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Sudden cardiac death (SCD) is one of the most prominent causes of death among patients with
cardiac diseases. Since ventricular arrhythmia is the main cause of SCD and it can be predicted
by T wave alternans (TWA), the detection of TWA in the body-surface electrocardiograph (ECG)
plays an important role in the prevention of SCD. But due to the multi-source nature of TWA, the
nonlinear propagation through thorax, and the effects of the strong noises, the information from
different channels is uncertain and competitive with each other. As a result, the single-channel
decision is one-sided while the multichannel decision is difficult to reach a consensus on. In this
paper, a novel multichannel decision-level fusion method based on the Dezert-Smarandache Theory
is proposed to address this issue. Due to the redistribution mechanism for highly competitive infor-
mation, higher detection accuracy and robustness are achieved. It also shows promise to low-cost
instruments and portable applications by reducing demands for the synchronous sampling. Experi-
ments on the real records from the Physikalisch-Technische Bundesanstalt diagnostic ECG database
indicate that the performance of the proposed method improves by 12%–20% compared with the one-
dimensional decision method based on the periodic component analysis. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4997267]

I. INTRODUCTION

Sudden cardiac death (SCD) is known for its suddenness
and high mortality rate.1,2 Some researches show that in devel-
oped countries, 1 out of 1000 subjects die every year due to
SCD, which is almost 20% of all deaths.3,4 According to the
statistical results from the American Heart Association, the
survival rate of the out-of-hospital cardiac arrests is only 5%.5

Unless cardiopulmonary resuscitation is performed within sev-
eral minutes after the cardiac arrest, the chance of survival
would be very slim.6 Along with its sudden onset and rapid
development, the risk stratification and accurate prediction are
especially important for preventing SCD.

The cause of most SCDs is the ventricular arrhythmia,
which can be predicted by T wave alternans (TWA) in the
body-surface electrocardiogram (ECG).7,8 The progressive
increase of TWA preceding the onset of spontaneous ven-
tricular arrhythmias has been revealed by many clinical stud-
ies.9,10 It has been demonstrated that TWA is one of the most
promising SCD predictors.11,12 As a cardiac phenomenon,
TWA refers to a periodic beat-to-beat alternating change in
the amplitude or shape of the ST-T complex in the body-
surface ECG (see Fig. 1). Technically, TWA is at the level
of several micro-volts, which is hard to discover by the naked
eye. In order to detect TWA as accurate as possible, instru-
ments with custom-designed signal processing methods are
needed.

One of the greatest challenges for the TWA detection
is the combination of uncertain and competitive information
from different channels to make the final decision. TWA is
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a complex multi-source signal, which is usually caused by
distributed myocardial damages and arrhythmic complica-
tions. It suggests that the information from a single channel
is one-sided and one-dimensional, so all the information from
different channels should be combined to make the final deci-
sion. But the TWA in the body-surface ECG has inevitably
been distorted during the nonlinear propagation from car-
diac myocytes to the body surface. Along with the effects of
the strong noises, the information from different channels is
uncertain and competitive with each other.

To reach a consensus on the final decision, most existing
methods just get rid of partial information to reduce con-
flict. For most single-channel methods, a fixed channel is used
while the information in other channels is discarded. A mul-
tichannel hard-decision strategy called “OR” is to choose one
channel, which is supposed to have a higher detection accu-
racy than others, to make the final decision. But in essence,
only partial information from a certain channel is utilized. For
most multichannel methods, the information is fully used in
the TWA estimation by linear transformation while the “OR”
strategy is performed in the decision process. Considering
the multi-dimensional nature of TWA, these methods based
on the one-dimensional signal make the final decision with a
relatively low information utilization rate.

To address the challenge, a new decision-level fusion
method based on the Dezert-Smarandache Theory (DSmT) is
proposed in this paper. The DSmT is a promising information
fusion theory that derived from the classic Dempster-Shafer
theory.13 More reasonable and accurate final decisions can
be made by taking advantage of the ability of the DSmT
to combine the uncertain and even conflicting information
with decision-making supports. Different from getting rid of
highly competitive information, it utilizes this information by
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FIG. 1. The phenomenon of TWA. (a) Single channel
ECG with visible TWA (top) and alternant TWA after
removing average ECG waveform (bottom). (b) Super-
position of ST-T segments (top) and average TWA wave-
form (bottom). The beat-to-beat alternating shapes of
ST-T segments are defined as TWA. The average wave-
form between A and B is the average TWA waveform.
(It is worth noting that the TWA shown in this figure is
much larger than usual for convenience purpose.)

a redistribution process in the decision-level fusion. The main
contribution of this study is to improve the information uti-
lization rate to make a more reasonable decision. Due to the
channel-by-channel design, it also provides a possibility of
extending the multichannel TWA detection to low-cost and
portable applications.

