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ABSTRACT 

Fused sensory data provides decision-making processes 
with exploitable information about the external 
environment and a 
describes some preliminary work on the InFuse project to 
create a modular and portable data fusion system funded 

Research Cluster on Space Robotics Technologies. In 
space robotics, a wide range of data fusion techniques are 
required to accomplish challenging objectives for 
exploration, science and commercial purposes. This 
includes navigation for planetary and orbital robotics, 
scientific data gathering, and on-orbit spacecraft 
servicing applications. InFuse aims to develop a 
comprehensive open-source data fusion toolset to 
combine and interpret sensory data from multiple robotic 
sensors, referred as a Common Data Fusion Framework 
(CDFF).  

1. MOTIVATIONS

The process of data fusion is at the heart of autonomous 
robotic systems, and plays a key role in comprehensive 
automated perception systems. In this paper, we present 
the initial work on InFuse: a modular, portable and robust 
data fusion system for robotics applications in space 
environments, both for orbital servicing and planetary 
exploration. Sensor fusion frameworks [1] have been 
developed for selecting suitable algorithms for a specific 
set of sensors. The InFuse Common Data Fusion 
Framework (CDFF) is being developed with expertise 
from a consortium of partners that have substantial 
experience with sensory data handling and processing 
techniques for perception and navigation in a wide range 

of space and terrestrial robotic applications. The 
approach taken in InFuse to handle data fusion 
algorithms and data products is intended to make their 
adoption easier and more effective by a wide range of 
users, both among the H2020 Space Robotics SRC 
stakeholders and in the wider space robotics community. 

Outline: after a review of the objectives and design 
drivers for the CDFF, section 3 provides a brief overview 
of the main data fusion techniques that are relevant for 
the space robotics context. Section 4 then depicts the 
architecture of the CDFF. Finally, section 5 sketches the 
exploitation perspectives of the CDFF. 

2. OVERALL APPROACH AND KEY CDFF
DESIGN DRIVERS

2.1. Prime Objective and Overview 

InFuse aims to develop a comprehensive data fusion 
toolset for robot sensors that will serve in the context of 
future space robotics and possibly ground based 
applications. The InFuse CDFF provides access to an 
extensive set of robust data fusion capabilities that are 
relevant both for on-orbit servicing and planetary 
exploration scenarios. These allow a user to control the 
data fusion processes and to conveniently retrieve (on-
demand) products such as maps, models of the 
environment and objects, and relevant science data. 
Furthermore, the InFuse CDFF is being designed with the 
objective of remaining independent (agnostic) of any 
particular robotic middleware. Deploying InFuse 
towards a particular robotics middleware such as 
ESROCOS, ROS, ROCK or GenoM will nonetheless be 
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supported by dedicated InFuse tools. It also includes data 
fusion orchestration and product management tools.  

InFuse provides navigation and perception 
functionalities. Navigation pertains to positioning in 
general: of a rover, of particular elements in the 
environment, of a servicing satellite with respect to an 
object in space to service. Perception pertains on the one 
hand to the detection and modelling of the environment 
(be it the whole environment surrounding the rover or 
some specific elements in the environment), and on the 
other hand to track specific environment features during 
motions. Mature state of the art perception and 
localization libraries will be integrated into the 
framework to cover these objectives, as well as more 
commonly used libraries within the robotics domain.  

From a research perspective, InFuse will develop a 
formal model of perception activities, aiming to allow 
their autonomous optimization and configuration 
depending on the task and the context. The goal is to 
improve the quality of the output through optimization 
and planning techniques, by implementing active 
perception schemes [2]. An essential part of the model of 
the data processing and fusion functions is the definition 
of figures of merit associated to the produced data types. 

2.2. Reference Scenarios 

InFuse addresses perception and data fusion within the 
context of two reference scenarios of space robotic: 
planetary exploration and on-orbit servicing, as depicted 
in Fig. 1. Perception and data fusion capabilities are 
selected for answering the need to perceive, analyse and 
interpret the environment as well as satisfying constraints 
related to reliability, memory footprint and computation 
complexity, inherent to space vehicles. 

