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Abstract. This article aims to establish a concrete and fundamental
connection between two important �elds in arti�cial intelligence i.e. deep
learning and fuzzy logic. On the one hand, we hope this article will pave
the way for fuzzy logic researchers to develop convincing applications
and tackle challenging problems which are of interest to machine learn-
ing community too. On the other hand, deep learning could bene�t from
the comparative research by re-examining many trail-and-error heuristics
in the lens of fuzzy logic, and consequently, distilling the essential ingre-
dients with rigorous foundations. Based on the new �ndings reported
in [41] and this article, we believe the time is ripe to revisit fuzzy neu-
ral network as a crucial bridge between two schools of AI research i.e.
symbolic versus connectionist [101] and eventually open the black-box of
arti�cial neural networks.
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1 Introduction

Since 2006 deep learning [92] has witnessed a striking development and record-
breaking achievements on a variety of arti�cial intelligence problems such as im-
age classi�cation [87] , speech recognition [60] and Go game playing [135, 136].
The outstanding performances of deep learning is partially ascribed to the great
generalization capability of deep neural networks in extracting relevant knowl-
edge from large datasets [49, 78]. On the other hand, a number of risks of ex-
isting deep learning techniques have long been recognized. Most noticeably, the
acquired classi�cation competence is known to be vulnerable to adversarial ex-
amples and trained networks can behave very di�erently from what their design-
ers intend [50, 138]. The misclassi�cation is not limited to still image adversarial
examples [108] but also in physical world scenarios where 3D printed adversar-
ial objects consistently fool a trained neural network from di�erent viewpoints
[7, 89]. The adversarial attacks are also e�ective when targeting neural network
policies in reinforcement learning [66]. Moreover, the �exibility in learning can
be mis-used to �t meaningless random patterns [161]. To make things worse, the
acquired knowledge in neural networks are stored in the forms of millions to bil-
lions of weights and bias parameters which are surely out of the reach of human
comprehension. This well-recognized black-box nature calls for an comprehen-
sive understanding of the underlying mechanisms of the �paradoxical success�
of deep learning. Unfortunately attempts to open the black-box of deep neural
network thus far are unable to furnish satisfactory answers. On the contrary, the
complex and dynamic learning process appears so mysterious to some people
that they start to worship the AI God [22].

Fuzzy logic research, which aims to study and model vagueness in human
reasoning with rigorous mathematical tools, has much to o�er in formalizing
and elucidating the deep learning underlying mechanism appropriately [68, 153].
For instance, the data augmentation technique commonly adopted in machine
learning can be modelled as �fuzzi�ed� data [67] or the structure of data spaces
can be characterized in terms of fuzzy order relations [21, 127]. Despite of these
promising advances which were reported in the fuzzy logic community only, it is
extremely di�cult to �nd a fuzzy logic related paper in a core machine learning
conference or journal except for our recent NIPS publication [41]. Therefore
it is the ultimate goal of this article to establish a concrete and fundamental
connection between two important �elds in arti�cial intelligence i.e. deep learning
and fuzzy logic.

Looking retrospectively, it is not the �rst attempt to integrate strengths of
the learning capability of neural networks and the interpretability provided by
fuzzy logic theory � fuzzy neural network was proposed in 1980s exactly for
this purpose [55]. The e�ort to interpret neural network in terms of proposi-
tional logic calculus even dated back to McCulloch & Pitts' seminial paper [99].
Based on the new �ndings reported in [41] and this article, we believe the time
is ripe to revisit fuzzy neural network as a crucial bridge between two schools of
AI research i.e. symbolic versus connectionist [101]. Our belief are mainly based
on two reasons. First, the rapid development in (deep) neural networks has given
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rise to many new techniques that are not available in the last century when fuzzy
neural networks were originated. These new techniques e.g. batch normalization,
albeit extremely useful from an empirical point of view, are subject to critical
examination in the lens of fuzzy logics. By doing so, one is able to grasp the most
essential ingredient of deep learning. It is our hope that this kind of compara-
tive study will shed light on future deep learning research and eventually open
the �black box� of arti�cial neural networks [16]. Second, on the other hand,
the revisit provides powerful computational tools to perform fuzzy inferencing
by exploiting the rapidly developed neural computing techniques such as deep
convolutional neural networks (DCNN). Consequently, it is demonstrated for
the �rst time that fuzzy neural networks, in particular, the generalized hamming
network (GHN) can achieve the state of the art performance on par with its
non-fuzzy counterparts for a variety of machine learning problems [41].

This article is suitable for researchers, practitioners, engineers and educators
in the �eld of arti�cial intelligence in general, and in particular, those young
generation who are familiar with the rapidly developed machine learning tools
such as SVM [31], random forest [23] or recent deep learning frameworks (Ca�e,
CNTK, Torch or Tensor�ow etc.), but are probably unfamiliar with the symbolic
point of view of arti�cial intelligence and the joint force research called �soft
computing� [101, 165]. We assume readers have general knowledge about machine
learning, deep learning and pattern recognition. Familiarity with speci�c topics
such as image categorization or sentence classi�cation might be useful but not
essential. We also assume readers have basic understanding about classical logic
concepts like truth tables and logic operations, but not necessarily about their
many-valued or fuzzy logic counterparts which are reviewed in this article.

In order to provide an appropriate context and background introduction to
the in-depth discussion in Sections 3 and 4, the �rst part (Section 2) of the article
therefore is devoted to a brief historical review of research topics in fuzzy logic.
References for further readings are provided in case related topics are unable to
elaborate due to the limited space of this article. The second part then reports
our recent �ndings about furnishing deep learning with new insights and inter-
pretations in terms of fuzzy logic. Specially, Sections 3 showcases motivations
and advantages of measuring generalized hamming distances between neuron
inputs and weights, followed by Section 4 illustrating how to convert a deep
generalized hamming network into an equivalent shallow yet wide network using
deep epitomes.
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2 A historical perspective on fuzzy logic

2.1 Overview of landscape

Figure 1 illustrates an overview of related topics that are reviewed in this sec-
tion. Topics are roughly aligned along two axes i.e. the period of time and the
applicability, but these two notions should be understood as fuzzy sets. It must
be also noted many important topics such as predicate fuzzy logic, applications
in chemistry, physics, social sciences etc. are not covered in this article and we
refer readers to [14] for a thorough historical review.

Fig. 1: Overview of related topics reviewed in this article. The x-axis roughly
indicates the period of time during which the topic in question was proposed or
actively studied. The y-axis roughly indicate topics' applicability to real world
use cases (FL stands for fuzzy logic).

Principle of bivalence : a fundamental principle of classic logic states that
any declarative sentence expressing a proposition has only two possible truth
values, true and false. This is thus called the principle of bivalence. In spite
of its simplicity and the foundational role in classical logic, most propositions
in our real world communication are nevertheless not bivalent, instead, their
truth is a matter of degree. As an example, consider the proposition �John is
tall�. In classical logic, one is forced to choose a threshold height h such that
the proposition is considered true if John's height is greater than h otherwise
false. According to our common sense, the notion of �tallness� can hardly be
associated to any sharp and speci�c threshold h. Instead, it is rough ranges of
height to which people often refer with phrases like �pretty tall�, �somehow tall�
or �absolutely not tall� to communicate about various degrees of truth in the
proposition.
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Fuzzy logic is therefore motivated to model vague notions as such used in our
everyday life, and, reject the principle of bivalence by extending classical truth
values with additional ones. These extended truth values are often interpreted
as degree of truth, and may be represented by numbers in the unit interval [0, 1].
In this particular case, 0 and 1 represent the two extreme degrees of truth, while
the numbers in between represent intermediate degrees of truth. Intermediate
number in [0, 1] can be either �nitely or in�nitely de�ned which lead to di�erent
forms of many-valued logic. Whether an object belongs to a class in question is
now represented as a graded membership in [0, 1] which essentially de�nes a fuzzy
set for all objects in consideration. Fuzzy connectives and fuzzy relations are
de�ned on fuzzy sets correspondingly, in the similar vein as their classical logical
counterparts. Fuzzy deduction rules like graded modus ponens are thus used
to carry out approximate reasoning from partially true assumptions or inexact
concepts to partially true conclusions. In order to apply fuzzy compositional rules
of inference, one has to �rst construct fuzzy sets for the given application context.

In response to criticisms questioning about the mathematical foundations of
fuzzy logic, researchers put forward di�erent mathematical forms of fuzzy logic
e.g. Basic Logic to lay down theoretical foundations rigorously and provided
possibility theory as one of its interpretations. Application-wise, fuzzy logic has
been widely used for clustering and pattern recognition, control, decision mak-
ing, database and information retrieval and machine learning, deep learning.
New tools like fuzzy neural network and fuzzy automata have been proposed for
all kinds of applications. Recently, the fuzzy logic interpretation has inspired
the generalized hamming network, which is the �rst fuzzy neural network with
deep structures that demonstrates state of the art performances on a variety of
machine learning tasks.
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Fig. 2: Frequency chart of �fuzzy logic� and �deep learning� appeared in all books
published in 50 years (from 1958 to 2008) plotted by Google Ngram Viewer [51].
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The change of research focus : Figure 2 illustrates frequencies of �fuzzy logic�
as well as �deep learning� appeared in all books published between 1958 to 2008
according to Google Ngram Viewer [51]. Clearly the popularity of �fuzzy logic�
was ignited by Zadeh's seminal paper published in 1965 [153], nevertheless, the
trend started to decline since 1998. On the other hand, �deep learning� is getting
more popular since 2000 and, hypothetically, the frequency since 2008 could be
much higher although the data is not available1.

This declination of fuzzy logic research can be partially ascribed to the lack of
convincing fuzzy logic applications on challenging (machine learning) problems.
It was indeed well recognized by the fuzzy (logic) community [68] that research
in this �eld has been restricted to out-of-date problems & approaches while
many �hot topics� in machine learning are simply ignored by fuzzy logic scholars.
Therefore the connection between the fuzzy logic and the core machine learning
community is not well established at all, with very little (if any) interaction in
the form of joint meetings, research initiatives or mutual conference attendance.

Fuzzy logic references : The evolution of fuzzy logic societies as well as ded-
icated conferences, specialized journals, educational programs etc. started with
the �rst volume of the international journal on Fuzzy Sets and Systems published
in 1978, followed by three important events � the publication of the book by
Dubois and Prade [36], and the international Seminar on Fuzzy Set Theory held
in Linz, Austria in Sept. 1979, and the publication of a quarterly bulletin known
as BUSEFAL which served as a medium for quick communication of new ideas
and relevant information [14]. The �rst IEEE International Conferences on Fuzzy
Systems (FUZZ-IEEE) was held in 1992 and the �rst issue of the IEEE Trans-
action on Fuzzy Systems in 1993. Since late 1980, many new journals devoted
ot various aspects of fuzzy logic have been founded too. Encyclopaedic resources
and handbooks in fuzzy logic include Handbook of Fuzzy Computation [128] and
recent Handbook of Mathematical Fuzzy Logic published in 2011 [30]. Many fuzzy
logic de�nitions reviewed in this article are based on the book of Zimmermann
[164] and a recent review book [14].

1 Interestingly, correlation analysis shows that frequencies of these two terms are pos-
itively correlated from 1958 to 1998 (with Pearson correlation coe�cient=0.916),
but negatively correlated from 1998 to 2008 (with Pearson correlation coe�cient=-
0.973).
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2.2 Prehistory of fuzzy logic

Although Aristotle (384�322 BC) is usually considered the founder of classi-
cal logic, he in fact questioned the applicability of the principle of bivalence
to propositions concerning future contingencies. He also recognized that certain
human categories apply to objects to various degrees and do not have sharp
boundaries, a phenomenon which is directly related to the idea of fuzzy logic.
The principle was also questioned �even more emphatically by one of his con-
temporaries, Epicurus (341 � 270 BC) and his followers � Epicureans. These
philosophers basically rejected the principle of bivalence on the basis of their
strong belief in free will� [14]. In spite of these challenges of the principle of
bivalence, Aristotle still treated it as the cornerstone notion of classical logics.

The English philosopher William of Ockham (1287-1347) again questioned
the principle of bivalence and introduced three-valued truth table (with neuterN
included) in his analysis of chapter 9 of Aristotle's De interpretatione and Topics
[14]. Vagueness of concepts and unsharp boundaries nicely �tted John Locke's
empiricism and became recognized in his works. The principle of bivalence was
challenged and the ideas of many-valued logic emerged in 19th century with
worth-mentioning forerunners like Hugh MacColl, Charles Sanders Peirce and
Nikolai A. Vasil'ev [14].

2.3 Many-valued logics

The late 19th and early 20th centuries witnessed various alternative logics which
abandoned the principle of bivalence and introduced more than two truth values.
The �rst in�uential and formal many-valued logics system was developed by Jan
�ukasiewicz (1878-1936), who introduced a three-valued logic in 1920 and later
generalized it to n-valued logics. He also described the in�nitely-valued logics
when the set of truth values are all real numbers in the unit interval [0, 1]. Paul
Bernays (1888-1977) and Emil Post (1897-1954) independently invented similar
many-valued logics systems at about the same time [14].

�ukasiwicz logics

�ukasiwicz �rst introduced the three-valued logic in June of 1920, denoted
�3, by de�ning a number of truth functions of connectives on a three-element
set {0, 1

2 , 1} of truth values. Two basic truth functions of the connectives of
implication, →, and equivalence, ←→, are de�ned according to tables

→ 0 1
2

1

0 1 1 1
1
2

1
2

1 1
1 0 1

2
1

and

↔ 0 1
2

1

0 1 1
2

0
1
2

1
2

1 1
2

1 0 1
2

1

,
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followed by three derived truth functions of negation ¬, disjunction ∨ and con-
junction ∧, respectively, according to following tables

ϕ ¬ϕ
0 1
1
2

1
2

1 0

,

∨ 0 1
2

1

0 0 1
2

1
1
2

1
2

1
2

1
1 1 1 1

and

∧ 0 1
2

1

0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

.

Of particular interests, �ukasiwicz and his students thoroughly investigated
the degrees of tautology for all 192 classical tautologies de�ned in Russell's Prin-
cipia Mathematica [145]. It turned out 3 tautologies have degree values 0, some
1/2 such as the law of excluded middle, ϕ ∨ ¬ϕ, or the law of contractions,
¬(ϕ ∧ ¬ϕ), while others remain the same as their classical logic counterparts.

Later in the 1920s, �ukasiwicz generalized his �3 logic to n-valued logics by
a set �n of equidistant rational numbers in [0, 1]:

�n = {0 =
0

n− 1
,

1

n− 1
, · · · , n− 1

n− 1
= 1}.

Correspondingly, logic operations →,¬,∨,∧ can be succinctly generalized by

a→ b = min(1, 1−a+b), ¬a = 1−a, a∨b = min(1, a+b), a∧b = max(0, a+b−1).