II. RELATED WORK

In the last few decades, a number of methods and schemes
were proposed to detect TWA. From single-channel to mul-
tichannel schemes, these methods would be introduced as
follows.

Most single-channel methods roughly fall into three
classes.14 (1) The methods in the first class are based on the
short-time Fourier transform. Most early methods, such as
the spectral method,15,16 the complex demodulation method,17

the Poincaré map distance method,18 the projection in 2-
periodicity space method,19 and Student’s t-test method,20

belong to this class. Although these methods have a high
sensitivity, they usually require long data (about 128 beats),
resulting in a low temporal resolution. Since the length of
some transient TWA can reach as small as seven beats, the
false negative rate of these methods is relatively high. (2)
The methods from the second class are all based on the sign
change counting method. This class includes the Rayleigh
test method20 and the correlation method.21–23 These methods
use a strategy based on the time-domain observation of the
sign changes in a beat-to-beat series. Although these meth-
ods have increased the temporal resolution, they also become
more sensitive to noises and increase the false alarm rate.
(3) The methods from the third class are nonlinear filtering
methods. Two representative methods of this class are the mod-
ified moving average method24 and the Laplacian likelihood
ratio (LLR) method.14,25,26 They utilize various nonlinear fil-
ters to identify and remove outliers in signal. This enables
them to partially eliminate noises and usually have better per-
formance in the simulation study. But since most nonlinear
criteria are designed arbitrarily, the performance of these meth-
ods varies for different instruments and different clinical set-
tings. Some other methods that combine these single-channel

methods with the decomposition algorithm such as
wavelet27,28 and empirical mode decomposition29,30 were also
proposed. For all the three kinds of methods, a more important
limitation is their single-channel frame. Since the information
from a single channel is one-sided and one-dimensional, these
single-channel methods always have a relatively low detec-
tion accuracy and less robust detection performance. To make
the final decision in a more comprehensive way, multichannel
schemes are needed.

Several multichannel schemes31 were proposed in recent
years. They utilize blind source separation techniques, such
as the principal component analysis (PCA)32,33 and the peri-
odic component analysis (πCA),34 to concentrate the TWA
information into one or several dimensions (or components).
Some methods use tensor to explore the relationship between
beats and channels.35,36 After the linear transformation, the
consistent information is mainly concentrated into the same
dimension while highly competitive information is mainly
transformed into different ones. This kind of method actually
shows substantial improvement of detection accuracy in simu-
lation studies.31 But in the final decision process, most of them
adopt a one-dimensional decision method called “OR.” This
decision method just chooses the single channel or dimension
with the maximum detection statistic to make the final deci-
sion. So the competitive information is still discarded to reach
a consensus on the final decision. Besides, the linear transfor-
mation will inevitably introduce errors, which will be further
delivered to the decision process. So they may even make them-
selves less robust, especially when the alternans-to-noise rate
(ANR) is low. In order to utilize the competitive information
from different channels or dimensions in a more reasonable
and comprehensive way, new multichannel decision methods
are needed.

III. METHOD

The general block diagram of the proposed multichannel
decision-level fusion method is shown in Fig. 2. It consists of
four stages: the signal preprocessing, the characteristic param-
eter extraction, the decision-level fusion, and the decision
making.
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FIG. 2. General block diagram of the proposed decision-level fusion method (multi-DSmT). The bold lines indicate that their corresponding data flows consist
of data from multiple channels.

A. Signal preprocessing

Before the detection, ST-T complexes should be extracted
from the raw multichannel ECG during the signal preprocess-
ing stage. As summarized in Ref. 14, four steps would be
taken in this stage. They are the linear filtering, the baseline
cancellation, the ST-T segmentation, and the data reduction.

Linear filters would be applied to the raw multichan-
nel ECG X to reject out-of-band noises. A low-pass filter
with a 100 Hz cutoff frequency and a notch filter with a
50/60 Hz center frequency are used in this scheme. The base-
line wander is then removed with a cubic spline interpolation
technique.37

The ST-T segmentation is conducted in three steps. First,
all beats are aligned by R peaks and their multichannel aver-
age waveform is obtained. Second, a multichannel delineation
algorithm based on ECG slope criteria38,39 would be applied to
determine the limits of the ST-T complex based on the average
beat waveform. Finally, the corresponding segments in each
beats are extracted and put together into a N ×M×K ST-T ten-
sor X, where N is the number of samples of the ST-T segment,
M is the number of beats, and K is the number of channels.
It is worth noting that for certain ECG record, the length of
the ST-T segment is fixed and determined by the delineation
algorithm. For different ECG records, the length of the ST-T
segment may be totally different.