Figure 1. Illustration of reference scenarios addressed 
by InFuse. 

The planetary track focuses on surface exploration, 
autonomous navigation [11] and science, and 
rendezvous. A nominal sequence of tasks done by a rover 
is : a) Creation of an initial panorama, b) Production of 
navigation maps, c) Path planning, d) Path execution and 
hazard detection / avoidance, e) Rover self-localization 
(odometry / SLAM), f) Updating of navigation maps, g) 
Back to d. or detection of a point of interest - POI, h) 
Visual servoing towards the POI i) Soil sample 
acquisition, j) Global localisation using orbiter data, k) 

Going back to lander, l) Visual servoing towards the 
lander, m) Visual servoing of the robotics arm for sample 
transfer.  

The orbital track focuses on rendezvous for on-orbit 
servicing operations such as refueling, re-configuration 
of hardware modules and repair of parts. A nominal 
sequence of tasks performed by a chaser spacecraft is: a) 
Detection of a target satellite far away (it might be done 
manually by ground observation to determine its orbit), 
b) Bearing tracking, c) Initial approach, d) 3D modeling
of the satellite, e) 3D tracking, f) Final approach, g) 
Visual servoing of the robotics arm, h) Docking and 
berthing. 

Within these scenarios, InFuse deals with perception and 
data fusion. This translates into data production for the 
Autonomy Framework. Three data classes are identified: 
localization (self or w.r.t a target), landmark / object 
management (detection and tracking), environment 
modeling (DEM, navigation maps, structured 3D 
models). From this point of view, we identify 9 data 
production use cases covering both reference scenarios: 

Planetary exploration: 
a) Rover localization in its environment [10, 12],
b) Relative localization w.r.t a fixed or moving asset,
c) Production of DEM and navigation maps [13],
d) Production of a panorama, Detection of point of

interest,
e) Rover collaboration.

. 2. 
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On-orbit servicing: 
a) Bearing only localization for approach (target

position and direction estimation w.r.t. chaser / Long
range),

b) Localization w.r.t satellite for rendezvous and orbital
parameter estimation (target pose estimation w.r.t.
chaser close perception) [14],

c) Target pose estimation w.r.t. chaser / Docking
(Visual servoing),

d) 3D reconstruction of a target.

2.3. Sensors and data types 

The CDFF primarily supports sensory input from the 
standard suite of sensors currently used in orbital and 
planetary applications (Tab. 1). In addition to that, CDFF 
is designed to allow for including additional sensors - sun 
sensor, star tracker, radar, ultrasonic sensor, 
magnetometer, multi/hyperspectral camera. The 
possibility to further extend the CDFF to include support 
of other types of sensors in the future is available by 
design.  

Table 1. Sensor data and associated sensors types 
Type of Data Name of Sensor 

Image Data Close-up High-Resolution Camera 

Image Data Light field camera (2-D images, 
ext. DoF) 

Extended Image Data Hyper / Multispectral Camera 

Depth Image Data TOF Camera 

Depth Image Data Structured Light Vision 

Depth Image Data Visible Stereo Camera 

Depth Image Data IR Stereo Camera 

Depth Data 3D LIDAR 

Planar Depth Data 2D LIDAR 

Angular Range Data Multi Angle Radar 

Range Data Narrow Angle Radar 

Range Data Ultrasonic Sensor 

Force Data Contact Sensor 

Torque Data Force/Torque Sensor 

Angular Data Joint Position Encoder 

Angular Pose Data Star Tracker 

Angular Pose Data Sun Sensor 

Angular Magnetic 
Data 

Magnetic Field Sensor 
(Magnetometer) 

Angular Velocity 
Data 

Angular Velocity Sensor 
(Gyroscope) 

Angle of Acceleration 
Data 

Linear Acceleration Sensor 
(Accelerometer) 

Arbitrary Data "Alternative" or General Sensors 

Data types for raw and pre-processed sensor data, and 
fused data products will predominantly be based on the 
Rock middleware base types [7, 8]. The ESROCOS [3] 
robotics software framework uses ASN 1.0 to encode the 
Rock base types. In specific cases, the data types need to 
be enhanced to include metadata relevant for data fusion 
processing steps and propagated to other higher-level 
components within the system.  

