2)−(1 ln 1)
EH 1≈15.6

which has actually foiled our attempt at sparsity enhancement (effectively, 
data compression) because EH1 is actually slightly greater than EH, even 
though a quick inspection of the latter might lead us to suspect that it’s sparse
in the first delta. What went wrong?

First of all, note that Shannon entropy is only a rough estimate of encoding 
cost when Q and Z are “small”, as in this case; a more precise answer would 
be had from agnentropy, as I described in “Introduction to Agnentropy”.

That said, the larger problem is that we’re permitting the expression of states 
which cannot necessarily occur. For example, when deltafying from 3 to 
something, that “something” cannot be less than zero because masks are 
always whole; however the above encoding scheme would allow for that, 
which is wasteful. We could then say that codes wrap from (-1) to (Z-1), (-2) 
to (Z-2), etc., but in that case we would have 2 codes for every nonzero delta,
which is still wasteful. So we could then define the delta to be less than Z, 
and whole, so that it wraps back to zero after (Z-1). But this idea is also 
problematic because then the same code could actually imply big deltas or 
small deltas, depending on the circumstances, which would still result in 
inefficiency.

2. The Surround Function

The surround function generates whole numbers which preserve all of the 
information in a mask list (which excludes Z itself). In various practical cases
it reduces mask list entropy to a further extent than deltafications. As before, 
assume we have mast list H given by

H= {2,3, 6,5,2,0,1,3,2 }

where (Q=9) and (Z=7).



We will now take the surround codes from left to right. Just like deltas, 
surround codes have the sense of “from” and “to” within the limit of some 
given Z. The first mask on the left, which is 2, needs to be “surrounded from”
an implied source value. This value is defined as the integer floor of (Z/2). 
That is to say we must compute

H S0=S (⌊
Z
2

⌋ ,H 0, Z)=S(3,2,7)

which is “the surround from the integer floor of (Z/2) to H0 when all masks 
are known to be less than Z” or in this specific case “the surround from 3 to 2
when (Z=7)”. But first of all, why (Z/2)?

We start with (Z/2) as our implied source simply because we assume that H 
was derived by biasing a raw list of (maybe signed) integers so that its 
minimum possible (but not necessarily present) value is zero. So for example 
we might map temperature values of (-10) to 50 to mask values of zero to 60. 
We expect that those particular extrema were chosen so that the most 
frequent values end up close to the middle. Furthermore, the floor function is 
important because if Z is even, then we want to stick with the convention of 
the even “middle” value being treated as “the” middle value; and if Z is odd, 
then we want to select the actual middle value because it’s unique. Of course,
it would be conceptually simpler to start with a source of zero. However, that 
convention would likely result in the first surround code appearing to be 
more anomalous (information rich) than it actually is.

We then proceed as follows:

H S 1=S (2,3, 7)

HS2=S (3,6,7)

etc. so that the “surround list” HS of H is given by:

H S(H ,Q ,Z )≡{S (⌊
Z
2

⌋ ,H 0 , Z ) , S(H 0, H 1 , Z) , S (H 1 ,H 2 , Z )...S (HQ−2 , HQ−1 , Z)}



The surround list, then, contains Q items, just like H. Furthermore, all 
surround codes are whole numbers less than Z, as opposed to integers in the 
range of (1-Z) to (Z-1), as in the case of signed deltas. But what, then, is this 
the surround function S?

To answer that, let’s begin with an example. We need to find S(2, 5, 7). Start 
by making a sorted list of whole numbers less than Z, starting from zero:

{0,1,2,3,4,5,6 }

Next, replace each item with its distance to the source (which is 2):

{2,1,0,1,2,3,4 }

(Thus we have “surrounded” 2, hence the name.) Obviously, distance alone 
does not constitute an invertible code. So for example we need to distinguish 
zero (at distance 2) from 4 (also at distance 2). We do this so that lesser 
destinations end up with odd codes, and greater destinations end up with even
codes, but only for source values which would otherwise result in ambiguous 
cases; remaining codes are assigned monotonically with distance. So now we 
have

{3,1,0,2,4,5,6 }

Now all the codes are unique whole numbers less than Z. We can simply look
up S(2, 5, 7), which turns out to be 5. Let’s try another example.