Besides, to reduce the number of samples to be processed
while preserving information about TWA, the data reduction
would be done by a decimation process. Since the TWA wave-
form is mostly concentrated between 0.3 Hz and 15 Hz,40 the
sampling frequency of the decimated signal should be above
30 Hz. In this method, each model-1 fiber x:mk (ST-T complex)
of X whose sampling frequency is 1 kHz would be decimated
by a factor of Q = 32, which makes the sampling frequency of
the output signal to be 31.25 Hz. The output of the data reduc-
tion can be marked as P ×M × K tensor Y where P= bN/Qc.
The element yp,m ,k of Y indicates the pth sample of the mth
ST-T complex from the kth channel.

B. Characteristic parameter extraction

Before fusion, the relevant characteristic parameters for
each channel would be extracted first. In this method, the esti-
mations of average energy of TWA and the noises in each
channel are calculated.

Due to the transient, non-stationary nature of TWA, each
detection must involve a limited set of neighbor beats. So a
beat-by-beat sliding window analysis strategy14 is used. By
applying this strategy, L = b(M − J)/Dc + 1 analysis windows
will be constructed, where M is the number of beats that are
located in the waveform delineation, J is the analysis win-
dow length, and D is the shift parameter. The lth analysis

window will contain W consecutive beats that are started from
the [(l − 1) × D + 1]th beat. In this method, J = 32 and D = 1 are
adopted and the corresponding number of the analysis window
will be L = M � 31. It is worth noting that the highly overlapped
analysis windows (small D) are usually used in the theoretical
analysis and the simulation study to obtain a better represen-
tation of the TWA evolution at the cost of a larger amount of
computation. In clinical applications, there will be a trade-off
between the temporal resolution and the amount of computa-
tion, usually resulting in a much larger D. Accordingly, the
3-way ST-T tensor Y can be rearranged as a 4-way tensor Z,
whose size is P×J ×K ×L and its element zp,j ,k ,l indicates the
pth sample of the jth ST-T complex in the kth channel from
the lth analysis window.

The average energy of noises will be estimated after
removing the background ECG and the potential TWA com-
ponent. The background ECG can be removed by subtracting
the average waveform as

z′p,j,k,l = zp,j,k,l −
1
J

J∑
j=1

zp,j,k,l. (1)

The potential TWA component can be removed as

z′′p,j,k,l = z′p,j,k,l − âp,k,l · (−1)j, (2)

where

âp,k,l =median
{
z′p,j,k,l · (−1)j |Jj=1

}
(3)

is the estimation of the potential TWA waveform based on the
model in Refs. 14, 25, and 26 with Laplacian noise. Then the
energy of noises can be estimated as

eB
k,l =

1
JP

J∑
j=1

P∑
p=1

(z′′p,j,k,l)
2. (4)

As analyzed in Ref. 14, the energy at 0.5 cycles-per-beat
(cpb) of the power spectrum of the beat-to-beat series zp:kl from
a certain channel and a certain analysis window is regarded as
the mixture of TWA and noises. Its average value during the
ST-T segment can be estimated as

eMix
k,l =

1
JP

P∑
p=1



J∑
j=1

zp,j,k,l · (−1)j



2

. (5)

Then the average energy of TWA for a certain channel and a
certain analysis window can be calculated as

eA
k,l =




0, for e Mix
k,l ≤ eB

k,l, (6a)

eMix
k,l − eB

k,l, for eMix
k,l > eB

k,l . (6b)



094301-4 Ye et al. Rev. Sci. Instrum. 88, 094301 (2017)

C. Decision-level fusion

After the channel-by-channel characteristic parameter
extraction, a decision-level fusion method derived from the
proportional conflict redistribution rule no. 6 (PCR6) from
the DSmT41 is performed to fuse this competitive information
from different channels in a reasonable and comprehensive
way.

Within the framework of the DSmT, three main steps,
including the basic belief assignment (BBA) extraction, the
fusion, and the probabilistic transformation, should be done
for a complete DSmT fusion process. But in the TWA detec-
tion, since the format of the characteristic parameters has been
unified and the final decision would be made based on a detec-
tion statistic rather than a probability, only the fusion process
will be done in this method. In the DSmT, six fusion rules
called PCR1-PCR6 have been proposed.41 From the PCR1 up
to the PCR6, one increases on the one hand, the complexity of
the rules, but on the other hand, one improves the accuracy of
the redistribution of conflicting information. In this method,
since all experiments are conducted in a non-real-time way,
the fusion method is designed by following the PCR6 to do
the decision-level fusion.