2.4. Requirements highlights 

CDFF primarily aims to satisfy a core set of requirements 
as per the SRC Compendium [4] that are relevant for 
space robotics applications. Additionally, InFuse will 
address requirements from the scientific community 
making it feasible for quality and performance analysis 
among data fusion algorithms, provide a comprehensive 
repository data fusion methods at different levels of 
granularity and facilitate porting solutions to target 
robotics middlewares. The main CDFF requirements are 
as follows: 
1. Facilitate relative and absolute localization with

respect to structured and unstructured objects.
2. Support reconstruction of terrain and 3D models to

represent environment geometry and scene
interpretation.

3. Allow detection, reconstruction and tracking of
objects and landmarks in the environment.

4. Data fusion processes can deal with complementary,
redundant and cooperative data.

5. Contain algorithms devoted to robot state estimation
and outlier removal.

6. Designed to be compatible with space qualified
processors running RTEMS (Real-Time Executive
for Multiprocessor Systems) and satisfy processing
and memory constraints at runtime.

7. Support the fusion of data from a wide range of
proprioceptive and exteroceptive sensors.

8. Provide a data product management tool to store and
retrieve fused sensor data with associated metadata.

9. Development environment tools to run data fusion
methods from data logs, visualisations and
evaluation of camera calibration and automatic (re-)
calibration of sensors to each-other.



3. REVIEW OF SPACE ROBOTICS RELEVANT
DATA FUSION TECHNIQUES

3.1. Taxonomy of Data Fusion Techniques 

The purpose of establishing a taxonomy of DF processes 
is to have a deep and complete understanding (and thus 
representation) of the nature of the entire perception 
layer. This grants the possibility to adopt a formal 
approach to the composition of complex data fusion 
processes based on the desired data product. On a purely 
functional level, the taxonomy may serve as guide during 
the reconfiguration of a data fusion process. The 
formalization of data fusion techniques allows to quickly 
look-up for potential candidates that may perform better 
under the current situation compared to the currently used 
one. In other words, the CDFF will know in advance what 
are the applicable techniques capable to satisfy the needs 
for a given data product. 

Figure 3. Abbreviated Representative Matrix of Sensors 
& Data Combination Methods (see https://www.h2020-

infuse.eu for complete matrix) 

With the goal of ensuring that as many fusion 
combinations could be represented as possible, a lower-
triangular matrix was constructed with the list of sensors 
across the horizontal and vertical axes intended to 

way, fusion methods more appropriate for similar data 
types are clustered together within the matrix.  The 
matrix itself with annotations to facilitate understanding 

. 3. As a broad 
introduction to the data fusion methods included in this 
matrix, we have identified the following core groups of 
methods that will be required for data fusion. 
1. For fusing image data, image stitching methods

using RANSAC feature matching and Bayesian 
filtering are available for Multiple View-Point 
reconstruction, detection of a pattern of keypoints 
for calibration can be used, as well as plenoptic 
odometry (3D+2D from single camera) and 3D map 
generation with 2D-texture from same sensor. 

2. To fuse images and depth data, 3D based odometry
with image based orientation determination can be 
used on image data, and data fusion accomplished by 
Extended Kalman Filter or directly in a 3D based 
odometry algorithm.  Texture mapping can be used 
in a 3D Reconstruction with coloured textures, and 
monocular localization can use the range provided 
by another sensor in order to measure the scale. 