�ukasiwicz also considered the case when the set of truth values are all real
numbers in the unit interval [0, 1] and this in�nitely-valued logic, denoted �∞,
was axiomatized and proved to be complete later on by [125].

Gödel logics

Kurt Gödel, arguably the greatest logician of the 20th century, introduced
a family of many-valued connectives and later Arend Heyting proposed axioms
for the so called intuitionistic propositional logic with three-valued structures
de�ned as follows [14]:

ϕ ¬ϕ
0 1
1
2

0
1 0

→ 0 1
2

1

0 1 1 1
1
2

0 1 1
1 0 1

2
1

∨ 0 1
2

1

0 0 1
2

1
1
2

1
2

1
2

1
1 1 1 1

and

∧ 0 1
2

1

0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

.

Correspondingly, logic operations→,¬,∨,∧ can be succinctly generalized by

a→ b =
{
1, if a ≤ b
b, if a > b

, ¬a =
{
1, if a = 0
0, if a > 0

, a∨b = max(a, b), a∧b = min(a, b).
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Gödel then proved that there is no �nite structure of truth values such that
the tautologies are just the provable formulas of intuitionistic propositional logic.
Furthermore, there is an in�nite chain of systems between the intuitionistic and
classical propositional logics, ordered by inclusion of the sets of their tautologies
[14].

Product logic : operations →,¬,∨,∧ for this logic are de�ned by

a→ b =
{
1, if a ≤ b
b/a, if a > b

, ¬a = a→ 0, a ∨ b = ab, a ∧ b = a ∨ (a→ b).

It must be noted that each t-norm that is continuous as a real function can be ob-
tained by ordinal sum construction from three basic t-norms � the �ukasiwicz,
the Gödel and the product t-norm, as proved by [103].

2.4 Fuzzy sets and fuzzy logic

Many-valued logic was developed as a branch of abstract logic, nevertheless, there
were no apparent applications of the well developed theory since its inception.
It is a general agreement that the turning point was due to Zadeh's in�uential
paper [153] and a sequence of follow up publications, which made signi�cant
contributions in the development of fuzzy logic. We brie�y review below basic
concepts of fuzzy logic and refer readers to [14, 153, 164] for thorough treatments
of related subjects.

Fuzzy set : In classical logic, the extension A of each predicate P is uniquely
de�ned, in other words, object x is a member within P 's extension if the proposi-
tion �x is P� is true, and vice versa. Formally, the membership can be represented
by an indicator (or characteristic) function µA : X → {0, 1} de�ned as

µA(x) :=
{
1 if x ∈ A
0 otherwise

,

where A ⊆ X is the extension of the predicate P , and X is the universal set
consisting of all objects that are of interest in a given context.

In fuzzy logic, the degree of truth in the proposition naturally leads to a degree
of membership of object x in P 's extension A. The correspondingly membership
function is thus de�ned as

µA : X → [0, 1], (1)

Now the non-classical set A, whose membership is a matter of degree, is referred
to as a fuzzy set. Equivalently, the fuzzy set A may refer to the collection of pairs
of each element and its membership i.e. A := {(x, µA(x))|x ∈ X,µA(x) ∈ [0, 1]}2.

For any fuzzy set A, the set of all objects of X for which A(x) > 0 is called
a support of A, and the set of all objects of X for which A(x) = 1 is called a
core of A. The height of fuzzy set A is given by h(A) := supx∈X(A(x)). When
h(A) = 1, the fuzzy set A is called normal ; otherwise, subnormal.

2 This de�nition is introduced in [164] and used in Section 3 of this article.
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Level cuts : For a given fuzzy set A and a scalar α ∈ (0, 1], the classical set
αA := {x ∈ X|µA(x) ≥ α} is called a level-cut (or an α-cut) of A. Then all
distinctive level-cuts form a family A = {αA|α ∈ [0, 1]} of nested classical sets.
A level-cuts based representation of A is thus given by

µA(x) = sup
α∈[0,1]

{α · αA(x)}. (2)

This representation is important since it connects fuzzy sets with underlying
level-cuts which are nested classical sets. Moreover, the level-cut de�nition αA :=
{x ∈ X|µA(x) ≥ α} is indeed a set-valued mapping F : (0, 1]→ X;α 7→ αA.

Standard operations on fuzzy sets : Zadeh put forward de�nitions of union
A ∪B, intersection A ∩B and complement c(A) operations as follows [153]:

µ∪(x) = max
(
µA(x), µB(x)

)
, x ∈ X,

µ∩(x) = min
(
µA(x), µB(x)

)
, x ∈ X,

µc(x) = 1− µA(x), x ∈ X.

While the above de�nitions are intuitive, they are not unique for di�erent
forms of fuzzy logics. It was suggested in the late 1970s to axiomatize intersec-
tions and unions operations on fuzzy sets by using triangular norms (t-norms)
and triangular conorms (t-conorms or s-norms) [131]. This abstraction gave rise
to a set of t-norms and s-norms operators which all satisfy the required axioms
listed below. Fuzzy negation is also axiomatized in the same vein. Table 2 below
summarizes some example pairs of t-norms and s-norms.

t-norm t(x, y) : [0, 1]× [0, 1]→ [0, 1]

1. commutative t(a,b) = t(b,a)
2. associative t( t(a,b),c) = t(a, t(b,c))

3. monotonicity t(a, b) ≤ t(a, d) if b ≤ d
4. boundary t(a,1) = a

,

s-norm s(x, y) : [0, 1]× [0, 1]→ [0, 1]

1. commutative s(a,b) = s(b,a)
2. associative s( s(a,b),c) = s(a, s(b,c))

3. monotonicity s(a, b) ≤ s(a, d) if b ≤ d
4. boundary s(a,0) = a

,

fuzzy-neg n(x) : [0, 1]→ [0, 1]

1. boundary n(0) = 1, and n(1)=0
2. ordered n(a) ≤ n(b) if b ≥ d

3. involutivity n( n(a) ) = a

.

Table 1: Axiomatization of fuzzy intersection, union and negation connectives.
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t-norm s-norm

min(a, b) max(a, b)
BD(a, b) = max(0, a+ b−1) BS(a, b) = min(1, a+ b)

AP (a, b) = ab AS(a, b) = a+ b− ab
HP (a, b) = ab

a+b−ab HS(a, b) = a+b−2ab
1−ab

EP (a, b) = ab
2−[a+b−(ab)]

ES(a, b) = a+b
1+ab

Table 2: Pairs of t-norms and s-norms. BD � bounded di�erence, BS � bounded
sum, AP � Algebraic product, AS � Algebraic sum, HP � Hamacher product,
AS � Hamacher sum, EP � Einstein product, ES � Einstein sum.

Ordered weighted averaging : In addition to intersections and unions, fuzzy
sets can be aggregated in others ways [52]. In particular, a parametrized class
of ordered weighted averaging (OWA) operations has been widely used for many
applications [147]. An OWA operation, hw, is de�ned with a weighting vector
w = {w1, w2, · · · , wN} for each wi ∈ [0, 1], i = 1, 2, · · · , N :

hw(u1, u2, · · · , uN ) =

N∑
i=1

wi · vi,

where vi denotes the i -th largest value of u1, u2, · · · , uN . Since vi is the sorted ui,
the lower and upper bounds of hw are obtained, respectively, for the weighting
vector w = {0, 0, · · · , 1} and w̄ = {1, 0, · · · , 0}, or min(u1, u2, · · · , uN ) and
max(u1, u2, · · · , uN ) correspondingly.

Contrary to intersections and unions, averaging operations de�ned as such
are dedicated to fuzzy sets and not applicable to classical sets � an average of
characteristic functions of classical sets is not a characteristic function in general.
OWA satisfy four conditions required for meaningful averaging functions i.e. 1)
monotonicity; 2) idempotency; 3) continuity; and 4) symmetry [14].

Fuzzy XOR connective : Speci�c de�nitions of fuzzy exclusive-OR (XOR)
connective were considered in [83, 100], and a generalized XOR operations was
introduced as a composition of the fuzzy negation, t-norms and s-norms [119].
An autonomous3 de�nition for the fuzzy XOR connective was �nally provided
in [10], from which the de�nition is excerpted as follows.

De�nition 1. A function E : U2 → U is a fuzzy XOR if it satis�es the proper-
ties:

1) E(x, y) = E(y, x) (symmetry);

2) E(x,E(y, z)) = E(E(x, y), z) (associativity);

3) E(0, x) = x (0-Identity);

4) E(1, 1) = 0 (boundary condition).
3 By autonomous, it means the de�nition is independent of the other connectives.
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[9] examined 12 speci�c de�nitions of fuzzy XOR connective and discussed
additional properties required for these de�nitions (see Figure 3 for a summary).
Among all these de�nitions, x⊕ y = x+ y− 2xy is of particular interests to our
work. This de�nition is studied extensively and used in the generalized ham-
ming networks (GHN) (see Sections 3 and 4 of this article). Note that fuzzy
neural network with fuzzy neurons employing generalized multivalued exclusive-
OR (XOR) operations has been proposed in [119], nevertheless, the domain and
range of the XOR connective function F are restricted to unit hypercubes i.e.
F : [0, 1]n → [0, 1]m in [119].

Follow on research [159] studied the robustness of fuzzy XOR operator based
on the sensitive to small changes in the inputs, and [114] extended the operator
to the lattice-valued version.

Fig. 3: Examples of fuzzy XOR connectives [9].
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Fuzzy number and fuzzy interval : A fuzzy interval is a fuzzy set A : R →
[0, 1] that satis�es following requirements:

1) level sets of A,αA, are closed intervals of real numbers for all α ∈ (0, 1],

2) the support of A is bounded,

3) A is a normal fuzzy set,

4) A is a piecewise continuous funcion.

A fuzzy number M̃ is thus a normal fuzzy interval which has exactly one member
x0 such that µM̃ (x0) = 1. Such x0 is called the mean value of fuzzy number M̃ .

Fuzzy arithmetic and the extension principle : Given two fuzzy intervals,
A and B, the four fuzzy arithmetic operations are de�ned by

(A ∗B)(c) = sup
c=a∗b

min{A(a), B(b)}, (3)

where a, b, c ∈ R and ∗ denotes any of the four arithmetic operations. Eq. (3),
which can be trivially extended to the case with n > 2 fuzzy intervals, is referred
to as the extension principle for fuzzy sets.

The basic ingredients of fuzzy numbers was already introduced in [153]. The
concept developed in follow up research was summarized as fuzzy arithmetic in
a book published in 1985 [76].

Fuzzy relation : A binary fuzzy relation is a fuzzy set R : X → [0, 1], that is
de�ned on the Cartesian products of universes X = X1 ×X2 by

R =
{(

(x1, x2), µR(x1, x2)
)∣∣∣(x1, x2) ∈ X,µR ∈ [0, 1]

}
, (4)

where X1, X2 are nonempty classical sets. Note that this de�nition can be triv-
ially extended to the N-ary fuzzy relation where N > 2.

Approximate reasoning : The foundations of approximate reasoning based
on fuzzy logic was published in a series of connected papers by Zadeh [155], in
which the cornerstone notion of linguistic variable is formally de�ned as a tuple
of three interrelated components � base variable V, a set of linguistic terms
L = {Li|i = 1, 2, · · · , N}, and a set of fuzzy sets F = {Fi|i = 1, 2, · · · , N},
which are all de�ned on V such that fuzzy sets in F are paired with linguistic
terms in L via the common index i. Linguistic variables may involve di�erent
types of linguistic terms as well as fuzzy propositional forms, of which we refer
readers to [14] for a detailed account.

Take as an example the linguistic variable introduced in Zadeh's paper [155],
the base variable �age� in this case has a set of numerical states in the range e.g.
A = [0, 100]. the set of linguistic terms are very young, young and old, which
all refer to the base variable �age�. Corresponding fuzzy sets Fi are de�ned on
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the base variable and supposed to represent the meaning of respective linguistic
terms (see Figure 4 for Zadeh's original example)4.

Fig. 4: Hierarchical structure of a linguistic variable.

Based on the de�ned linguistic variables, the so called compositional rule
of inference refers to �the process of solving a simultaneous system of so-called
relational assignment equations in which linguistic values are assigned to fuzzy
restriction� [155]. The compositional rule of inference de�ned as such actually
leads to a generalized modus ponens which can be reformulated as:

(V,W) is R,

V is A
W is B

(5)

where �V is A,W is B� are two fuzzy propositions based on the fuzzy sets A,B,
and R denotes a fuzzy relation on V ×W with degree of truth in [0, 1]. This
formulation of inference rule can be implemented by the sup-min composition
as B(w) = supv∈V min(A(v), R(v, w)) for each w ∈W .

Methods for constructing fuzzy sets : In order to apply fuzzy compositional
rules of inference de�ned above to practical applications, one has to �rst con-
struct fuzzy sets e.g. A,R in the generalized modus ponens (5) for the given
application context. Therefore the need for constructing methods of fuzzy sets,
albeit not a problem of fuzzy set theory per se, is of crucial importance for any

4 Note that in this example fuzzy sets Fi are pre-de�ned and the issue of how to
construct them was not discussed in Zahel's original paper. We will review various
methods for constructing (estimating) fuzzy sets below.
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real world applications. A great variety of methods of many diverse types have
been proposed for this aim, and we review them below following an extensive
survey [20] made in 2000.

[12] �rst proposed a principle approach to address the issue of constructing
fuzzy sets based on two assumption:

1. the fuzzy set is exempli�ed by a �nite set of samples;
2. there exists a family of candidate functions, each of which maps from some

universe of discourse X to [0, 1].

Under these assumptions, the constructing of fuzzy sets or membership functions
is formulated as an optimization problem, i.e. to �nd the optimal function that
best �ts the given samples. This data �tting style of approach is not unfamiliar
to machine learning practitioners, nevertheless, the approach was not chased up
further by authors of [12].

Bilgic et. al. provided in [20] a thorough and systematic review to classify
various methods into �ve categories according to di�erent views/interpretations
of membership functions. The example fuzzy proposition �John is tall�, that has
been discussed from the beginning of this article, is again used below for the
illustration.

1. likelihood view : [62] illustrated a representative method of this category,
which considered the likelihood that �John is tall� as the fuzzy membership
e.g. µtall(180cm) = P (tall | x = 180cm) = 0.7. Empirically, Hisdal proposed
to estimate the likelihood by employing a group of subjects to provide their
decisions in response to the question �Is John tall?�. Then the estimated like-
lihood is based on the fact that 70% of subjects declared that John is tall
by considering his measured height (180cm). Noticeably, Hisdal argued that
for a singe subject equipped with perfect information about John's height
there cannot be any fuzziness.

2. random set view : As illustrated in (2) fuzzy membership functions can be
viewed as a nested family of �level-cuts�. This so called �horizontal� view
therefore allows one to interpret the membership function µtall(x) = 0.7 as
70% of the subjects describe �tall� as random sets on X that contain John's
measured height. Empirically the membership can be estimated based on the
statistics of subjects' responses as in Hisdal's experiments mentioned above.