Suppose we want to compute S(7, 5, 8), which implicitly means that now 
(Z=8). We start with

{0,1,2,3,4,5,6,7 }

then replace each item with its distance to 7, resulting in

{7,6,5,4, 3,2,1,0 }



In this case, there are no ambiguous codes, so we’re done. Therefore S(7, 5, 
8) is also 5.  Let’s try one more example.

Suppose we want to compute S(4, 2, 8). We start with

{0,1,2,3,4,5,6,7 }

then replace each item with its distance to 4, resulting in

{4,3,2,1, 0,1,2,3 }

Now replace ambiguous codes in the usual manner, resulting in

{7,5,3,1,0, 2,4,6 }

Thus S(4, 2, 8) is 3.

So returning once again to the initial mask list

H= {2,3, 6,5,2,0,1,3,2 }

where (Q=9) and (Z=7), we can compute its corresponding surround list 
using the method described above, resulting in

HS(H ,Q ,Z )={S (⌊
7
2
⌋ ,2,7) , S(2,3, 7), S(3,6,7)...S (3,2,7)}

H S(H ,Q ,Z )={1,2, 6,1,4,3,1,3,1 }

which has a corresponding frequency list given by

FH 1={0,4,1,2,1, 0,1 }

From which we can compute the Shannon entropy EHS as

EHS=(9 ln 9)−(4 ln 4)−(1 ln 1)−(2 ln 2)−(1 ln 1)−(0 ln 0)−(1 ln 1)

EHS≈12.8



which is indeed lesser than either H or its first delta H1. This would 
presumably result in smaller agnentropy as well, which implies smaller 
storage requirements. But more to the point, the comparatively low value of 
EHS implies that it should be more responsive to small changes in the masks 
of H, than EH itself, on a fractional basis. To put it another way, we expect 
that “surroundification” (the conversion of a mask list to a surround list) will 
enhance our sensitivity to signals which are sparse in their first delta.

In practice, deltafication followed by surroundification seems most effective 
for sake of detecting such signals. surround codes are most usefully applied 
after deltafication. If deltafication is not appropriate (because the first delta of
the mask list in question is not sparse), then surround codes are best applied 
after densification, which we’ll explore later in this paper.

Critically, surround codes tend to enhance the sensitivity of “absolute 
entropy” functions such as Shannon entropy or agnentropy; whereas they 
tend to degrade the sensitivity of (exo)divergences, which I discussed in 
“Anomaly Detection and Approximate Matching via Entropy Divergences”. 
The reason seems to be that while the additional sparsity afforded by 
surroundification helps reduce noise in the former, it comes at the cost of 
obscuring the physical meaning of a mask; the effect is to weakly “encrypt” 
the signal, thereby reducing entropy contrast (to the detriment of scans which
measure divergences) while at the same time also reducing absolute entropy 
(to the benefit of scans which measure it).

3. A Procedural Definition of the Surround Function

S(M0, M1, Z) in the sense of “the surround S from mask M0 to mask M1 with 
neither mask exceeding (Z-1)” is procedurally defined by

if [M0<=M1] {
    S=M1

    if [Floor(M1/2))<M0] {
          S=2(M1-M0)
    }



} else {
    S=Z-1-M1

    if [Floor(S/2)<=(Z-1-M0)] {
        S=2(M0-M1)-1
    }
}

where, as always, (Z-1) is merely an upper bound which might in fact exceed 
every mask in the entire list. We can of course also invert surround codes 
using “unsurround” codes.

4. A Procedural Definition of the Unsurround Function

Surround codes would be of little use if they could not be inverted. In order 
to do this, we move from left to right across the surround list, converting it 
back into the original mask list. As before, we start with the integer floor of 
(Z/2) as the implicit source. The only implied information is Z, which must 
be the same value as that used to create the surround list in first place.

U(M0 , S, Z) in the sense of “the unsurround U from mask M0 to surround S, 
where S was computed with the same Z” is procedurally defined by

if [M0<=Floor((Z-1)/2)] {
    U=S
    if [Floor(S/2)<M0] {
        U=Floor(S/2)
        if [S is even]{
            U=M0+U
        }else{
            U=M0-U-1
        }
    }
} else {



    U=Z-1-S
    if [Floor(S/2) <= (Z-1-M0)] {
        U=Floor(S/2)
        if [S is even] {
            U=M0+U
        } else {
            U=M0-U-1
        }
    }
}