The main idea behind the PCR6 is redistributing the
conflicting information to hypotheses to make a more reason-
able and comprehensive decision. When the conflict between
channels is minor, it has similar fusion results to the clas-
sic Dempster-Shafer theory.13 When the conflict becomes
major, more reasonable decisions can be made by follow-
ing the PCR6. More details about the PCR6 can be found in
Ref. 41.

In the TWA detection, since the problem has only two
potential hypotheses, present (H1) or not (H0), the single-
channel characteristic parameters can be fused by

eX
l =

K∏
k=1

eX
k,l +

∑
Φ1,Φ2

∏
k∈Φ1

eX
k,l

∏
k∈Φ2

eY
k,l

∑
k∈Φ1

eX
k,l∑

k∈Φ1
eX

k,l +
∑

k∈Φ2
eY

k,l

, (7)

where sets Φ1 , ∅ and Φ2 , ∅ satisfy

Φ1 ∩ Φ2 = ∅, (8)

Φ1 ∪ Φ2 = {1, 2, . . . , K }, (9)

and

X =

{
A, for Y =B, (10a)

B, for Y =A. (10b)

D. Decision making

After the fusion process, the decision making should be
done to decide about the presence (H1) or absence (H0) of
TWA in the multichannel ECG.

Similar to the single-channel decision making process,14

the detection statistics are calculated as

Sl =
eA

l

eB
l

. (11)

Considering the transient, non-stationary nature of TWA, the
final detection statistic is obtained by

S =max{Sl |
L
l=1}. (12)

Finally, the decision making can be done as

S
H0
≶
H1

γ, (13)

where γ is the threshold that will be determined experimen-
tally.

IV. EXPERIMENT SETTING AND DATA SET

Both simulated and real multichannel ECG records are
used to evaluate the performance of the proposed method. How
these ECG records are simulated, recorded, and picked out is
shown as follows.

A. Simulated multichannel ECG records

Simulated ECG records and the corresponding simulation
study are vital. That is because the actual presence of TWA in a
real record is unknown in the clinical environment. Thus, since
most parameters (ANR, TWA dimensionality, and the wave-
form) are known as prior information of simulated records,
a Monte Carlo simulation approach is applied to evaluate the
detection performance.

The synthesis process of the multichannel ECG record
with a high degree of realism is shown in Fig. 3. For differ-
ent simulation setups, the simulated records are with different
ANRs and different types of the TWA waveform. With the
same simulation setup, the simulated records are added with
different realizations of real recorded noise. The clean ECG
records from the healthy people in the Physikalish-Technische
Bundesanstalt (PTB) diagnostic database42–44 are used to syn-
thesize the background ECG. The real recorded noise used in

FIG. 3. General block diagram of the simulation setup.
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FIG. 4. General block diagram of the
TWA waveform extraction.

synthesizing is the muscular activity noise from the MIT-BIH
Noise Stress Test Database.42 More details about the noise
record can be found in Ref. 45. It is worth noting that the
muscular activity noise record also contains electrode motion
noise inevitably, which means that it is the most realistic noise
record among others in the database. The real recorded noise
is first resampled from 360 Hz to 1000 Hz. With the same
simulation setup, segments of noise with the same length and
random offsets are used to realize different simulated records.
Since the background ECG is an interference that can be easily
removed, the notion of the ANR is widely introduced to reflect
the level of noise in the simulation study.25,46,47 It is defined
as the averaged relationship between the alternant wave power
and the noise power,

ANR= 10 log
M
∑k=K

k

∑p=P
p a2

p,k∑k=K
k

∑n=N
n w2

n,k

, (14)

where ap,k and wn,k are the elements of the TWA wave-
form A and the noise W, respectively, in Fig. 3, and M
is the number of beats that replicated in a simulation ECG
record.

There are three kinds of TWA used in the simulation study.
All these three kinds of TWA with different dimensionality (F
= 1, 3, 8) are simulated as in Fig. 4. The 1-D TWA is the
most common setup that is used in TWA simulation studies.
The 3-D TWA is a result of the compromise between con-
tents of TWA and noises. Because for most cardiac signals, the
3-D representation accounts for 80%–90% of the power of the
body-surface potentials.48,49 Besides, since only 8 leads are
independent in the traditional 12-lead setup, the 8-D TWA is
also used in the simulation study to describe the TWA as fully
as possible.