3. utility view : [45] o�ers a decision-theoretic interpretation in which each fuzzy
proposition is associated with a pay-o� function. In other word, the fuzzy
proposition "John is tall" with membership 0.7 will cost credibility of the
speaker if it is far from the truth. By minimizing the overall pay-o�, the op-
timal membership functions is estimated accordingly. It must be noted that
the connectives for this view are no longer truth functional, and therefore,
none of existing triangular norms and conorms are candidates for disjunction
and conjunction.
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4. similarity view : the similarity view treats the membership as a �degree of
similarity� with respect to a perfect (or representative) sample x̄ of the set
in question [90, 124]. Oftentimes, this similarity view assumes that the dis-
tance d(x, x̄) can be strictly measured such that the membership function is
de�ned accordingly e.g. by µ(x) = 1

1+f(d(x,x̄)) (see Section 3.4 of this article

for a concrete examples of f). Then the fuzzy proposition µtall(180cm) = 0.7
can be interpreted as having a measured distance between the given height
i.e. 180cm and the perfect sample of �tallness� such that the membership
µ(x) = 0.7.
While this similarity view is in accordance with many techniques employed
in machine learning and pattern recognition applications, it implicitly as-
sumes that there exist 1) a perfect sample; and 2) a continuous metric space
in which distances can be strictly measured. These two requirements need
critical examination before one can commit to the similarity view5.

5. measurement view : Bilgic et. al. argued that the measurement theory intro-
duced in [84, 85, 86, 106] allows one to model fuzzy notions with abstract
algebraic structure, and subsequently, map them into numerical structures
that can be assigned as memberships. In particular, they argued that one
should combine both the membership measurements and property ranking
to arrive at ordered algebraic structures which can be taken to model fuzzy
sets. In essence, their studies showed that the assumption of metric space in
the similarity view is not necessary [20].

Noticeably, fuzzy neural network techniques were also adopted in 1990s to
come up with estimations of membership functions for a number of tasks such
as handwriting recognition [44, 149]. We review below speci�c neural networks
that have been utilized to come up with membership functions from a given set
of data. More work related to fuzzy neural networks are reviewed in Section 2.6.

� Jang proposed a hybrid generalized neural network (GNN) to incorporate
prior knowledge about the original fuzzy system and �ne-tune the member-
ship functions of the fuzzy rules, via the gradient-descent-based supervised
learning [71]. All experiments are based on 1D function simulations with
various number of network parameters.

� Takagi & Hayashi proposed to combine an arti�cial neural network (NN)
and fuzzy reasoning so that the learning function and nonlinearity of NN
can be exploited to design and adapt membership functions. Di�erent net-
works with various parameters and layers were tested with two 1D signal
simulation problems [140].

� Furukawa & Yamakawa described two algorithms that yield membership
functions for a fuzzy neuron and their application to recognition of hand

5 In Section 4 of this article, we illustrate how to construct such a perfect sample,
called deep epitomes, from a trained generalized hamming network.
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writing [44, 149]. This rudimentary research with hand-crafted feature ex-
tractions is by no means comparable to the state of the art e.g. GHN based
MNIST hand written recognition though [41].

Criticisms : Despite the recognized success and signi�cant developments of
fuzzy logic made in 70s and 80s, the topic as a whole has been constantly criti-
cized with critical arguments focused on three aspects:

1. mathematical foundation: �the large number of publications under the
name of fuzzy logic or fuzzy set theory is not based on sound mathematical
foundations�. And in a paper entitled �The paradoxical success of fuzzy logic�,
Elkan claimed that fuzzy logic actually collapses to classical logic under
certain conditions [38]. This paper gave rise to a documented debate which
was published in IEEE Expert, with Zadeh and others supporters share their
views in response to Eklan's questioning.

2. applications: �there is no demonstration of innovative and non-trivial ap-
plications, for which classical logic is inadequate and fuzzy logic is essential�.
Applications of fuzzy logic were developed signi�cantly in 1980s to 1990s
(see Section 2.6). This criticism, in its original form, was no longer valid.
However, the rapid development of deep learning in the new millennium has
dwarfed those of fuzzy logic. In this sense, further developments of fuzzy
logic applications are urgently needed.

3. philosophical interpretation: �probability theory is the only sensible de-
scription of uncertainty, thus fuzzy logic is unnecessary�. In particular, Lind-
ley held an extreme position by stating �the only satisfactory description
of uncertainty is probability. ... alternative descriptions of uncertainty are
unnecessary. ... anything that can be done with fuzzy logic, ... can better be
done with probability�[14]. Zadeh responded with a number of publications
including [154, 157] to defend the importance of fuzzy logic6.

The following subsections illustrate follow up research from proponents of fuzzy
logic, in response to each of these criticisms.

2.5 Foundations and extensions

Through the work with signi�cant contributions towards mathematics of fuzzy
logic [47, 48], the �rst above-mentioned critical argument is no longer valid. Some
of these contributions e.g. of Goguen and many-valued logics were actually avail-
able but not well-known before 1990s. We review below some ground-breaking
contributions as well as extensions of fuzzy logic.

6 In our view, although the interpretation of fuzzy sets (membership function) or
degree of truths is intuitive, it should be re-examined from the machine learning
point of view. It is one of our motivations for this article to set o� exploration along
this direction.
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Logic of inexact concept : Shortly after the publication of Zadeh's semi-
nal paper [153], his student Goguen provided a solid mathematical and logical
treatment to one crucial characteristic of human reasoning i.e. vagueness in the
paper entitled �The logic of inexact concepts� [47]. Goguen �rst cautiously di�er-
entiated the calculus of �inexact predicates� (or vagueness) from the calculus of
probability: �we are not concerned with the likelihood that a man is short/tall,
after many trials; we are concerned with the shortness/tallness of one observa-
tion�. Goguen then derived the deduction rule from partially true assumptions
e.g. with the graded modus ponens as

ϕ with degree a, ϕ→ ψ with degree c
ψ with degree a⊗ c . (6)

where a ⊗ b is the truth function of a many-valued conjunction and can be
implemented as the usual product of a · b as proposed by Goguen. The graded
modus ponens in (6) has the desired property that the results of �a long chain of
only slightly unreliable deductions can be very unreliable�, which helps to resolve
the well-known sorites paradox (see [14, 47]).

In a related paper [48], Goguen also generalized the product conjunction on
unit interval [0, 1] to a complete lattice < L,⊗,∧,∨, 0, 1 >, with an associative
operation ⊗, in�ma ∧, suprema ∨ and boundary points 0, 1 de�ned on the set
L of truth degrees. Goguen illustrated required conditions on the lattice, which
guarantees the graded modus ponens is both sound and strong [48].

Meta-mathematics of fuzzy logic : The development of foundations of fuzzy
logic was signi�cantly in�uenced by Hájek's remarkable book Metamathematics
of Fuzzy Logic [57], in which he nicely put it: �Fuzzy logic is not a poor man's
logic nor poor man's probability. Fuzzy logic (in the narrow sense) is a reasonably
deep theory� and �Fuzzy logic in the narrow sense is a beautiful logic, but is
also important for applications: it o�ers foundations�. Indeed he developed the
basic logic, denoted BL, which generalizes the three previously developed logics,
namely the �ukasiwicz logics �, Gödel logics G, and product logic u, based on
the three basic continuous t-norms. By adding further axioms to BL, in the same
vein, BL also generalizes classical logic [14].

Probabilistic logic : While the classical logic is concerned with inferences from
certainly true statements to certainly true conclusions, there is a long-standing
e�orts to extend the classical logic to account for probably true inference rules.
In a broad sense, all such e�orts lead to the so called probabilistic semantics of
propositional logic or probabilistic logic. For instance, �ukasiwicz assigned to a
proposition ϕ the ratio between the number of occurrences for which the proposi-
tion is true and the number of all occurrences, and called the ratio the truth value
of the proposition denoted as ‖ϕ‖p=

#(true)
#(all)

[14]. �ukasiwicz then postulated three
axioms and derived a number of theorems based on the de�ned truth value. In
this view, a classical tautology is a propositional formula ϕ with the truth value
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‖ϕ‖p=1. By this de�nition, however, the probabilistic logic is not truth functional
in the sense that the truth value of composite propositions e.g. ‖ϕ∨ψ‖p cannot be
determined by individual truth values ‖ϕ‖p and ‖ψ‖p7. This issue or criticism is
well-known to researchers of many-valued (fuzzy) logic and the key to resolve the
apparent confusion lies in the distinction between degrees of truth and degrees
of belief.

In essence, degrees of belief model �vagueness� while degrees of truth deal
with �uncertainty due to lack of evidence�. For example, �John is tall� is vague
but not uncertain, thus, this proposition is �believed� to be true with certain
degree of con�dence by the speaker. �John will come tomorrow�, on the other
hand, is uncertain but not vague. The degree of truth of this proposition is
between [0, 1] for now, but will be either 1 or 0 by tomorrow. Many research
thus has focused on studying how uncertainties in belief �ow from premises to
conclusions in deductive inferences [4, 56, 58, 116].

Rough sets : Pawlak proposed to augment a fuzzy set by taking into consid-
eration th indiscernibility between objects [117, 118]. For example, if a group of
patients are described by using several symptoms, many patients would share
the same symptoms, and hence are indistinguishable in terms of symptoms in
question. The indiscernibility is typically characterized by an equivalence rela-
tion and rough sets are the results of approximating crisp sets using equivalence
classes. Formally indiscernibility may be described by a re�exive, symmetric and
transitive equivalence relation R ⊆ X ×X on a �nite and non-empty universe
X [150]. The relation R partitions X into a family of disjoint subsets X/R. For
any given relation, if two elements xRy, x, y ∈ X then they are indistinguish-
able. Probabilistic approaches have been applied to rough sets in the form of
decision-theoretic analysis, variable precision analysis and information-theoretic
analysis [151]. More recent advances in the �eld were reviewed in [162].

7 Considering the case where ‖ϕ‖p=0.5 and ψ = ϕ, then ‖ϕ∨ψ‖p=0.5; and for the case
where ‖ϕ‖p=0.5 and ψ = ¬ϕ, instead ‖ϕ∨ψ‖p=‖ϕ∨¬ϕ‖p=1. Reichenbach proposed to
resolve the non-truth functional by including an additional parameter u to represent
the correlation between ϕ and ψ such that ‖ϕ∨ψ‖p=‖ϕ‖p+‖ψ‖p−‖ϕ‖p·u [14].
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2.6 Applications of fuzzy logic

Fuzzy clustering and pattern recognition : clustering is a traditional data
analysis technique, which refers to the task of classifying a given set of objects
into a number of clusters according to a set of distinctive features. A typical op-
timization goal of clustering is to put similar objects into the same cluster, while
dissimilar ones into di�erent clusters as much as possible. In this sense, cluster-
ing may also refer to classi�cation, recognition, categorization or grouping etc.
Classical clustering techniques often assign each object into a designated cluster,
in other words, each cluster is a classical crisp set with element membership in
{0, 1}. This requirement is abandoned for fuzzy clustering, and therefore, each
cluster is a fuzzy set.

Fuzzy clustering or pattern classi�cation was de�nitely one of the principal
motivation for Zadeh to put forward the conception of fuzzy sets in his seminal
paper [153] followed by another early paper devoted fully to fuzzy cluster analysis
[156]. The early history of fuzzy clustering can also be traced in the book which
contains 20 papers covering the principal ideas and di�erent aspects of the topic
[19]. The classical k-means clustering method was extended to a fuzzy Iterative
Self-Organizing Data Analysis method (ISODATA) and fuzzy c-means clustering
method in these early studies [18, 37]. Often a �xed number of clusters and some
proximity measure (e.g. Euclidean/Minkowski/Mahalanobis) were adopted for
these methods. We refer readers to a comprehensive book on fuzzy clustering
analysis for further developments in the �eld [63].

Computer vision : The use of fuzzy set theory in computer vision can be
broadly categorized as three types of applications: edge/boundary detection,
segmentation and scene description [111]. The de�nition of �edge�, e.g. given by
Jian [121], is vague and subjective and numerous methods have been proposed to
deal with vagueness in locations and intensity of edge points [17, 91, 129]. While
image segmentations are de�ned as homogeneous regions according to some fea-
tures, sharp segment boundaries are often hard to de�ne precisely. Therefore,
fuzzy set theory and fuzzy logic have been introduced to improve segmentation
results by employing various methods thresolding [34, 59, 104, 112? ]. In the
context of scene description, the de�nition of object classes as well as the spatial
relations such as NEAR, ABOVE, RIGHT can be best modelled by fuzzy sets
[42, 93, 98, 113].

Nevertheless, it must be noted that the fuzzy logic and computer vision
communities are largely separated and majority of the above mentioned work
are not published in a main computer vision conference or journal.

Fuzzy control : As an important application area of fuzzy logic, a successful
fuzzy controller for steam engine based on fuzzy if-then rules was �rst demon-
strated by Mamdani and his student in 1975 [97]. The �rst fuzzy controller of an
inverted pendulum was implemented and demonstrated by Yamakawa by using
49 fuzzy if-then rules applied on two input variables (with each having 7 linguis-
tic terms) [148]. This system was a great success when it was demonstrated at
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the Second IFSA Congress in 1987, as it showed the remarkable robustness in
an uncontrolled environment.

Fuzzy decision making : The idea of employing fuzzy logic in decision making
(thus coined as fuzzy decision making or FDM) was �rst introduced in the paper
[13], followed by exploded research along this direction [80, 163]. A general fuzzy
linear programming model for decision making can be formulated as follows:
Maximize

∑n
j=1 CjXj subject to

∑n
j=1AijXj ≤ Bi(i ∈ Nm) and Xj ≥ 0, where

Aij , Bi, Cj are fuzzy intervals, Xj are fuzzy intervals representing states of n
linguistic variables, and symbols ≤ or ≥ denote ordering of fuzzy intervals [14].
Depending on the types of decision criteria employed involved in the decision-
making, the whole area of FDM are often categorized into a number sub-areas
including multi-attribute, multi-objective, and multi-criteria FDM [27, 146]

Fuzzy automata : Finite automata theory is a branch of computer science that
deals with abstract machines that follow a predetermined sequence of operations
automatically. A �nite automaton has a �nite number of states, inputs, outputs,
internal and transition functions. Correspondingly, a �nite fuzzy automata is
de�ned as a quintuple < I, V,Q, f, g > in which I, V,Q are, respectively, ordinary
non-empty �nite sets of objects in input, output and internal states while f, g, on
the other hand, are membership functions of fuzzy sets [144]. A fuzzy automaton
behaves in a deterministic fashion. However, it has many properties similar to
that of stochastic automata. Fuzzy auotomata may also handle continuous spaces
thus are able to model uncertainty in many applications [35]. Mathematically,
an isomorphism between a category of fuzzy automata and a category of chains
of non-deterministic automata was proved in [102]. Also, deterministic fuzzy
automata and nondeterministic fuzzy automata are all equivalent in the sense
that they recognize the same class of fuzzy languages [26].

