Conjecture that any square of a prime can be obtained through an unusual operation on the numbers $360 k+72$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following conjecture: The square of any odd prime can be obtained from the numbers of the form $360 * k+72$ in the following way: let d1, d2, ..., dn be the (not distinct) prime factors of the number $360 * k+72$; than for any square of a prime $p^{\wedge} 2$ there exist k such that $(d 1-1) *(d 2-1) * \ldots *(d n-1)+$ $1=\mathrm{p}^{\wedge} 2$. Example: for $\mathrm{p}^{\wedge} 2=13^{\wedge} 2=169$ there exist $\mathrm{k}=17$ such that from $360 * 17+72=6192=2 \wedge 4 * 3^{\wedge} 2 * 43$ is obtained $1^{\wedge} 4 * 2^{\wedge} 2 \star 42+1=169$. I also conjecture that any absolute Fermat pseudoprime (Carmichael number) can be obtained through the presented formula, which attests again the special relation that I have often highlighted between the nature of Carmichael numbers and the nature of squares of primes.

Conjecture:

The square of any odd prime can be obtained from the numbers of the form $360 * k+72$ in the following way: let d1, d2, ..., dn be the (not distinct) prime factors of the number $360 * k+72$; than for any square of a prime $p^{\wedge} 2$ there exist k such that $(d 1-1) *(d 2-1) * \ldots *(d n-1)+$ $1=\mathrm{p}^{\wedge} 2$.

The less k for ten squares of odd primes:
(obtained for k up to 100)

```
: }\mp@subsup{\textrm{p}}{}{\wedge}2=3^2=9 is obtained for k = 1 because from
    360*1 + 72 = 432 = 2^4*3^3 is obtained 1^4*2^3 + 1 =
    9;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=\mp@subsup{5}{}{\wedge}2=25 is obtained for k = 11 because from
    360*11 + 72 = 4032= 2^6* 3^2*7 is obtained 1^6*2^2* 6
    + 1 = 25;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=7^2=49 is obtained for k = 4 because from
    360*4 + 72 = 1512= 2^3* 3^3*7 is obtained 1^3*2^3* 
    + 1 = 49;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=11^2=121 is obtained for k = 6 because fro
    360*6 + 72 = 2232 = 2^3* 3^2*31 is obtained
    1^3*2^2*30 + 1 = 121;
```

```
: }\mp@subsup{\textrm{p}}{}{\wedge}2=1\mp@subsup{3}{}{\wedge}2=169 is obtained for k = 17 because fro
    360*17 + 72 = 6192 = 2^4* 3^2*43 is obtained
    1^4*2^2*42 + 1 = 169;
    : }\mp@subsup{\textrm{p}}{}{\wedge}2=17^2=289 is obtained for k = 18 because from
```



```
        1^3*2^2* 6*12 + 1 = 289;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=2\mp@subsup{3}{}{\wedge}2=529 is obtained for k = 40 because fro
        360*40+72=14472= 2^3* 3^ 3* 67 is obtained
        1^3*2^3*66 + 1 = 529;
: }\mp@subsup{\textrm{p}}{}{\wedge}2=29^2=841 is obtained for k = 42 because fro
        360*42+72=15192= 2^3* 3^2*211 is obtained
        1^3*2^2*210 + 1 = 841;
: }\mp@subsup{p}{}{\wedge}2=3\mp@subsup{1}{}{\wedge}2=961 is obtained for k = 48 because fro
        360*48 + 72 = 17352 = 2^3* 3^2*241 is obtained
        1^3*2^2*240 + 1 = 961;
    : }\mp@subsup{\textrm{p}}{}{\wedge}2=4\mp@subsup{1}{}{\wedge}2=1681 is obtained for k = 84 because
        from 360*84 + 72 = 30312 = 2^3* 3^2*421 is obtained
        1^3*2^2*420 + 1 = 1681.
```


Conjecture:

Any Carmichael number can be obtained from the numbers of the form 360*k +72 in the following way: let $d 1, d 2$, ..., dn be the (not distinct) prime factors of the number $360 * k+72$; than for any Carmichael number C there exist k such that $(\mathrm{d} 1-1)^{*}(\mathrm{~d} 2-1)^{*} \ldots{ }^{*}(\mathrm{dn}-1)+1=\mathrm{C}$.

The less \mathbf{k} for two Carmichael numbers:

(obtained for k up to 100)
: $\quad C=561$ is obtained for $k=85$ because from $360 * 85+$ $72=30672=2^{\wedge} 4 * 3^{\wedge} 3 * 71$ is obtained $1^{\wedge} 4 * 2^{\wedge} 3 * 70+1=$ 561;
: $\quad C=1729$ is obtained for $k=96$ because from $360 * 96$ $+72=34632=2^{\wedge} 3 * 3^{\wedge} 2 * 13 * 37$ is obtained $1^{\wedge} 3 * 2 \wedge 2 * 12 * 36+1=1729$.