The F-D TWA waveform is estimated as in Eq. (3) channel
by channel, after the decomposition of PCA and the signal
reconstruction by the truncated inverse PCA. Let the maximum
likelihood estimation of the alternant waveform estimation by
Eq. (3) be Ã. The PCA decomposition of the estimated TWA
waveform can be expressed as

S=ΨT Ã, (15)

and then the F-D TWA is reconstructed by

A=ΨTRS, (16)

where ΨTR =ΨΛ and Λ is a diagonal matrix that satisfies

diag(Λ)=
[ F︷      ︸︸      ︷

1, 1, . . . , 1, 0, . . . , 0
]
. (17)

With this TWA synthesis scheme, not only the dimension-
ality of the TWA waveform is considered but also the rel-
ative relationship between TWA in different channels is
reserved.

It is worth noting that the multi-dimensional TWA is used
to mimic the multi-source nature of TWA and the nonlin-
ear propagation. The multiple sources of TWA are mainly
determined by specific causes and their positions, which vary
from person to person. The nonlinear propagation also varies
for many factors such as the health condition, the position
error of the electrodes, and even the posture during record-
ing. So it is hard to describe them quantitatively. However,
with the assumption of linear mixture, these characteristics can
be regarded as multi-dimensional dispersions. So the multi-
dimensional TWA extracted from real records are used in the
experiments.

B. Real ECG records with diagnoses

Since some features in the real ECG are hard to be fully
described by the linear mixture model used in the simula-
tion study, the experiments on real ECG records are also very
important. It is worth noting that the TWA has a transient
feature, which indicates that TWA does not always exist in
real ECG records. But as a risk stratification marker of the
arrhythmia that has been prospectively demonstrated in more
than 7200 patients,50 the performance of detection methods
could be assessed statistically in some degree by distinguish-
ing arrhythmia patients from health subjects. Besides, the
situation in the clinical environment is much more complex
than simulation. When facing real ECG records, especially
for those from patients, more bias between physical truth and
simulation setups may exist, which will lead to completely
different detection results. Therefore, the detection results
on real records are also important references for the validity
evaluation.

As an example of application to real records, the TWA
detection was performed on one set of real records from
the Physikalisch-Technische Bundesanstalt (PTB) diagnostic

TABLE I. Implementation details for the methods.

Method Linear transformation One-dimensional analysis Multichannel decision

Single-v3 None Laplacian likelihood ratio (LLR) None (fixed lead v3)
Multi-OR None Laplacian likelihood ratio (LLR) Hard-decision (OR)
Multi-πCA πCA Laplacian likelihood ratio (LLR) Hard-decision (OR)
Multi-DSmT None Characteristic parameter extraction Decision-level fusion
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database.42–44 This database was provided by the National
Metrology Institute of Germany. These records were collected
by Oeff from patients and healthy volunteers with detailed
clinical summaries. Each record was digitized at 1000 sam-
ples per second (Hz), with a 16 bit resolution over a range

FIG. 5. Detection results PD (top) and corresponding improvement between
the multi-DSmT and other three methods (bottom) of experiments on
simulated records with (a) 1-D, (b) 3-D, and (c) 8-D TWA.

of ±16.384 mV with 15 channels, which include 12 channels
from the conventional leads and 3 channels from the Frank
XYZ leads.

All the real records that are used in these experiments
were picked out from this database as follows. To avoid the
influence from different causes, only records from the myocar-
dial infarction patients (368 records) and the healthy controls
(80 records) are used. But not all these records are suitable for
TWA detection. Some of them (20 records) have too few beats,
some of them (9 records) have strong interference, such as arti-
ficial impulses from implantable cardioverter defibrillators,
huge beat-to-beat variability, consecutive anomalous beats,
and electrode detaching, and some others (27 records) are just
too noisy to accomplish the delineation. If these records appear
in clinical trails, re-recording is the most common approach
to deal with this situation. In this experiment, all these records
will be discarded and the remaining 392 records are classified
into two groups.

1. Myocardial infarction group: This is the experimental
group that is composed of 316 records with “myocardial
infarction” in affiliated diagnosis.

2. Healthy control group: This is the control group that
is composed of 72 records with “healthy control” in
affiliated diagnosis. All these records are collected from
healthy volunteers who have never had a heart-related
disorder or disease.

V. EXPERIMENT RESULTS

Totally four schemes were performed and compared in
these experiments. They are the standard single channel LLR
scheme with lead v3 (single-v3), the LLR with “OR” strategy
(multi-OR), the multichannel scheme based on πCA proposed
in Ref. 34 (multi-πCA), and the proposed multichannel method
in this paper (multi-DSmT). The main differences among these
methods are shown in Table I. The results of these experiments
are shown as follows.

A. Simulation study

In the simulation study, the detection performances of
different methods were evaluated and compared by detec-
tion rates with different ANRs. In a detection problem, the
detection performance is usually jointly evaluated by the true

TABLE II. TWA detection results of the experiments on the simulated ECGs
with different types of TWA (1-D/3-D/8-D).