Databases and information retrieval : an important notion in application
of fuzzy logic is the fuzz relational database [24], which extends entries of the
classical relation R ⊂ D1 × · · · ×Dn from a single value to a whole set of values
indicating the graded relationships i.e. R ⊂ 2D1 × · · · × 2Dn . Correspondingly,
each domain is equipped with a fuzzy similarity relation, which allows vague
and natural similarity queries like �look for houses near New York and cost
approximately $200,000�. [122] later considered a rational database table as a
fuzzy relation R : D1×Dn → [0, 1], and [40] introduced the groundbreaking and
powerful threshold algorithm which is widely used in numerous applications and
systems [14].

Fuzzy Neural Network (FNN) : Since 1980s the integration of fuzzy logic
and computational neural networks has given birth to the fuzzy neural net-
works (FNN) [55] which, on the one hand, attempted to furnish neural networks
with the interpretability of fuzzy logic [14, 153, 164]. On the other hand, neural
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networks have been used as a computational tool to come up with both mem-
bership functions and fuzzy inference rules [44, 149]. A fuzzy inference system
implemented in the framework of adaptive networks by using a hybrid learning
procedure was proposed in [72] and follow up research between 2002 to 2012
were reviewed in [75]. In essence, a fuzzy neuron of FNNs is designed to take
fuzzy sets as inputs and aggregate inputs by fuzzy aggregation operations (e.g.
fuzzy union, fuzzy intersected and/or OWA) [43]. In terms of system architec-
ture, [139] reviewed thoroughly di�erent integration models of neural network
and fuzzy systems (NN+FS), and classi�ed them into 9 categories which are
illustrated in Figure 5 below.

Fig. 5: Hayashi & Umono's categorization of di�erent integration models of neu-
ral network and fuzzy system (NN+FS) [139].
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FNN with deep learning : The so called �soft computing� joint force endeav-
our remains active in the new millennium e.g. in [65, 75, 95, 107, 119]. Never-
theless, FNNs have been largely overlooked nowadays by scholars and engineers
in machine learning (ML) community, partially due to the lack of convincing
demonstrations on ML problems with large datasets. The exceptional case is
the recent NIPS publication [41], which re-interpreted ReLU and batch normal-
ization within a novel Generalized Hamming Network (GHN) framework and
demonstrated the state-of-the-art performances on a variety of machine learning
tasks.

The proposed generalized hamming network (GHN) forms its foundation on
the cornerstone notion of generalized hamming distance (GHD), which is essen-
tially de�ned as h(x,w) := x + w − 2xw for any x,w ∈ R. Its connection with
the inferencing rule in neural computing is obvious: the last term (−2xw) corre-
sponds to element-wise multiplications of neuron inputs and weights, and since
we aim to measure the GHD between inputs x and weights w, the bias term then
should take the value x + w. Since the underlying GHD induces a fuzzy XOR
connective, GHN lends itself to rigorous analysis within the fuzzy logics theory.
GHN also bene�ts from the rapid developments of neural computing techniques,
in particular, those employing parallel computing on GPUs. Due to this e�cient
implementation of GHNs, it is the �rst fuzzy neural network that has demon-
strated state-of-the-art performances on learning tasks with large scale datasets.
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3 Revisit fuzzy neural network with generalized hamming

network

In this section, we revisit fuzzy neural network with a cornerstone notion of
generalized hamming distance which provides a novel and theoretically justi�ed
framework to re-interpret many useful neural network techniques in terms of
fuzzy logic. In particular, we conjecture and empirically illustrate that, the cele-
brated batch normalization (BN) technique actually adapts the �normalized� bias
such that it approximates the rightful bias induced by the generalized hamming
distance. Once the due bias is enforced analytically, neither the optimization of
bias terms nor the sophisticated batch normalization is needed. Also in the light
of generalized hamming distance, the popular recti�ed linear units (ReLU) can
be treated as setting a minimal hamming distance threshold between network
inputs and weights. This thresholding scheme, on the one hand, can be improved
by introducing double-thresholding on both positive and negative extremes of
neuron outputs. On the other hand, ReLUs turn out to be non-essential and
can be removed from networks trained for simple tasks like MNIST classi�ca-
tion. The proposed generalized hamming network (GHN) as such not only lends
itself to rigorous analysis and interpretation within the fuzzy logic theory but also
demonstrates fast learning speed, well-controlled behaviour and state-of-the-art
performances on a variety of learning tasks.

3.1 Introduction

Since early 1990s the integration of fuzzy logic and computational neural net-
works has given birth to the fuzzy neural networks (FNN) [55]. While the for-
mal fuzzy set theory provides a strict mathematical framework in which vague
conceptual phenomena can be precisely and rigorously studied [6, 11, 141, 153],
application-oriented fuzzy technologies lag far behind theoretical studies. In par-
ticular, fuzzy neural networks have only demonstrated limited successes on some
toy examples such as [119, 142]. In order to catch up with the rapid advances
in recent neural network developments, especially those with deep layered struc-
tures, it is the goal of this paper to demonstrate the relevance of FNN, and
moreover, to provide a novel view on its non-fuzzy counterparts.

Our revisiting of FNN is not merely for the fond remembrances of the golden
age of �soft computing� [165]. Instead it provides a novel and theoretically justi-
�ed perspective of neural computing, in which we are able to re-examine and de-
mystify some useful techniques that were proposed to improve either e�ectiveness
or e�ciency of neural networks training processes. Among many others, batch
normalization (BN) [69] is probably the most in�uential yet mysterious trick,
that signi�cantly improved the training e�ciency by adapting to the change in
the distribution of layers' inputs (coined as internal covariate shift). Such kind
of adaptations, when viewed within the fuzzy neural network framework, can be
interpreted as recti�cations to the de�ciencies of neuron outputs with respect
to the rightful generalized hamming distance (see de�nition 2) between inputs
and neuron weights. Once the appropriate recti�cation is applied , the ill e�ects
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of internal covariate shift are automatically eradicated, and consequently, one
is able to enjoy the fast training process without resorting to a sophisticated
learning method used by BN.

Another crucial component in neural computing, Recti�ed linear unit (ReLU),
has been widely used due to its strong biological motivations and mathematical
justi�cations [3, 46, 120]. We show that within the generalized hamming group
endowed with generalized hamming distance, ReLU can be regarded as setting a
minimal hamming distance threshold between network input and neuron weights.
This novel view immediately leads us to an e�ective double-thresholding scheme
to suppress fuzzy elements in the generalized hamming group.

The proposed generalized hamming network (GHN) forms its foundation on
the cornerstone notion of generalized hamming distance (GHD), which is essen-
tially de�ned as h(x,w) := x + w − 2xw for any x,w ∈ R (see de�nition 2).
Its connection with the inferencing rule in neural computing is obvious: the last
term (−2xw) corresponds to element-wise multiplications of neuron inputs and
weights, and since we aim to measure the GHD between inputs x and weights w,
the bias term then should take the value x+w. In this article we de�ne any net-
work that has its neuron outputs ful�lling this requirement (13) as a generalized
hamming network. Since the underlying GHD induces a fuzzy XOR logic, GHN
lends itself to rigorous analysis within the fuzzy logics theory (see de�nition 5).
Apart from its theoretical appeals, GHN also demonstrates appealing features
in terms of fast learning speed, well-controlled behaviour and simple parameter
settings (see Section 3.5).

3.2 Related work

Fuzzy logic and fuzzy neural network : the notion of fuzzy logic is based on the re-
jection of the fundamental principle of bivalence of classical logic i.e. any declar-
ative sentence has only two possible truth values, true and false. Although the
earliest connotation of fuzzy logic was attributed to Aristotle, the founder of clas-
sical logic [14], it was Zadeh's publication in 1965 that ignited the enthusiasm
about the theory of fuzzy sets [153]. Since then mathematical developments have
advanced to a very high standard and are still forthcoming to day [6, 11, 141].
Fuzzy neural networks were proposed to take advantages of the �exaible knowl-
edge acquiring capability of neural networks [55, 95]. In theory it was proved
that fuzzy systems and certain classes of neural networks are equivalent and
convertible with each other [16, 70]. In practice, however, successful applications
of FNNs are limited to some toy examples only [119, 142].

Demystifying neural networks: e�orts of interpreting neural networks by
means of propositional logic dated back to McCulloch & Pitts' seminial pa-
per [99]. Recent research along this line include [65] and the references therein,
in which First Order Logic (FOL) rules are encoded using soft logic on continu-
ous truth values from the interval [0, 1]. These interpretations, albeit interesting,
seldom explain e�ective neural network techniques such as batch normalization
or ReLU. Recently [130] provided an improvement (and explanation) to batch



28 Lixin Fan

normalization by removing dependencies in weight normalization between the
examples in a minibatch.

Binary-valued neural network : Restricted Boltzmann Machine (RBM) was
used to model an �ensemble of binary vectors� and rose to prominence in the
mid-2000s after fast learning algorithms were demonstrated by Hinton et. al. [61,
105]. Recent binarized neural network [32, 123] approximated standard CNNs
by binarizing �lter weights and/or inputs, with the aim to reduce computational
complexity and memory consumption. The XNOR operation employed in [123]
is limited to binary hamming distance and not readily applicable to non-binary
neuron weights and inputs.

Ensemble of binary patterns: the distributive property of GHD described in
(7) provides an intriguing view on neural computing � even though real-valued
pattens are involved in the computation, the computed GHD is strictly equiv-
alent to the mean of binary hamming distances across two ensembles of binary
patterns! This novel view illuminates the connection between generalized ham-
ming networks and e�cient binary features, that have long been used in various
computer vision tasks, for instance, the celebrated Adaboost face detection[143],
numerous binary features for key-point matching [25, 126] and binary codes for
large database hashing [88, 94, 109, 110].

3.3 Generalized Hamming Distance
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Fig. 6: (a) h(a, b) has one fuzzy region near the identity element 0.5 (in white),
two positively con�dent (in red) and two negatively con�dent (in blue) regions
from above and below, respectively. (b) Fuzziness F (h(a, b)) = h(a, b) ⊕ h(a, b)
has its maxima along a = 0.5 or b = 0.5. (c) µ(h(a, b)) : U → I where
µ(h) = 1/(1 + exp(0.5 − h)) is the logistic function to assign membership to
fuzzy set elements (see de�nition 5). (d) partial derivative of µ(h(a, b)). Note
that magnitudes of gradient in the fuzzy region is non-negligible.

De�nition 2. Let a, b, c ∈ U ⊆ R, and a generalized hamming distance (GHD),
denoted by ⊕, be a binary operator h : U×U → U ; h(a, b) := a⊕ b = a+ b− 2 · a · b .
Then
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(i) for U = {0, 1} GHD de-generalizes to binary hamming distance with
0⊕ 0 = 0; 0⊕ 1 = 1; 1⊕ 0 = 1; 1⊕ 1 = 0;

(ii) for U = [0.0, 1.0] the unitary interval I, a⊕ b ∈ I (closure);
Remark : this case is referred to as the �restricted� hamming distance, in
the sense that inverse of any elements in I are not necessarily contained
in I (see below for de�nition of inverse).

(iii) for U = R, H := (R,⊕) is a group satisfying �ve abelian group axioms,
thus is referred to as the generalized hamming group or hamming group:
� a⊕ b = (a+ b− 2 · a · b) ∈ R (closure);
� a⊕ b = (a+ b− 2 · a · b) = b⊕ a (commutativity);
� (a⊕ b)⊕ c = (a+ b− 2 · a · b) + c− 2(a+ b− 2 · a · b)c

= a+ (b+ c− 2 · b · c)− 2 ·a · (b+ c− 2 · b · c) = a⊕ (b⊕ c) (associativity);
� ∃e = 0 ∈ R such that e ⊕ a = a ⊕ e = (0 + a − 2 · 0 · a) = a (identity
element);

� for each a ∈ R \ {0.5}, ∃a−1 := a/(2 · a− 1) s.t. a⊕ a−1 = (a+ a
2·a−1 −

2a · a
2·a−1 )

= 0 = e; and we de�ne ∞ := (0.5)−1 (inverse element).
Remark : note that 1 ⊕ a = 1 − a which complements a. �0.5� is a �xed
point since ∀a ∈ R, 0.5⊕a = 0.5, and 0.5⊕∞ = 0 according to de�nition8.

(iv) GHD naturally leads to a measurement of fuzziness: F (a) := a ⊕ a,R →
(−∞, 0.5] : F (a) ≥ 0,∀a ∈ [0, 1];F (a) < 0 otherwise. Therefore [0, 1] is
referred to as the fuzzy region in which F (0.5) = 0.5 has the maximal
fuzziness and F (0) = F (1) = 0 are two boundary points. Outer regions
(−∞, 0] and [1,∞) are negative and positive con�dent regions respectively.
See Figure 6 (a) for the surface of h(a, b) which has one central fuzzy region,
two positive con�dent and two negative con�dent regions.

(v) The direct sum of hamming group is still a hamming groupHL := ⊕l∈LHl:
let x = {x1, . . . , xL},y = {y1, . . . , yL} ∈ HL be two group members, then
the generalized hamming distance is de�ned as the arithmetic mean of
element-wise GHD: GL(x⊕L y) := 1

L (x1 ⊕ y1 + . . .+ xL ⊕ yL).
And let x̃ = (x1 + . . . xL)/L, ỹ = (y1 + . . . yL)/L be arithmetic means of

respective elements, then GL(x⊕L y) = x̃+ ỹ − 2

L
(x · y) , where x · y =∑L

l=1 xl · yl is the dot product.
(vi) Distributive property : let X̄M = (x1 + . . .xM )/M ∈ HL be element-wise

arithmetic mean of a set of members xm ∈ HL, and ȲN be de�ned in the
same vein. Then GHD is distributive:

GL(X̄M ⊕L ȲN ) =
1

L

L∑
l=1

x̄l ⊕ ȳl =
1

M

1

N

1

L

M∑
m=1

N∑
n=1

L∑
l=1

xml ⊕ ynl

=
1

MN

M∑
m=1

N∑
n=1

GL(xm ⊕L yn).

(7)

8 By this extension, it is R = R∪{−∞,+∞} instead of R on which we have all group
members.
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Remark : in case that xml , y
n
l ∈ {0, 1} i.e. for two sets of binary patterns,

the mean of binary hamming distance between two sets can be e�ciently
computed as the GHD between two real-valued patterns X̄M , ȲN . Con-
versely, a real-valued pattern can be viewed as the element-wise average
of an ensemble of binary patterns.

3.4 Generalized Hamming Network

Despite the recent progresses in deep learning, arti�cial neural networks has long
been criticized for its �black box� nature: �they capture hidden relations between
inputs and outputs with a highly accurate approximation, but no de�nitive an-
swer is o�ered for the question of how they work� [16]. In this section we provide
an interpretation on neural computing by showing that, if the condition spec-
i�ed in (13) is ful�lled, outputs of each neuron can be strictly de�ned as the
generalized hamming distance between inputs and weights. Moreover, the com-
putations of GHD induces fuzzy implication of XOR connective, and therefore,
the inferencing of entire network can be regarded as a logical calculus in the
same vein as described in McCulloch & Pitts' seminial paper [99].