5. Potential Generalization of the Surround Function

(Un)surround codes readily generalize to more than one dimension, provided 
that one begins with the geometric “distance index” definition first illustrated
above. The only additional consideration is that, in higher dimensions, we 
have mask N-tuples instead of masks, so multiple such vectors might be 
equidistant from the same source. This complicates code disambiguation. 
One solution is to prioritize codes by X coordinate, then Y coordinate, etc., 
such that moving down implies lesser codes than moving up by the same 
distance. Or we could prioritize by angle from each axis, with the X axis 
dominating over the Y axis, etc. Yet another approach would be to sort by 
Hilbert (space-filling) curve coordinate. Suffice to say that different 
generalizations are suitable to different applications, but all of them are 
beyond the scope of this paper.

6. Densification (Mask Span Minimization)

Recall that Z is defined such that it exceeds all masks in a given mask list. 
However, there is no requirement that it exceed the maximum mask by 
exactly one. Furthermore there is no requirement that every possible mask 
actually occur. For example, suppose (Z=9) and we have

H= {3,7,1,2,4,5,2,7,4 }



In this case, clearly, Z could just as easily be 8. In fact, reassigning it as such 
would not affect the Shannon entropy because such entropy does not account 
for the overhead of determining which masks, from zero to (Z-1), actually 
occur with which frequencies. (This is why Shannon entropy does not 
accurately anticipate the size of arithmetically compressed mask lists, 
regardless of implementation efficiency.) Other forms of entropy, such as 
agnentropy, do however depend on Z, and would be reduced by a reduction 
in Z. But there is more we can do.

Note that H is missing zero and 6 (even if we reduce Z to 8). So we could 
“densify” it, resulting in the following densification HD:

HD={2,5,0,1,3,4,1,5,3 }

First of all, note that mask order has been preserved. So the old minimum 
mask (one) has been mapped to the new minimum (by definition, zero). 
Secondly, Z has dropped yet again, this time to 6. For the aforementioned 
reasons, however, the Shannon entropy remains unchanged.

There is one obvious reason to densify, which is to improve the speed of 
entropy scans. In theory, acceleration is afforded by improved memory 
footprint density, for instance in the course of accessing lookup tables for 
logs.

And of course if we actually intend to encode H using arithmetic 
compression, reducing Z will facilitate reduced compressed size.

The less obvious reason to densify is to enhance the sensitivity of entropy 
scans. Given, for example, that agnentropy is monotonically related to Z, 
then minimizing Z should make changes to HD stand out from the noise more 
starkly than changes to H itself, in terms of fractional changes in agnentropy.

Empirically, however, this remains an open question. On the face of it, the 
tightness of HD should cause log operands to be smaller and closer in 
magnitude, leading to greater precision and thus sensitivity. However, smaller



log operands actually require more terms to converge to the same degree of 
precision, so in fact the sensitivity (and even the speed) may degrade.

But there’s more to the mystery than meets the eye. Consider the formula for 
the agnentropy E of a mask list with mask frequencies FH(M) for all (M<Z), 
mask count Q, and mask span Z:

E≡ln((Q+Z−1)!)−ln((Z−1)!)−∑
M=0

Z−1

ln((FH (M ))!)

(Beware the factorials.) Obviously, reducing Z reduces E. But given a pair of 
mask lists, it’s not clear that reducing Z in the first case to Z1 and in the 
second case to Z2 can even possibly change the order of their agnentropies – 
regardless of the relationship among Z1, Z2, and said agnentropies. The reason
is that the sum term is actually constrained in bizarre combinatorical ways by
Z itself, so for the most part it just seems to come along for the ride in such a 
manner as to conserve order despite the separate densification processes. So 
in practice, it would seem that densification has no bearing on relative 
sensitivity in the sense of being able to determine whether mask list X 
contains more information than mask list Y. (How much more can of course 
change pursuant to densification.) I cannot prove this order invariance, and I 
haven’t tried very hard to discover a counterexample, but in practice it always
seems to work out this way, much to my consternation.

Nevertheless, I’ve added both surroundification and densification to the 
open-source Agnentro entropy toolkit for your experimental purposes.

7. Remarks

The utility of surroundification and densification for the purposes of entropy 
scan acceleration and enhancement varies considerably by data set and the 
particular entropy measurement in question. At least, they come at a low 
computational cost and achieve improved signal sparsity. Plenty of room 
remains for further study.