TWA

Parameter Method 1-D 3-D 8-D

Equivalent Single-v3 −17.49 −15.81 −15.78
minimum ANR Multi-OR −18.19 −18.16 −18.28
R (dB) Multi-πCA −21.88 −20.85 −20.61

Multi-DSmT −22.89 −22.73 −22.79

Maximum PD vs. single-v3 71.64 82.28 82.64
improvement of vs. multi-OR 68.44 67.28 66.52
multi-DSmT (%) vs. multi-πCA 15.38 32.94 37.18
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positive rate (TPR, i.e., detection rate PD) and the false positive
rate (FPR, i.e., false alarm rate PFA). In this simulation study,
the TPR/FPR, also called sensitivity/specificity, is defined as
the proportion of records with positive detection results while
all the tested records are with/without TWA. To compare
the performance in a more intuitive way, the threshold that
makes the FPR PFA = 0.05 is first calculated, and then the
detection rate is calculated with this threshold. For each sim-
ulation setup (specific ANR and specific type of TWA), 5000
records were simulated. The duration of each record is 33 beats
(M = 33).

The resulting detection rates with different ANRs are
shown in Fig. 5 (top) and the differences between the multi-
DSmT and the other three methods are shown in Fig. 5
(bottom). The equivalent minimum ANR and the maximum
PD improvement of the multi-DSmT are also calculated and
shown in Table II. The equivalent minimum ANR is defined
as

R= r −
∫

a
−∞ (PD(ξ) − PFA) dξ

1 − PFA
, (18)

where PD(ξ) is the detection rate when the ANR is ξ and r
is the ANR that is big enough to make PD(r) = 1. According
to this definition, a lower R would indicate a better detection
performance.

To compare detection results of the records simulated
with specific simulation setup, the receiver operating char-
acteristic (ROC) curves (ANR = �20 dB) are calculated and
shown in Fig. 6. The ROC curve is drawn by linking points
[PFA(γ), PD(γ)] where the threshold γ varies from 0 to +∞.
The ROC curve can be further evaluated by the maximum
Youden’s J statistic (Jmax) and the area under curves (AUC),
which are also calculated and shown in Table III. In the TWA
detection problem, Jmax means the maximum possible differ-
ence between PD and PFA with certain threshold γ. Besides,
the high AUC indicates the low sensitivity to the threshold γ,
which will be a great help to the determination of the threshold
γ in clinical trails.

As the TWA information from different dimensions
becomes more competitive (TWA from 1-D to 8-D), the differ-
ences of detection performance of the methods become more
evident. When the records are simulated with the 1-D TWA,
most information is consistent and can be expressed into one
dimension by the linear transformation. So the detection per-
formance of the multi-DSmT and the multi-πCA is almost
the same [see Figs. 5(a) and 6(a)]. When the 8-D TWA is
used, the information from different channels become more
competitive with each other. By utilizing the highly com-
petitive part of the information rather than discarding it, the

FIG. 6. ROC curves of detection results on simulated records (ANR = �20
dB) with (a) 1-D, (b) 3-D, and (c) 8-D TWA.

proposed multi-DSmT shows more accurate and more robust
performance.

The slope of each detection curve in Fig. 5 reflects the
robustness to noise. It can be observed that the multi-πCA is

TABLE III. Feature parameters of ROC curves of simulation detection results with ANR = �20 DB.

Maximum Youden’s J statistics (%) Area under curves AUC (%)

Methods 1-D TWA 3-D TWA 8-D TWA 1-D TWA 3-D TWA 8-D TWA

Single-LLR 35.46 24.76 23.98 73.85 65.85 65.45
Multi-OR 48.74 47.88 49.00 81.18 80.80 81.54
Multi-πCA 80.36 69.22 65.56 96.52 92.31 90.60
Multi-DSmT 84.94 83.58 83.86 97.65 97.35 97.38
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FIG. 7. ROC curves (top) and corre-
sponding Youden’s J statistic (bottom)
of detection results on real records from
the PTB database. (a) 12 channels and
(b) 15 channels are, respectively, used
in these experiments.

TABLE IV. TWA detection results of real ECG records from the PTB database.