New perspective on neural computing The bearing of generalized ham-
ming distance on neural computing is elucidated by looking at the negative of
generalized hamming distance, (GHD, see de�nition 2), between inputs x ∈ HL
and weights w ∈ HL in which L denotes the length of neuron weights e.g. in
convolution kernels:

−GL(w ⊕L x) =
2

L
w · x− 1

L

L∑
l=1

wl −
1

L

L∑
l=1

xl (8)

Divide (12) by the constant 2
L and let

b = −1

2

( L∑
l=1

wl +

L∑
l=1

xl
)

(9)

then it becomes the familiar form (w·x+b) of neuron outputs save the non-linear
activation function. By enforcing the bias term to take the given value in (13),
standard neuron outputs measure negatives of GHD between inputs and weights.
Note that, for each layer, the bias term

∑L
l=1 xl is averaged over neighbouring

neurons in individual input image. The bias term
∑L
l=1 wl is computed separately

for each �lter in fully connected or convolution layers. When weights are updated
during the optimization,

∑L
l=1 wl changes accordingly to keep up with weights

and maintain stable neuron outputs. We discuss below (re-)interpretations of
neural computing in terms of GHD.

Fuzzy inference: As illustrated in de�nition 5 GHD induces a fuzzy XOR
connective. Therefore the negative of GHD quanti�es the degree of equivalence
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between inputs x and weights w (see de�nition 5 of fuzzy XOR), i.e. the fuzzy
truth value of the statement �x ↔ w� where ↔ denotes a fuzzy equivalence
relation. For GHD with multiple layers stacked together, neighbouring neuron
outputs from the previous layer are integrated to form composite statements
e.g. �(x1

1 ↔ w1
1, . . . ,x

1
i ↔ w1

i ) ↔ w2
j � where superscripts correspond to two

layers. Thus stacked layers will form more complex, and hopefully more powerful,
statements as the layer depth increases.
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Fig. 7: Left to right: mean, max and min of neuron outputs, with/without batch
normalized (BN, WO_BN) and generalized hamming distance (XOR). Outputs
are averaged over all 64 �lters in the �rst convolution layer and plotted for 30
epochs training of a MNIST network used in our experiment (see Section 3.5).

Batch normalization demysti�ed: When a mini-batch of training sam-
ples X = {x1, . . . ,xM} is involved in the computation, due to the distributive

property of GHD, the data-dependent bias term
L∑
l=1

xl equals the arithmetic

mean of corresponding bias terms computed for each sample in the mini-batch

i.e. 1
M

M∑
m=1

L∑
l=1

xml . It is almost impossible to maintain a constant scalar b that

ful�ls this requirement when mini-batch changes, especially at deep layers of
the network whose inputs are in�uenced by weights of incoming layers. The
celebrated batch normalization (BN) technique therefore proposed a learning
method to compensate for the input vector change, with additional parameters
γ, β to be learnt during the training [69]. It is our conjecture that batch nor-
malization is approximating these rightful bias through optimization, and this
connection is empirically revealed in Figure 7 with very similar neuron outputs
obtained by BN and GHD. Indeed they are highly correlated during the course
of training (with Pearson correlation coe�cient=0.97), con�rming our view that
BN is attempting to in�uence the bias term according to (13).

Once b is enforced to follow (13), neither the optimization of bias terms nor
the sophisticated learning method of BN is needed. In the following section we
will illustrate a recti�ed neural network designed as such.

Recti�ed linear units (ReLU) redesigned: Due to its strong biologi-
cal motivations [3] and mathematical justi�cations [120], recti�ed linear unit
(ReLu) is the most popular activation function used for deep neural network
[92]. If neuron outputs are recti�ed as the generalized hamming distances, the
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activation function max(0, 0.5 − h(x,w)) then simply sets a minimal hamming
distance threshold of 0.5 (see Figure 6). Astute readers may immediately spot
two limitations of this activation function: a) it only takes into account the neg-
ative con�dence region while disregards positive con�dence regions; b) it allows
elements in the fuzzy regime near 0.5 to misguide the optimization with their
non-negligible gradients.

A straightforward remedy to ReLU is to suppress elements within the fuzzy
region by setting outputs between [0.5 − r, 0.5 + r] to 0.5, where r is a param-
eter to control acceptable fuzziness in neuron outputs. In particular, we may
set thresholds adaptively e.g. [0.5 − r · O, 0.5 + r · O] where O is the maximal
magnitude of neuron outputs and the threshold ratio r is adjusted by the opti-
mizer. This double-thresholding strategy e�ectively prevents noisy gradients of
fuzzy elements, since 0.5 is a �xed point and x ⊕ 0.5 = 0.5 for any x. Empiri-
cally we found this scheme, in tandem with the recti�cation (13), dramatically
boosts the training e�ciency for challenging tasks such as CIFAR10/100 image
classi�cation. It must be noted that, however, the use of non-linear activation
as such is not essential for GHD-based neural computing. When the double-
thresholding is switched-o� (by �xing r = 0), the learning is prolonged for chal-
lenging CIFAR10/100 image classi�cation but its in�uence on the simple MNIST
classi�cation is almost negligible (see Section 3.5 for experimental results).

Ganeralized hamming network with induced fuzzy XOR

De�nition 3. A generalized hamming network (GHN) is any networks consist-
ing of neurons, whose outputs h ∈ HL are related to neuron inputs x ∈ HL and

weights w ∈ HL by h = x⊕L w .
Remark: In case that the bias term is computed directly from (13) such that

h = x ⊕L w is ful�lled strictly, the network is called a recti�ed GHN or simply
a GHN. In other cases where bias terms are approximating the rightful o�sets
(e.g. by batch normalization [69]), the trained network is called an approximated
GHN.

Compared with traditional neural networks, the optimization of bias terms
is no longer needed in GHN. Empirically, it is shown that the proposed GHN
bene�ts from a fast and robust learning process that is on par with that of the
batch-normalization approach, yet without resorting to sophisticated learning
process of additional parameters (see Section 3.5 for experimental results). On
the other hand, GHN also bene�ts from the rapid developments of neural com-
puting techniques, in particular, those employing parallel computing on GPUs.
Due to this e�cient implementation of GHNs, it is the �rst time that fuzzy neu-
ral networks have demonstrated state-of-the-art performances on learning tasks
with large scale datasets.

Often neuron outputs are clamped by a logistic activation function to within
the range [0, 1], so that outputs can be compared with the target labels in super-
vised learning. As shown below, GHD followed by such a non-linear activation
actually induces a fuzzy XOR connective. We brie�y review basic notion of fuzzy
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set used in our work and refer readers to [14, 153, 164] for thorough treatments
and review of the topic.

De�nition 4. Fuzzy Set: Let X be an universal set of elements x ∈ X, then
a fuzzy set A is a set of pairs: A := {

(
x, µA(x)

)
|x ∈ X,µA(x) ∈ I}, in which

µA : X → I is called the membership function (or grade membership).

Remark : In this work we let X be a Cartesian product of two sets X = P ×U
where P are (2D or 3D) collection of neural nodes and U are real numbers in ⊆ I
or ⊆ R. We de�ne the membership function µX(x) := µU (xp),∀x = (p, xp) ∈ X
such that it is dependent on xp only. For the sake of brevity we abuse the notation
and use µ(x), µX(x) and µU (xp) interchangeably.

De�nition 5. Induced fuzzy XOR: let two fuzzy set elements a, b ∈ U be
assigned with respective grade or membership by a membership function µ : U →
I : µ(a) = i, µ(b) = j, then the generalized hamming distance h(a, b) : U×U → U
induces a fuzzy XOR connective E : I × I → I whose membership function is
given by

µR(i, j) = µ(h(µ−1(i), µ−1(j))). (10)

Remark : For the restricted case U = I the membership function can be
trivially de�ned as the identity function µ = idI as proved in [11].

Remark : For the generalized case where U = R, the fuzzy membership µ can
be de�ned by a sigmoid function such as logistic, tanh or any function : U → I.
In this work we adopt the logistic function µ(a) = 1

1+exp(0.5−a) and the resulting

fuzzy XOR connective is given by following membership function:

µR(i, j) =
1

1 + exp
(
0.5− µ−1(i)⊕ µ−1(j)

) , (11)

where µ−1(a) = − ln( 1
a − 1) + 1

2 is the inverse of µ(a). Following this analysis,
it is possible to rigorously formulate neuron computing of the entire network
according to inference rules of fuzzy logic theory (in the same vein as illustrated
in [99]). Nevertheless, research along this line is out of the scope of the present
article and will be reported elsewhere.

3.5 Performance evaluation

Generalized Hamming Networks were tested with four learning tasks, namely
MNIST image classi�cation, CIFAR10/100 image classi�cation, Variational au-
toencoding, and sentence classi�cation.

A case study with MNIST image classi�cation :

Overall performance: we tested a simple four-layered GHN (cv[1,5,5,16]-pool-
cv[16,5,5,64]-pool-fc[1024]-fc[1024,10]) on the MNIST dataset with 99.0% test
accuracy obtained. For this relatively simple dataset, GHN is able to reach test
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Fig. 8: Test accuracies of MNIST classi�cation with Generalized Hamming Net-
work (GHN). Left: test accuracies without using non-linear activation (by setting
r = 0). Middle: with r optimized for each layer. Right: with r optimized for each
�lter. Four learning rates i.e. {0.1, 0.05, 0.025, 0.01} are used for each case with
the �nal accuracy reported in brackets. Note that the number of mini-batch are
in logarithmic scale along x-axis.

accuracies above 0.95 with 1000 mini-batches and a learning rate 0.1. This learn-
ing speed is on par with that of the batch normalization (BN), but without re-
sorting to the learning of additional parameters in BN. It was also observed a
wide range of large learning rates (from 0.01 to 0.1) all resulted in similar �nal
accuracies (see below). We ascribe this well-controlled robust learning behaviour
to recti�ed bias terms enforced in GHNs.

In�uence of learning rate: This experiment compares performances with dif-
ferent learning rates and Figure 8 (middle,right) show that a very large learn-
ing rate (0.1) leads to much faster learning without the risk of divergences. A
small learning rate (0.01) su�ce to guarantee the comparable �nal test accuracy.
Therefore we set the learning rate to a constant 0.1 for all experiments unless
stated otherwise.

In�uence of non-linear double-thresholding : The non-linear double-thresholding
can be turned o� by setting the threshold ratio r = 0 (see texts in Section
3.4). Optionally the parameter r is automatically optimized together with the
optimization of neuron weights. Figure 8 (left) shows that the GHN without
non-linear activation (by setting r = 0) performs equally well as compared with
the case where r is optimized (in Figure 8 left, right). There are no signi�cant
di�erences between two settings for this relative simple task.

CIFAR10/100 image classi�cation :

In this experiment, we tested a six-layered GHN (cv[3,3,3,64]-cv[64,5,5,256]-
pool-cv[256,5,5,256]-pool-fc[1024]-fc[1024,512]-fc[1024,nclass]) on both CIFAR10
(nclass=10) and CIFAR100 (nclass=100) datasets. Figure 9 shows that the
double-thresholding scheme improves the learning e�ciency dramatically for
these challenging image classi�cation tasks: when the parameter r is optimized
for each feature �lter the numbers of iterations required to reach the same level
of test accuracy are reduced by 1 to 2 orders of magnitudes. It must be noted
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that performances of such a simple generalized hamming network (89.3% for CI-
FAR10 and 60.1% for CIFAR100) are on par with many sophisticated networks
reported in [15]. In our view, the recti�ed bias enforced by (13) can be readily
applied to these sophisticated networks, although resulting improvements may
vary and remain to be tested.

Generative modelling with Variational Autoencoder :

In this experiment, we tested the e�ect of recti�cation in GHN applied to a
generative modelling setting. One crucial di�erence is that the objective is now
to minimize reconstruction error instead of classi�cation error. It turns out the
double-thresholding scheme is no longer relevant for this setting and thus not
used in the experiment.

The baseline network (784-400-400-20) used in this experiment is an im-
proved implementation [2] of the in�uential paper [82], trained on the MNIST
dataset of images of handwritten digits. We have recti�ed the outputs following
(13) and, instead of optimizing the lower bound of the log marginal likelihood
as in [82], we directly minimize the reconstruction error. Also we did not include
weights regularization terms for the optimization as it is unnecessary for GHN.
Figure 10 (left) illustrates the reconstruction error with respect to number of
training steps (mini-batches). It is shown that the recti�ed generalized ham-
ming network converges to a lower minimal reconstruction error as compared
to the baseline network, with about 28% reduction. The recti�cation also leads
to a faster convergence, which is in accordance with our observations in other
experiments.

Sentence classi�cation :

A simple CNN has been used for sentence-level classi�cation tasks and ex-
cellent results were demonstrated on multiple benchmarks [81]. The baseline
network used in this experiment is a re-implementation of [81] made available
from [1]. Figure 10 (right) plots accuracy curves from both networks. It was
observed that the recti�ed GHN did improve the learning speed, but did not im-
prove the �nal accuracy as compared with the baseline network: both networks
yielded the �nal evaluation accuracy around 74% despite that the training ac-
curacy were almost 100%. The over-�tting in this experiment is probably due
to the relatively small Movie Review dataset size with 10,662 example review
sentences, half positive and half negative.

3.6 Conclusion

In summary, we proposed a recti�ed generalized hamming network (GHN) archi-
tecture which materializes a re-emerging principle of fuzzy logic inferencing. This
principle has been extensively studied from a theoretic fuzzy logic point of view,
but has been largely overlooked in the practical research of ANN. The recti�ed
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Fig. 9: Left: GHN test accuracies of CIFAR10 classi�cation (OPT THRES: pa-
rameter r optimized; WO THRES: without nonlinear activation). Right: GHN
test accuracies of CIFAR100 classi�cation(OPT THRES: parameter r optimized;
WO THRES: without non-linear activation).
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Fig. 10: Left: Reconstruction errors of convolution VAE with and w/o recti�ca-
tion. Right: Evaluation accuracies of Sentence classi�cation with GHN recti�ca-
tion and w/o recti�cation).

neural network derives fuzzy logic implications with underlying generalized ham-
ming distances computed in neuron outputs. Bearing this recti�ed view in mind,
we proposed to compute bias terms analytically without resorting to sophisti-
cated learning methods such as batch normalization. Moreover, we have shown
that, the recti�ed linear units (ReLU) was theoretically non-essential and could
be skipped for some easy tasks. While for challenging classi�cation problems,
the double-thresholding scheme did improve the learning e�ciency signi�cantly.

The simple architecture of GHN, on the one hand, lends itself to being anal-
ysed rigorously and this follow up research will be reported elsewhere. On the
other hand, GHN is the �rst fuzzy neural network of its kind that has demon-
strated fast learning speed, well-controlled behaviour and state-of-the-art per-
formances on a variety of learning tasks. By cross-checking existing networks
against GHN, one is able to grasp the most essential ingredient of deep learn-
ing. It is our hope that this kind of comparative study will shed light on future
deep learning research and eventually open the �black box� of arti�cial neural
networks [16].



Revisit Fuzzy Neural Network 37

4 Visualization of generalized hamming networks with

deep epitomes

This section gives a rigorous analysis of trained Generalized Hamming Networks
(GHN) proposed by [41] and discloses an interesting �nding about GHNs, i.e.,
stacked convolution layers in a GHN is equivalent to a single yet wide convolu-
tion layer. The revealed equivalence, on the theoretical side, can be regarded as
a constructive manifestation of the universal approximation theorem [33, 64]. In
practice, it has profound and multi-fold implications. For network visualization,
the constructed deep epitomes at each layer provide a visualization of network
internal representation that does not rely on the input data. Moreover, deep epit-
omes allows the direct extraction of features in just one step, without resorting
to regularized optimizations used in existing visualization tools.

4.1 Introduction

Despite the great success in recent years, neural networks have long been criti-
cized for their black-box natures and the lack of comprehensive understanding
of underlying mechanisms e.g. in [16, 54, 133, 134]. The earliest e�ort to inter-
pret neural computing in terms of logic inferencing indeed dated back to the
seminal paper of [99], followed by recent attempts to provide explanations from
a multitude of perspectives (reviewed in Section 4.2).

As an alternative approach to deciphering the mysterious neural networks,
various network visualization techniques have been actively developed in recent
years (e.g. [53, 132] and references therein). Such visualizations not only provide
general understanding about the learning process of networks, but also disclose
operational instructions on how to adjust network architecture for performance
improvements. Majority of visualization approaches probe the relations between
input data and neuron activations, by showing either how neurons react to some
sample inputs or, reversely, how desired activations are attained or maximized
with regularized reconstruction of inputs [5, 39, 77, 96, 137, 152, 160]. Input
data are invariably used in visualization to probe how the information �ow is
transformed through the di�erent layers of neural networks. Although insightful,
visualization approaches as such have to face a critical open question: to what
extend the conclusions drawn from the analysis of sample inputs can be safely
applied to new data?

In order to furnish con�rmatory answer to the above-mentioned question,
ideally, one would have to employ a visualization tool that is independent of
input data. This ambitious mission appears impossible at a �rst glance � the
�nal neuron outputs cannot be readily decomposed as the product of inputs
and neuron weights because the thresholding in ReLU activations is input data
dependent. By following the principle of fuzzy logic, [41] recently demonstrated
that ReLUs are not essential and can be removed from the so called general-
ized hamming network (GHN). This simpli�ed network architecture, as reviewed
in section 4.3, facilitates the analysis of neuron interplay based on connection
weights only. Consequently, stacked convolution layers can be merged into a
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single hidden layer without taking into account of inputs from previous layers.
Equivalent weights of the merged GHN, which is called deep epitome, are com-
puted analytically without resorting to any learning or optimization processes.
Moreover, deep epitomes constructed at di�erent layers can be readily applied
to new data to extract hierarchical features in just one step (section 4.4).

4.2 Related work

Despite the great success in recent years, neural networks have long been criti-
cized for their black-box natures e.g. in [16]: �they capture hidden relations be-
tween inputs and outputs with a highly accurate approximation, but no de�ni-
tive answer is o�ered for the question of how they work�. The spearhead [99]
attempted to interpret neural computing in terms of logic inferencing, followed
by more �recent� interpretations e.g. in terms of the universal approximation
framework [33, 64], restricted Boltzmann machine [61], information bottleneck
theory [134], Nevertheless the mission is far from complete and the training of
neural networks (especially deep ones) is still a trail-and-error based practice.

The early 1990s witnessed the birth of fuzzy neural networks (FNN) [55, 79]
which attempted to furnish neural networks with the interpretability of fuzzy
logic [14, 153, 164]. On the other hand, neural networks have been used as a
computational tool to come up with both membership functions and fuzzy in-
ference rules [44, 139]. This joint force endeavour remains active in the new
millennium e.g. [65, 75, 95, 107, 119]. Nevertheless, FNNs have been largely
overlooked nowadays by scholars and engineers in machine learning (ML) com-
munity, partially due to the lack of convincing demonstrations on ML problems
with large datasets. The exception case is the recent [41], which re-interpreted
celebrated ReLU and batch normalization with a novel Generalized Hamming
Network (GHN) and demonstrated the state-of-the-art performances on a vari-
ety of machine learning tasks. While GHNs adopted deep networks with multiple
convolution layers, in this paper, we will show how to merge multiple stacked
convolution layers into a single yet wide convolution layer.

There are abundant empirical evidences backing the belief that deep network
structures is preferred to shallow ones [49], on the other hand, it was theoreti-
cally proved by the universal approximation theorem that, a single hidden layer
network with non-linear activation can well approximate any arbitrary decision
functions [33, 64]. Also, empirically, it was shown that one may reduce depth
and increase width of network architecture while still attaining or outperform-
ing the accuracies of deep CNN [8] and residual network [158]. Nevertheless, it
was unclear how to convert a trained deep network into a shallow equivalent
network. To this end, the equivalence revealed in Section 4.3 can be treated as
a constructive manifestation of the universal approximation theorem.

Various network visualization techniques have been actively developed in re-
cent years, with [39] interpreting high level features via maximizing activation
and sampling; [77, 160] learning hierarchical convolutional features via energy
or cost minimization; [137] computing class saliency maps for given images; [96]
reconstructing images from CNN features with an natural image prior applied;
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[152] visualizing live activations as well as deep features via regularized optimiza-
tion; [5] monitoring prediction errors of individual linear classi�ers at multiple
iterations. Since all these visualization methods are based on the analysis of ex-
amples, the applicability of visualization methods to new data is questionable
and no con�rmatory answers are provided in a principled manner.

The name �deep epitome� is reminiscent of [28, 29, 73, 74], in which miniature,
condensed �epitomes� consisting of the most essential elements were extracted
to model and reconstruct a set of given images. During the learning process,
the self-similarity of image(s), either in terms of pixel-to-pixel comparison or
spatial con�guration, was exploited and a �smooth� mapping between epitome
and input image pixels was estimated.

4.3 Deep Epitome

We brie�y review generalized hamming networks (GHN) introduced in [41] and
present in great detail a method to derive the deep epitome of a trained GHN.
Note that we follow notations in [41] with minor modi�cations for the sake of
clarity and brevity.

Review of GHN According to [41], the cornerstone notion of generalized ham-
ming distance (GHD) is de�ned as g(a, b) := a ⊕ b = a + b − 2 · a · b for any
a, b ∈ R. Then the negative GHD is used to quantify the similarity between
neuron inputs x and weights w:

−g(w,x) =
2

L
w · x− 1

L

L∑
l=1

wl −
1

L

L∑
l=1

xl, (12)

in which L denotes the length of neuron weights e.g. in convolution kernels,
and g(w,x) is the arithmetic mean of generalized hamming distance between
elements of w and x. By dividing the constant 2

L , (12) becomes the common
representation of neuron computing (w · x + b) provided that:

b = −1

2

( L∑
l=1

wl +

L∑
l=1

xl
)
. (13)

It was proposed by [41] that neuron bias terms should follow the condition
(13) analytically without resorting to an optimization approach. Any networks
that ful�l this requirement are thus called generalized hamming networks (GHN).
In the light of fuzzy logic, the negative of GHD quanti�es the degree of equiva-
lence between inputs x and weights w, i.e. the fuzzy truth value of the statement
�x↔ w� where ↔ denotes a fuzzy equivalence relation. Moreover, g(x,x) leads
to a measurement of fuzziness in x, which reaches the maximal fuzziness when
x = 0.5 and monotonically decreases when x deviates from 0.5. Also it can
be shown that GHD followed by a non-linear activation induces a fuzzy XOR
connective [41].
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When viewed in this GHN framework, the ReLU activation functionmax(0, 0.5−
g(x,w)) actually sets a minimal hamming distance threshold of 0.5 on neuron
outputs. [41] then argued that the use of ReLU activation is not essential because
bias terms are analytically set in GHNs. [41] reported only negligible in�uences
when ReLU was completely skipped for the easy MNIST classi�cation prob-
lem. For more challenging CIFAR10/100 classi�cations, removing ReLUs merely
prolonged the learning process but the �nal classi�cation accuracies remained
almost the same. To this end, we restrict our investigation in this paper to those
GHNs which have no ReLUs. As illustrated below, this simpli�cation allows for
strict derivation of deep epitome from individual convolution layers in GHNs.

Generalized hamming distance and epitome [41] postulated that one may
analyse the entire GHN in terms of fuzzy logic inference rules, yet no elaboration
on the analysis was given. Inspired by the universal approximation framework,
we show below how to unravel a deep GHN by merging multiple convolution
layers into a single hidden layer.

We �rst reformulate the convolution operation in terms of generalized ham-
ming distance (GHD) for each layer, then illustrate how to combine multiple
convolution operations across di�erent layers. As said, this combination is only
made possible with GHNs in which bias terms strictly follow condition (13).
Without loss of generality, we illustrate derivations and proofs for 1D neuron
inputs and weights (with complete proofs elaborated in appendix A). Neverthe-
less, it is straightforward to extend the derivation to 2D or high dimensions. And
appendices B to D illustrate deep epitomes of GHNs trained for 2D MNIST and
CIFAR10/100 image classi�cations.

De�nition 6. For two given tuples xK = {x1, . . . , xK},yL = {y1, . . . , yL},
the hamming outer product, denoted

⊕
, is a set of corresponding elements

xK
⊕

yL =
{
xk ⊕ yl

∣∣k = 1 . . .K; l = 1 . . . L
}
, where ⊕ denotes the general-

ized hamming distance operator. Then the product has following properties,
1. non-commutative: in general xK

⊕
yL 6= yL

⊕
xK but they are permuta-

tion equivalent, in the sense that there exist permutation matrices P and Q such
that xK

⊕
yL = P(yL

⊕
xK)Q.

2. non-linear: in contrast to the standard outer product which is bilinear
in each of its entry, the hamming outer product is non-linear since in general
xK
⊕

(yL + zL) 6= (xK
⊕

yL) + (xK
⊕

zL) and (µxK)
⊕

yL 6= xK
⊕

(µyL) 6=
µ(xK

⊕
yL) where µ ∈ R is a scalar. Therefore, the hamming outer product

de�ned as such is a pseudo outer product.
3. associative:

(
xK
⊕

yL
)⊕

zM = xK
⊕(

yL
⊕

zM
)

= xK
⊕

yL
⊕

zM be-
cause of the associativity of GHD. This property holds for arbitrary number of
tuples.

4. iterated operation: the de�nition can be trivially extended to multiple tu-
ples xK

⊕
yL
⊕
. . . zM =

{
xk ⊕ yl ⊕ . . . , zm

∣∣k = 1 . . .K; l = 1 . . . L; . . . ;m =

1, . . .M
}
.
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Fig. 11: Left panel: example tuples X3, A2, B2; Middle: Hamming outer
products X3

⊕
A2, X3

⊕
A2
⊕
B2; Right: Hamming convolutions X3

⊕∗
A2,

X3
⊕∗

A2
⊕∗

B2 and corresponding epitomes. Circled indices denote subsets
S(1), S(2) . . . S(n) in which element indices satisfying k + (L − l) = n and
k + (L− l) + (M −m) = n.

De�nition 7. The convolution of hamming outer product or hamming convolu-
tion, denoted

⊕∗
, of two tuples is a binary operation that sums up corresponding

hamming outer product entries:

xK
∗⊕

yL :=
{ ∑

(k,l)∈S(n)

xk ⊕ yl
∣∣ for n = 1, . . . ,K + L− 1

}
(14)

where the subsets S(n) := {(k, l)
∣∣ k+(L− l) = n} for n = 1, . . . ,K+L−1, and

the union of all subsets constitute a partition of all indices
⋃

n=1,...,K+L−1

S(n) ={
(k, l)

∣∣k = 1 . . .K; l = 1 . . . L
}
. The hamming convolution has following proper-

ties,
1. commutative: xK

⊕∗
yL = yL

⊕∗
xK since the partition subsets S(n)

remains the same.
2. non-linear: this property is inherited from the non-linearity of the hamming

outer product.
3. non-associative: in general

(
xK
⊕∗

yL
)⊕∗

zM 6= xK
⊕∗ (

yL
⊕∗

zM
)

since the summation of GHDs is non-associative. Note this is in contrast to
the associativity of the hamming outer product.

4. iterated operation: likewise, the de�nition can be extended to multiple tuples
xK
⊕∗

yL . . . zM =
{ ∑

(k,l,...,m)∈S(n)

xk⊕yl . . .⊕ zm
∣∣ for n = 1, . . . ,K+ (L−1) +

. . .+ (M − 1)
}
.
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Figure 11 illustrates an example in which GHDs are accumulated through
two consecutive convolutions. Note that the conversion from the hamming outer
products to its convolution is non-invertible, in the sense that, it is impossible
to recover individual summands xk ⊕ yl from the summation

∑
(k,l)∈S(n) xk ⊕

yl. As proved in proposition 5, it is possible to compute the convolution of
tuples in two (or more) stacked layers without explicitly recovering individual
outer product entries of each layer. Due to the non-linearity of the hamming
convolutions, computing the composite of two hamming convolutions is non-
trivial as elaborated in Section 4.3. In order to illustrate how to carry out this
operation, let us �rst introduce the epitome of a hamming convolution as follows.

De�nition 8. An epitome consists of a set of N pairs E =
{

(gn, sn),
∣∣n =

1, . . . , N
}
where gn denotes the summation of GHD entries from some hamming

convolutions, sn the number of summands or the cardinality of the subset S(n)
de�ned above, and N is called the length of the epitome.

A normalized epitome is an epitome with sn = 1 for all n = 1, . . . N . Any
epitome can then be normalized by setting (gn/sn, 1) for all elements. A normal-
ized epitome may also refer to input data x or neuron weights w that are not
yet involved in any convolution operations. In the latter case, gn is simply the
input data x or neuron weights w.

Remark : the summation of GHD entries gn is de�ned abstractly, and depend-
ing on di�erent scenarios, the underlying outer product may operate on arbitrary

number of tuples gn =
(
xK
⊕∗

yL . . . zM
)

(n) =
∑

(k,l,...,m)∈S(n)

xk ⊕ yl . . .⊕ zm.