Detection resultsa ROC curves (%)

Involved ECG lead(s) Methods Healthy control Myocardial infarction Jmax AUC S95

Lead v3 Single-LLR (3.02 ± 2.10) × 10−2 (4.86 ± 6.60) × 10−2 23.25 65.16 11.01

Standard leads Multi-OR (7.49 ± 4.05) × 10−2 (9.70 ± 8.29) × 10−2 17.95 61.35 10.00
(12 channels) Multi-πCA (1.23 ± 0.49) × 10−1 (1.55 ± 1.34) × 10−1 18.49 60.73 10.63

Multi-DSmT (1.55 ± 1.11) × 10−4 (2.59 ± 7.61) × 10−4 31.48 67.98 15.63

Standard leads + Multi-OR (7.94 ± 4.09) × 10−2 (1.06 ± 1.10) × 10−1 21.34 62.75 11.33
Frank XYZ leads Multi-πCA (1.44 ± 0.59) × 10−1 (1.76 ± 1.38) × 10−1 14.84 58.36 11.33
(15 channels) Multi-DSmT (1.59 ± 1.10) × 10−4 (2.55 ± 6.43) × 10−4 35.63 70.40 18.23

aExpressed as mean ± one standard deviation.

more sensitive to noise than the multi-DSmT. That is because
the linear transformation is determined by statistical parame-
ters, whose errors will increase when noises become stronger.
The output TWA components may be harmed by the biased
linear transformation. These errors will be delivered to the
following analysis and decision process, resulting in relatively
low robustness to noises.

B. Experiments on real records

For real records, their ANRs and the TWA in each chan-
nel are different and unknown, so the detection results are only
evaluated by the ROC curve, which has been shown in Fig. 7
(top). The corresponding Youden’s J statistics are shown in
Fig. 7 (bottom). The same four detection methods as evaluated
in the simulation study were performed on the two groups of
the real ECG records. Furthermore, the detection results, the
Jmax, and the AUC of ROC curves are also calculated and
shown in Table IV. In clinical trails, the low FPR PFA usu-
ally has a higher priority than the TPR PD, so a parameter
called S95 proposed in Ref. 25 is also calculated and shown in
Table IV. It is worth noting that the accuracy and the reliability
of S95 obtained in these experiments are relatively low. That
is because the number of records in the healthy control group

is too small and the threshold γ is mainly determined by no
more than 4 records (5% of 72), which is more likely to be
influenced by outliers.

As the extra channels are used (from 12 channels to 15
channels) in the experiments, it can be observed that the multi-
DSmT gets better performance while the multi-πCA gets
worse. That is because the extra channels make the informa-
tion more competitive. So more information will be discarded
by multi-πCA, resulting in a lower information utilization
and a lower detection accuracy. On the contrary, the multi-
DSmT gets better detection performance by utilizing the extra
information.

VI. DISCUSSION

According to the experimental results, detection accu-
racy is closely related to how highly competitive information
is dealt with. Due to the effect of the noises and the multi-
dimensional nature of TWA, uncertain and competitive infor-
mation is inevitable. To reach a consensus on the final decision,
most existing methods discard partial information to reduce
conflict, resulting in the loss of important information. By
utilizing this competitive information in a more reasonable
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and comprehensive way, the proposed method can achieve
more accurate detection results and more robust detection
performance.

The proposed decision-level fusion method cannot be
directly applied after the linear transformations such as πCA.
That is because the linear transformation is aimed at improv-
ing the ANR of a certain dimension at the cost of ANR
deterioration in other dimensions, which will make the infor-
mation between dimensions more competitive. When one-
dimensional decision method such as hard-decision “OR”
method is applied, it will improve the performance greatly
by just choosing a certain dimension with higher ANR. But
when the proposed decision-level fusion method is applied to
make the final decision, the ANRs in all channels are required
to be as high as possible. So the direct combination of the lin-
ear transformation and the proposed method will result in a
very low detection accuracy.

It is worth noting that the performance of multi-πCA is
much worse than it is in the simulation study. There are two
possible explanations for this strange result. First, the real
records used in the experiments are limited. They cannot repre-
sent all situations in clinical trails. More real ECG records may
be needed to get the more accurate assessment of the detec-
tion performance. Second, it may be caused by the errors from
the linear transformation, which requires linear mixture of all
sources and each component should be stationary. However,
the TWA in the body-surface ECG is a non-stationary signal
and has been distorted by a nonlinear propagation through the
thorax. These differences may become more evident in the
experiments with real records and deteriorate the detection
performance.

Some disadvantages of the proposed method should also
be noted. Since the single-channel analysis results are non-
linearly fused, the most obvious disadvantage is that no TWA
estimation has been done in the proposed method. If the
global TWA amplitude or waveform is required, the additional
method for TWA estimation is needed.

Another disadvantage is the increased computation. Com-
pared with the hard-decision “OR” method, the redistribution
process for competitive information will bring extra computa-
tion. However, since the speed of ECG beats is relatively slow,
real-time TWA detection by the multi-DSmT can be easily
achieved by a general-purpose computer based on the analysis
window scheme used in this study (W = 32, D = 1). In prac-
tical applications, if the computing power is very limited, the
calculation can be reduced by using a larger shift parameter D
of the sliding analysis window at the cost of a lower temporal
resolution.