Fuzzy logic interpretation: in contrast to the traditional signal process-
ing point of view, in which neuron weights w are treated as parameters of linear
transformation and bias terms b are appropriate thresholds for non-linear acti-
vations, the generalized hamming distance approach treats w as fuzzy templates
and sets bias terms analytically according to (13). In this view, the normaliza-
tion gn/sn is nothing but the mean GHD of entries in the subset S(n), which
indicates a grade of �tness (or a fuzzy set) between templates w and inputs x at
location n. This kind of arithmetic mean operator has been used for aggregating
evidences in fuzzy sets and empirically performed quite well in decision making
environments (e.g. see [164]).

Still in the light of signal processing, the generalized hamming distance nat-
urally induces an information enhancement and suppression mechanism. Since
the gradient of g(x,w) with respect to x is 1− 2w, the information in x is then
either enhanced or suppressed according to w : a) the output g(x,w) is always
x for w = 0 (conversely 1 − x for w = 1) with no information loss in x; b) for
w = 0.5, the output g(x,w) is always 0.5 regardless of x, thus input information
in x is completely suppressed; c) for w < 0.0 or w > 1.0 information in x is pro-
portionally enhanced. It was indeed observed, during the learning process in our
experiments, a small faction of prominent feature pixels in weights w gradually
attain large positive or negative values, so that corresponding input pixels play
decisive roles in classi�cation. On the other hand, large majority of obscure pix-
els remain in the fuzzy regime near 0.5, and correspondingly, input pixels have
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Fig. 12: The hamming convolution of two banks of epitomes. Remarks: a) for
the inputs A,B the number of epitomes Ma must be the same as the number of
channels Cb; and for the output bank Md = Mb, Cd = Ca, Ld = (La + Lb − 1).
b) the notation

⊕∗
refers to the hamming convolution between two banks of

epitomes (see De�nition 9 for details). The convolution of two single-layered
epitomes is treated as a special case with allMa, Ca,Mb, Cb = 1. c) the notation⊎

refers to the summation of multiple epitomes of the same length, which is
de�ned in De�nition 10. d) multiple (coloured) epitomes in D correspond to dif-
ferent (coloured) epitomes in B; and di�erent (shaded) channels in D correspond
to di�erent (shaded) channels of inputs in A.

virtually no in�uence on the �nal decision (see experimental results in Section
4.4). This observation is also in accordance with the information compression
interpretation advocated by [134], and the connection indicates an interesting
research direction for future work.

Deep epitome This subsection only illustrates main results concerning how to
merge multiple hamming convolution operations in stacked layers into a single-
layer of epitomes i.e. deep epitome. Detailed proofs are given in appendix A.

Notation: for the sake of brevity, let [MaALa

Ca
] denote a bank of epitomes:{mALa

Ca

∣∣ m = 1, . . .Ma

}
, where ALa

Ca
=
{
ALa
c

∣∣ c = 1, . . . Ca
}
are Ca-channels

of length-La epitomes, and Ma is the number of epitomes as such in the bank
or set [A]. Figure 12 illustrates example banks of epitomes and two operations
de�ned on them (also see Appendix A for detailed de�nition of

⊎
).

Theorem 2. A generalized hamming network consisting of multiple convolution
layers, is equivalent to a bank of epitome, called deep epitome [?D�O], which can be
computed by iteratively applying the composite hamming convolution in equation
(19) to individual layer of epitomes:

[?D�O] := [MaALa

Ca
]

∗⊕
[MbBLb

Cb
]

∗⊕
. . .

∗⊕
[MzZLz

Cz
], (21)
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in which O = Ca is the number of channels in the �rst bank A, ? = Mz is the
number of epitomes in the last bank Z, and � = La + (Lb − 1) + . . . + (Lz − 1)
is the length of composite deep epitome. Note that for the hamming convolution
to be a valid operation, the number of epitomes in the previous layer and the
number channels in the current layer must be the same e.g. Cb = Ma.

Proof. For given inputs represented as a bank of normalized epitomes [MxXLx

Cx
]

the �nal network output [MzY
Ly

Cx
] is obtained by recursively applying equation

(19) to outputs from the previous layers, and factoring out the input due to the
associativity proved in proposition 5:

[MzY
Ly

Cx
] =

(((
[MxXLx

Cx
]

∗⊕
[MaALa

Ca
]
) ∗⊕

[MbBLb

Cb
]
) ∗⊕

. . .

∗⊕
[MzZLc

Cz
]

)
= [MxXLx

Cx
]

∗⊕(
[MaALa

Ca
]

∗⊕
[MbBLb

Cb
]

∗⊕
. . .

∗⊕
[MzZLc

Cz
]
)

︸ ︷︷ ︸
[?D�O]

.
(22)

Remark: due to the non-linearity of underlying hamming outer products, to
prove the associativity of the convolution of epitomes is by no means trivial
(see proposition 5). In essence, we have to use proposition 5 to compute the
convolution of two epitomes even though individual entries of the underlying
hamming outer product are not directly accessible. Consequently, the updating
rule outlined in equations (15) and (16) play the crucial role in setting due
bias terms analytically for generalized hamming networks (GHN), as opposed to
the optimization approach often adopted by many non-GHN deep convolution
networks.

Fuzzy logic inferencing with deep epitomes: Eq. (22) can be treated
as a fuzzy logic inferencing rule, with which elements of input x are compared
with respect to corresponding elements of deep epitomes d. More speci�cally,
the negative of GHD quanti�es the degree of equivalence between inputs x and
epitome weights d, i.e. the fuzzy truth value of the assertion �x↔ d� where ↔
denotes a fuzzy logical biconditional. Therefore, output scores in y indicate the
grade of fuzzy equivalences truth values between x and the shifted d at di�erent
spatial locations. This inferencing rule, in the same vein of [41], is applicable to
either a single layer neuron weights or the composite deep epitomes as proved
by (22).

Constructive manifestation of the universal approximation theo-
rem: it was proved that a single hidden layer network with non-linear activation
can well approximate any arbitrary decision functions [33, 64], yet it was also
argued by [49] that such a single layer may be infeasibly large and may fail to
learn and generalize correctly. Theorem 2 proves that such a simpli�ed single
hidden layer network can actually be constructed from a trained GNH. In this
sense Theorem 2 illustrates a concrete solution which materializes the universal
approximation theorem.
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4.4 Deep epitome for network visualization

We illustrate below deep epitomes extracted from three generalized hamming
networks trained with MNIST, CIFAR10/100 classi�cation respectively. Detailed
descriptions about the network architectures (number of layers, channels etc.)
are included in the appendix.
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Fig. 13: Histograms of normalized deep epitomes at di�erent layers/iterations for
GHN trained with MNIST classi�cation. Left to right: layers 1,2,3. Top, middle
and bottom rows: iteration 200, 1000 and 10000 respectively.

Data independent visualization of deep epitomes Deep epitomes derived
in the previous section allows one to build up and visualize hierarchical features
in an on-line manner during the learning process. This approach is in contrast to
many existing approaches, which often apply additional optimization or learn-
ing processes with various type of regularizations e.g. in [39, 96, 137, 152, 160].
Figures 15, 18 and 21, 22 in appendices illustrate deep epitomes learnt by three
generalized hamming networks for the MNIST and CIFAR10/100 image classi�-
cation tasks. It was observed that geometrical structures of hierarchical features
were formed at di�erent layers, rather early during the learning process (e.g.
1000 out of 10000 iterations). Substantial follow up e�orts were invested on re-
�ning features for improved details. The scrutinization of normalized epitome
histograms in Figure 13 showed that a majority of pixel values remain relatively
small during the learning process, while a small fraction of epitome weights grad-
ually accumulate large values over thousands of iterations to form prominent
features.

The observation of sparse features has been reported and interpreted in terms
of sparse coding e.g. [115] or the information compression mechanism as advo-
cated by [134]. Following [41] we adopt the notion of fuzziness (also reviewed
in Section 4.3) to provide a fuzzy logic interpretation: prominent features corre-
spond to neuron weights with low fuzziness. It was indeed observed in Figure 14
that fuzziness of deep epitomes in general decrease during the learning process
despite of �uctuations at some layers. The inclination towards reduced fuzzi-
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ness seems in accord with the minimization of classi�cation errors, although the
fuzziness is not explicitly minimized.

Finally we re-iterate that the internal representation of deep epitomes is
input data independent. For instance in MNIST handwritten images, it is certain
constellations of strokes instead of digits that are learnt at layer 3 (see Figure
15). The matching of arbitrary input data with such �fuzzy templates� is then
quanti�ed by the generalized hamming distance, and can be treated as generic
fuzzy logic inferencing rules learnt by GHNs. The matching score measured by
GHDs can also be treated as salient features that are subsequently fed to the
next layer (see Section 4.4 with Figures 16 and more results in appendices B and
C)9.

Data dependent feature extraction Feature extraction of given inputs is
straightforward with deep epitomes applied according to eq. (22). Figures 16
(and more results in appendices B and C) show example features extracted
at di�erent layers of GHN trained on MNIST, CIFAR10/100 image datasets.
Clearly extracted features represent di�erent types of salient features e.g. ori-
ented strokes in hand written images, oriented edgelets, textons with associated
colours or even rough segmentations in CIFAR images. These features all become
gradually more discriminative during the learning process.

It must be noted that the extraction of these hierarchical salient features is
not entirely new and has been reported e.g. in [39, 77]. Nevertheless, the equiva-
lence of deep epitomes disclosed in Theorem 2 leads to an unique characteristic
of GHNs � deep layer features do not necessarily rely on features extracted from
previous layers, instead, they can be extracted in one step using deep epitomes
at desired layers. For extremely deep convolution networks e.g. those with over
100 layers, this simpli�cation may bring about substantial reduction of compu-
tational and algorithmic complexities. This potential advantage is worth follow
up exploration in future research.
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Fig. 14: Fuzziness in normalized deep epitomes at di�erent layers and learning
iterations. Left: a GHN trained with MNIST classi�cation. Middle: CIFAR10.
Right: CIFAR100. See section 4.3 for de�nition of fuzziness.

9 This learnt �fuzzy template� is reminiscent of epitomes in [73] and gives rise to the
name deep epitome.
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4.5 Conclusion

We have proposed in this paper a novel network representation, called deep
epitome, which is proved to be equivalent to stacked convolution layers in gen-
eralized hamming networks (GHN). Theoretically this representation provides
a constructive manifestation for the universal approximation theorem [33, 64],
which states that a single layered network, in principle, is able to approximate
any arbitrary decision functions up to any desired accuracy. On the other hand,
it is a dominant belief [49], which is supported by abundant empirical evidences,
that deep structures play an indispensable role in decomposing the combinato-
rial optimization problem into layer-wise manageable sub-problems. We concur
with the view and supplement with our demonstration that, a trained deep GHN
can be converted into a simpli�ed networks for the sake of high interpretability,
reduced algorithmic and computational complexities.

The success of our endeavours lies in the rigorous derivation of convolving
epitomes across di�erent layers in eq. (15) and (16), which set due bias terms
analytically without resorting to optimization-based approaches. Consequently,
deep epitomes at all convolution layers can be computed without using any input
data. Moreover, deep epitomes can be used to extract hierarchical features in just
one step at any desired layers. In the light of fuzzy logic, the normalized epitome
(de�nition 8) encodes a grade of �tness between the learnt templates and given
inputs at certain spatial locations. This fuzzy logic interpretation furnishes a
refreshing perspective that, in our view, will open the black box of deep learning
eventually.
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5 Discussion and future work

By illustrating our recent �ndings with the generalized hamming network, this
article explores and establishes a concrete and fundamental connection between
deep learning and fuzzy logic. The signi�cance of this work probably may be best
appreciated in terms of its point of view instead of any particular results. While
basic concepts (like hamming outer product, deep epitomes) have been formed,
no doubt many others have yet to be formulated. Therefore, one motivation of
this article is to visualize the outline of future work from both fuzzy logic and
deep learning points of view:

� Fuzzy logic research has reached a culmination in 1998 and declined since
then (as shown in Figure 2). The declination can be partially ascribed to the
lack of convincing applications on challenging (machine learning) problems.
It is our hope that this article will pave the way for fuzzy logic researchers
to develop convincing applications and tackle challenging problems which
are of interest to machine learning community too. In particular, we believe
expertise and knowledge in fuzzy logic are well suited to model ambiguities
in data, model uncertainty in knowledge representation and furnish transfer
learning with non-inductive inference etc. as suggested in [68].

� On the other hand, deep learning and machine learning could bene�t from
the comparative research by re-examining many trail-and-error heuristics in
the lens of fuzzy logic, and consequently, distilling the essential ingredients
with rigorous foundations. In particular, we feel the exploration of combined
binary features may not only reformulate neural computing but also lead to
highly memory and computational e�cient algorithms in practice.

Last but not least, it is my humble vision that researchers of young generation
will be inspired by this article, and set o� for the rejuvenated endeavour of �soft
computing� with their valuable wisdoms and enthusiasms.
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Appendix A: theoretical analysis of deep epitome

De�nition 6. For two given tuples xK = {x1, . . . , xK},yL = {y1, . . . , yL},
the hamming outer product, denoted

⊕
, is a set of corresponding elements

xK
⊕

yL =
{
xk ⊕ yl

∣∣k = 1 . . .K; l = 1 . . . L
}
, where ⊕ denotes the general-

ized hamming distance operator. Then the product has following properties,
1. non-commutative: in general xK

⊕
yL 6= yL

⊕
xK but they are permuta-

tion equivalent, in the sense that there exist permutation matrices P and Q such
that xK

⊕
yL = P(yL

⊕
xK)Q.

2. non-linear: in contrast to the standard outer product which is bilinear
in each of its entry, the hamming outer product is non-linear since in general
xK
⊕

(yL + zL) 6= (xK
⊕

yL) + (xK
⊕

zL) and (µxK)
⊕

yL 6= xK
⊕

(µyL) 6=
µ(xK

⊕
yL) where µ ∈ R is a scalar. Therefore, the hamming outer product

de�ned as such is a pseudo outer product.
3. associative:

(
xK
⊕

yL
)⊕

zM = xK
⊕(

yL
⊕

zM
)

= xK
⊕

yL
⊕

zM be-
cause of the associativity of GHD. This property holds for arbitrary number of
tuples.

4. iterated operation: the de�nition can be trivially extended to multiple tu-
ples xK

⊕
yL
⊕
. . . zM =

{
xk ⊕ yl ⊕ . . . , zm

∣∣k = 1 . . .K; l = 1 . . . L; . . . ;m =

1, . . .M
}
.

Proof. associativity : by de�nition it su�ces to prove element-wise (xk ⊕ yl) ⊕
zm = xk ⊕ (yl ⊕ zm) because of the associativity of the generalized hamming
distance.

non-linearity : by de�nition xK
⊕

(yL + zL) has elements xk ⊕ (yl + zl), then
it su�ces to prove non-linearity for each element i.e. xk ⊕ (yl + zl) = xk + (yl +
zl)− 2xk(yl + zl) 6= (xk + yl − 2xkyl) + (xk + zl − 2xkzl) = (xk ⊕ yl) + (xk ⊕ zl).
Similarly, (µxk⊕yl) = µxk+yl−2µxkyl 6= xk+µyl−2µxkyl 6= µ(xk+yl−2xkyl)
in general.

De�nition 7. The convolution of hamming outer product or hamming convolu-
tion, denoted

⊕∗
, of two tuples is a binary operation that sums up corresponding

hamming outer product entries:

xK
∗⊕

yL :=
{ ∑

(k,l)∈S(n)

xk ⊕ yl
∣∣ for n = 1, . . . ,K + L− 1

}
(14)

where the subsets S(n) := {(k, l)
∣∣ k+(L− l) = n} for n = 1, . . . ,K+L−1, and

the union of all subsets constitute a partition of all indices
⋃

n=1,...,K+L−1

S(n) ={
(k, l)

∣∣k = 1 . . .K; l = 1 . . . L
}
. The hamming convolution has following proper-

ties,
1. commutative: xK

⊕∗
yL = yL

⊕∗
xK since the partition subsets S(n)

remains the same.
2. non-linear: this property is inherited from the non-linearity of the hamming

outer product.
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3. non-associative: in general
(
xK
⊕∗

yL
)⊕∗

zM 6= xK
⊕∗ (

yL
⊕∗

zM
)

since the summation of GHDs is non-associative. Note this is in contrast to
the associativity of the hamming outer product.

4. iterated operation: likewise, the de�nition can be extended to multiple tuples
xK
⊕∗

yL . . . zM =
{ ∑

(k,l,...,m)∈S(n)

xk⊕yl . . .⊕ zm
∣∣ for n = 1, . . . ,K+ (L−1) +

. . .+ (M − 1)
}
.

Proof. non-associativity : by de�nition it su�ces to prove element-wise in general∑
(n,m)∈S′(n′)

( ∑
(k,l)∈S(n)

xk ⊕ yl
)
⊕ zm 6=

∑
(k,n)∈S′(n′)

xk ⊕
( ∑

(l,m)∈S(n)

yl ⊕ zm
)
.

De�nition 8. An epitome consists of a set of N pairs E =
{

(gn, sn),
∣∣n =

1, . . . , N
}
where gn denotes the summation of GHD entries from some hamming

convolutions, sn the number of summands or the cardinality of the subset S(n)
de�ned above, and N is called the length of the epitome.

A normalized epitome is an epitome with sn = 1 for all n = 1, . . . N . Any
epitome can then be normalized by setting (gn/sn, 1) for all elements. A normal-
ized epitome may also refer to input data x or neuron weights w that are not
yet involved in any convolution operations. In the latter case, gn is simply the
input data x or neuron weights w.

Given two tuples x = {xk|k = 1 . . .K} and y = {yl|l = 1 . . . L}, then

K∑
k

L∑
l

(xk ⊕ yl) =
( K∑

k

xk
)
⊕
( L∑

l

yl
)

+ (L− 1)

K∑
k

xk + (K − 1)

L∑
l

yl. (15)

Proof.

LHS =

K∑
k

L∑
l

(xk + yl − 2xkyl) = L

K∑
k

xk +K

L∑
l

yl − 2

K∑
k

xk

L∑
l

yl

=
( K∑

k

xk +

L∑
l

yl − 2

K∑
k

xk

L∑
l

yl

)
+ (L− 1)

K∑
k

xk + (K − 1)

L∑
l

yl

=
( K∑

k

xk
)
⊕
( L∑

l

yl
)

+ (L− 1)

K∑
k

xk + (K − 1)

L∑
l

yl = RHS

Remark: eq. (15) allows one to compute summation of all hamming outer
product elements on the right hand side, even though individual elements xk
and yl are unable to recover from the given summands

∑
k xk and

∑
l yl. The

de�nition below immediately follows and illustrates how to merge elements of
two epitomes.
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De�nition 9. Given two epitomes Ea = {(gn, sn)|n = 1, . . . N},Eb = {(g′m, s′m)|m =
1, . . .M}, the convolution of two epitomes Ec = Ea

⊕∗ Eb is given by:

Ec = {(g′′c , s′′c )|c = 1, . . . , N +M − 1}; (16a)

where g′′c =
∑

(n,m)∈S(c)

(
gn ⊕ g′m + (s′m − 1)gn + (sn − 1)g′m

)
, (16b)

s′′c =
∑

(n,m)∈S(c)

sns
′
m, (16c)

S(c) : = {(n,m)|n+ (M −m) = c}. (16d)

Proof. For each pair of epitome elements (gn, sn) and (g′m, s
′
m) since by de�nition

8 gn =
sn∑
k=1

xk is a summation of elements and g′m in the same vein, then the

summation of hamming outer product elements
sn∑
k=1

s′m∑
l=1

(xk⊕ yl) follows eq. (15).

The number of elements s′′c is simply the convolution of sn and s′m of two given
epitomes.

Remark: this operation is applicable to the case when two epitomes are
merged via spatial convolution (see Figure 12 for an example). Note that this
merging operation is associative due to the following theorem.

Theorem 1. The convolution of multiple epitomes, as de�ned in 9, is associa-
tive:

Ea
∗⊕

Eb
∗⊕

Ec =
(
Ea

∗⊕
Eb
) ∗⊕

Ec = Ea
∗⊕(

Eb
∗⊕

Ec
)
. (17)

Proof. By de�nition 9, elements of Ea
⊕∗ Eb are the summations of hamming

outer product elements denoted by
sn∑
k=1

s′m∑
l=1

(xk⊕yl). Then elements of
(
Ea
⊕∗ Eb)⊕∗ Ec

are the summation of hamming outer product elements
sn∑
k=1

s′m∑
l=1

s′′q∑
i=1

(xk ⊕ yl ⊕ zi),

which are equal to elements of Ea
⊕∗ (Eb⊕∗ Ec), due to the associativity of

hamming outer products by de�nition 6.

Remark: this associative property is of paramount importance for the deriva-
tion of deep epitomes, which factor out the inputs x from subsequent convolu-
tions with neuron weights w.

De�nition 10. Given two epitomes of the same size Ea = {(gn, sn)|n = 1, . . . N},Eb =
{(g′n, s′n)|n = 1, . . . N}, the summation of two epitomes Ec = Ea

⊎
Eb is trivially

de�ned by element-wise summation:

Ec = {(g′′n, s′′n)|n = 1, . . . , N};
where g′′n = gn + g′n,

s′′n = sn + s′n.

(18)
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Remark: the summation operation is applicable to the case when epitomes
are (iteratively) merged cross di�erent channels (see Figure 12 for an example).
Note that the size of two input epitomes must be the same, and the size of
output epitome remain unchanged. Moreover, the operation is trivially extended
to multiple epitomes

⊎
{1,2,...,M}

:= E1

⊎
E2

⊎
. . .
⊎

EM .

Notation: for the sake of brevity, let [MaALa

Ca
] denote a bank of epitomes:{mALa

Ca

∣∣ m = 1, . . .Ma

}
, where ALa

Ca
=
{
ALa
c

∣∣ c = 1, . . . Ca
}
are Ca-channels

of length-La epitomes, and Ma is the number of epitomes as such in the bank
or set [A]. Figure 12 illustrates example banks of epitomes and two operations
de�ned on them.

De�nition 11. The composite convolution of two banks of epitomes [MaALa

Ca
] and [MbBLb

Cb
]

with Ma = Cb, is de�ned as

[MaALa

Ca
]

∗⊕
[MbBLb

Cb
] :=

{ Ma,Cb⊎
ma=1,cb=1

(
maALa

ca

∗⊕
mbBLb

cb

)∣∣∣ ca = 1, . . . Ca;mb = 1, . . .Mb

}
.

(19)

The output of this operation, in turn, is a bank withMb of Ca-channel length-
(La + Lb − 1) epitomes denoted as [MdDLd

Cd
] with Md = Mb, Cd = Ca, Ld =

La + Lb − 1. See Figure 12 for an example.
The composite convolutions of multiple epitome banks, as given in de�nition

11, is associative:(
[MaALa

Ca
]

∗⊕
[MbBLb

Cb
]
) ∗⊕

[McCLc

Cc
] = [MaALa

Ca
]

∗⊕(
[MbBLb

Cb
]

∗⊕
[McCLc

Cc
]
)

(20)

Proof. The associativity immediately follows the associativity of Theorem 1 and
de�nition 10.

Remark: this associative property, which is inherited from theorem 1, can be
trivially extended to multiple banks and lead to the main theorem of the paper
as follows.

Theorem 2. A generalized hamming network consisting of multiple convolution
layers, is equivalent to a bank of epitome, called deep epitome [?D�O], which can be
computed by iteratively applying the composite hamming convolution in equation
(19) to individual layer of epitomes:

[?D�O] := [MaALa

Ca
]

∗⊕
[MbBLb

Cb
]

∗⊕
. . .

∗⊕
[MzZLz

Cz
], (21)

in which O = Ca is the number of channels in the �rst bank A, ? = Mz is the
number of epitomes in the last bank Z, and � = La + (Lb − 1) + . . . + (Lz − 1)
is the length of composite deep epitome. Note that for the hamming convolution
to be a valid operation, the number of epitomes in the previous layer and the
number channels in the current layer must be the same e.g. Cb = Ma.
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Proof. For given inputs represented as a bank of normalized epitomes [MxXLx

Cx
]

the �nal network output [MzY
Ly

Cx
] is obtained by recursively applying equation

(19) to outputs from the previous layers, and factoring out the input due to the
associativity proved in proposition 5:

[MzY
Ly

Cx
] =

(((
[MxXLx

Cx
]

∗⊕
[MaALa

Ca
]
) ∗⊕

[MbBLb

Cb
]
) ∗⊕

. . .

∗⊕
[MzZLc

Cz
]

)
= [MxXLx

Cx
]

∗⊕(
[MaALa

Ca
]

∗⊕
[MbBLb

Cb
]

∗⊕
. . .

∗⊕
[MzZLc

Cz
]
)

︸ ︷︷ ︸
[?D�O]

.
(22)
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Network architectures used in Appendices B,C,D:
We summarize in Tables below architectures of three generalized hamming

networks trained with MNIST, CIFAR10/100 classi�cation respectively. Note
that for kernels with stride 2, we resize original kernels to their e�ective size
(×2) when computing deep epitomes. Also we use average-pooling, instead of
max-pooling, in all three networks. Subsequent fully connected layers are also
reported although they are not involved in the computation of deep epitomes.

GHN for MNIST classi�cation
Layers Kernel Str. resized Ch I/O Epitome

size
conv1 5x5 1 5x5 3 / 32 5x5
conv2 5x5 2 10x10 32 / 32 14x14
conv3 5x5 2 10x10 32/ 128 23x23
fc1 - - - * / 1024 -
fc2 - - - 1024 / 10 -

GHN for CIFAR10 classi�cation
Layers Kernel Str. resized Ch I/O Epitome

size
conv1 3x3 1 3x3 3 / 64 3x3
conv2 3x3 1 3x3 64 / 64 5x5
conv3 5x5 2 10x10 64 / 256 14x14
conv4 5x5 2 10x10 256 / 256 23x23
fc1 - - - */1024 -
fc2 - - - 1024/512 -
fc3 - - - 512/10 -

GHN for CIFAR100 classi�cation
Layers Kernel Str. resized Ch I/O Epitome

size
conv1 3x3 1 3x3 3 / 64 3x3
conv2 5x5 2 10x10 64 / 64 12x12
conv3 5x5 1 5x5 64 / 64 16x16
conv4 5x5 1 5x5 64 / 64 20x20
conv5 5x5 1 5x5 64 / 64 24x24
conv6 5x5 1 5x5 64 / 64 28x28
conv7 5x5 2 10x10 64 / 128 37x37
fc1 - - - */1024 -
fc2 - - - 1024/512 -
fc3 - - - 512/10 -
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Appendix B: deep epitomes with MNIST handwritten

recognition

Fig. 15: Deep epitomes at layers 1,2 and 3 for a GHN trained with MNIST
classi�cation at iterations 100 and 10000 respectively.
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Fig. 16: Example hierarchical features extracted at layers 1,2, and 3 for a GHN
trained with MNIST classi�cation.
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Fig. 17: Example hierarchical features extracted at layers 1,2, and 3 for a GHN
trained with MNIST classi�cation.
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Appendix C: deep epitomes with CIFAR10 image

classi�cation
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Fig. 18: Top to bottom: deep epitomes for �rst 64 �lters at layers 1,2, 3 and 4 of
a GHN trained with CIFAR10 classi�cation. Pseudo colour images correspond
to three channels of merged epitomes from the �rst layer �lters. Left column:
iteration 100; Right column: iteration 180000.
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Fig. 19: Hierarchical features extracted at layers 1,2,3 and 4 for a GHN trained
with CIFAR10 at 180000 iterations. The top-left most image in each panel is
the input image, and the rest are features extracted with di�erent epitomes
(only �rst 63 features are shown for layer 4). Pseudo colour images correspond
to three channels of features outputs for input RGB colour channels. Note that
oriented edgelets (layer 1,2), textons with associated colours (layer 2,3) and
rough segmentations (layer 4) are extracted from di�erent layers.
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Fig. 20: Hierarchical features extracted at layers 1,2,3 and 4 for a GHN trained
with CIFAR10 at 180000 iterations. The top-left most image in each panel is
the input image, and the rest are features extracted with di�erent epitomes
(only �rst 63 features are shown for layer 4). Pseudo colour images correspond
to three channels of features outputs for input RGB colour channels. Note that
oriented edgelets (layer 1,2), textons with associated colours (layer 2,3) and
rough segmentations (layer 4) are extracted from di�erent layers.
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Appendix D: deep epitomes with CIFAR100 image

classi�cation
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Fig. 21: Top to bottom: deep epitomes for �rst 64 �lters at layers 1,2, 3 and 4 of
a GHN trained with CIFAR100 classi�cation. Pseudo colour images correspond
to three channels of merged epitomes from the �rst layer �lters. Left column:
iteration 10000; Right column: iteration 30000.
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Fig. 22: Top to bottom: deep epitomes for �rst 64 �lters at layers 5, 6 and 7 of
a GHN trained with CIFAR100 classi�cation. Pseudo colour images correspond
to three channels of merged epitomes from the �rst layer �lters. Left column:
iteration 10000; Right column: iteration 30000.
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Fig. 23: Hierarchical features extracted at layers 1,2,3 and 4 for a GHN trained
with CIFAR100 at 10000 iterations. The top-left most image in each panel is the
input image, and the rest are features extracted with di�erent epitomes (only
�rst 63 features are shown for di�erent layers). Pseudo colour images correspond
to three channels of features outputs for input RGB colour channels.
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Fig. 24: Hierarchical features extracted at layers 5,6 and 7 for a GHN trained
with CIFAR100 at 10000 iterations. The top-left most image in each panel is the
input image, and the rest are features extracted with di�erent epitomes (only
�rst 63 features are shown for di�erent layers). Pseudo colour images correspond
to three channels of features outputs for input RGB colour channels.