To further improve the situation, the implementation
code has been optimized for the TWA detection. Since the
number of hypotheses and input channels are fixed and
known before fusion in the TWA detection, the addressing
indices are identical in each fusion. Based on this fact, all
indices can be calculated and stored once and for all before
fusion. So the computation amount would be reduced at the
cost of more random access memory (RAM) usage. Com-
pared with the general implementation method proposed in
Ref. 51, this customized method reduces the computation
dramatically.

The proposed method is far from perfect and further
work is needed. According to the clinical experience and
the experiments on real records, we found that the TWA
distribution among channels is not completely random. For
the single-channel method, some channels (from v1 to v3)
have a higher detection accuracy than the other channels. It
suggests that the detection results from different channels
have different confidence, and equal treatment to them in
the fusion process is not fitting. Thus a weighted decision-
level fusion method such as the DSmT with analytic hierarchy
process (DSmT-APH)52 may be able to further improve the
detection performance. How to measure the weight coeffi-
cients for different channels will be the focus in the following
researches.

VII. CONCLUSION

A novel multichannel decision-level fusion method for
TWA detection was proposed. It was compared to single-
channel and multichannel methods in both the simulation study
and the experiments with real ECG records. The simulation
study showed that the proposed method could utilize the com-
petitive information from different channels and dimensions in
a more reasonable and comprehensive way. By taking all chan-
nels into consideration in the decision process, the information
utilization is improved. With the higher information utilization
rate, the proposed method showed a higher detection accuracy
and stronger robustness to noises. The results of the experi-
ments with real ECG records showed that the proposed method
also showed higher accuracy in distinguishing patients with
myocardial infarction from healthy people through the TWA
detection. Since the proposed method is designed to detect
TWA channel-by-channel, it also reduces the demands on the
sampling process of the ECG recorder.

ACKNOWLEDGMENTS

This work was supported in part by the National Natu-
ral Science Foundation of China (Grant Nos. 61671452 and
61471073) and Natural Science Foundation of Chongqing
(Grant Nos. Cstc2014pt-sy40003, Cstc2015jcyjBX0078, and
Cstc2016jcyjA0556).

1C. M. Albert, C. U. Chae, F. Grodstein, L. M. Rose, K. M. Rexrode,
J. N. Ruskin, M. J. Stampfer, and J. E. Manson, “Prospective study of
sudden cardiac death among women in the United States,” Circulation 107,
2096–2101 (2003).

2T. W. Smith and M. E. Cain, “Sudden cardiac death: Epidemiologic and
financial worldwide perspective,” J. Interventional Card. Electrophysiol.
17, 199–203 (2006).

3D. L. Hoyert and J. Xu, “National vital statistics reports,” in Centers for
Disease Control and Prevention (DHHS, 2012), Vol. 21.

4Z. J. Zheng, J. B. Croft, W. H. Giles, C. Ayala, K. J. Greenlund,
N. L. Keenan, L. Neff, W. A. Wattigney, and George Mensah, “State-specific
mortality from sudden cardiac death–United States, 1999,” Morb. Mortal.
Wkly. Rep. 56, 123 (2002).

5D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha,
M. Cushman, S. R. Das, S. D. Ferranti, J. P. Després, and H. J. Fullerton,
“Heart disease and stroke statistics—2016 update,” Circulation 133, e38
(2015).

6R. O. Cummins, M. S. Eisenberg, A. P. Hallstrom, and P. E. Litwin, “Survival
of out-of-hospital cardiac arrest with early initiation of cardiopulmonary
resuscitation,” Am. J. Emerg. Med. 3, 114–119 (1985).

http://dx.doi.org/10.1161/01.cir.0000065223.21530.11
http://dx.doi.org/10.1007/s10840-006-9069-6
http://dx.doi.org/10.1161/cir.0000000000000350
http://dx.doi.org/10.1016/0735-6757(85)90032-4


094301-10 Ye et al. Rev. Sci. Instrum. 88, 094301 (2017)

7R. M. John, U. B. Tedrow, B. A. Koplan, C. M. Albert, L. M. Epstein,
M. O. Sweeney, A. L. Miller, G. F. Michaud, and W. G. Stevenson, “Ven-
tricular arrhythmias and sudden cardiac death,” The Lancet 380, 1520–1529
(2012).

8F. J. Gimeno-Blanes, M. Blanco-Velasco, Ó. Barquero-Pérez, A. Garcı́a-
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