3. Depth data can be fused with depth data by merging
reconstructions either as raster or point cloud, or by 

constraining a disparity search thanks to the use of a 
different depth sensor.  Visual point clouds can be 
merged with radar point clouds after transformation 
of   range scans with consideration of the different 
resolutions and range by sensors. Classification of 
materials is also possible by radar. 

4. Visual data can be combined with angular pose data,
such as from an IMU, by monocular localization and 
the use of localization information provided by the 
pose sensor by means of a Kalman Filter variant or 
directly in the 3D based odometry algorithm. 

5. Depth data can also be combined with angular pose
data by means of 3D based odometry with 
localization information provided by the pose sensor 
by means of a Kalman Filter variant or directly in the 
3D based odometry algorithm. 

6. Contact sensors and force/torque sensors can be
fused by measurement of forces and torques at 
different contact points/joints to build a coarse map 
by just sensing surfaces and provide pose corrections 
(Ex. collisions causing wheel slippage or while 
overcoming obstacles). 

7. Pose velocity and acceleration data can be fused
using a multi-sensor fusion approach combining 6D 
force/torque, 6D acceleration, angular velocity, and 
joint angle data to estimate set of inertial parameters 
(i.e. the mass, the coordinates of centre of mass, and 
the elements of the inertia matrix) of an object 
gripped by or attached to a manipulator. 

8. Fusion of inertial sensors is commonly and easily
done by means of Kalman Filter variants, for noise 
reduction, sensor redundancy and failure detection. 

3.2. Method used for the analysis and selection of 
relevant DF techniques 

All partners in the project contributed to assembling a 
survey of methods for data fusion and merging of sensor 
data that represents the current state of the art and state 
of play in the field of robotics and autonomous systems. 
This survey included summaries of the strengths and 
weaknesses of these methods, and an estimate of the 
maturity of each method.  The availability of open source 
implementations and the usefulness of each method as a 
part of a Data Fusion Processing Compound (DFPC) to 
accomplish the core CDFF functional requirements was 
also evaluated. To select the most appropriate and 
effective set of algorithms, test implementations will be 
created from existing code where available, and from 
scratch where there is no available code.  Test scenarios 
will create data for each type of algorithm. The most 
suitable methods for each application will be selected for 
C++ implementation as a data fusion node.  In the ideal 
case, one or two algorithms will be included as the 
primary fusion in each category and others can be added 
optionally. 

3.3. Resulting (preliminary) selection of DF 
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techniques/algorithms  

Table 2: Preliminary selection of data fusion algorithms 
for implementation 

Category of 
Algorithm 

Selected Algorithms Optional 
Algorithms 

Optical Feature 
Detection 

Hough Transform; 
Harris Detector; 
ORB Descriptor 

SIFT; 
SURF 

Point Cloud 
Feature 
Detection 

Harris 3D; 
SHOT Descriptor 

PFH/FPFH; 
SIFT 3D; 
SURF 3D 

Recognition & 
Registration 

ICP; 
RANSAC 

Levenberg- 
Marquardt 

General Data 
Association 

K-Nearest Neighbours; 
Linear Classifier; 
Bayesian Classifier 

Dense 
Registration 

Non- 
Probabilistic 
State 
Estimation 

Flow-Based Estimation; 
Fuzzy Logic; 
Dempster-Shafer 

Dezert- 
Smarandache 

Probabilistic 
State 
Estimation 

Extended Kalman Filter; 
Unscented Kalman 
Filter 

Particle 
Filter/SMC 

Data Filtering 
and Pre- 
Processing 

FFT Band Filters 
Variance Filter; 
Decimation; 
Normalization 

- 

Outlier 
Removal 
Methods 

Interquart. Range; 
Mahalanobis Dist.; 
One Class SVM 

GMMs; 
K-Means; 
Min. Vol. 
Ellipsoid 

While the final list of data fusion algorithms to be 
included in InFuse will be defined after precise analyses 
and trade-offs, a preliminary set of algorithms has been 
defined that includes the most likely candidates to be 
selected.  Tab. 2 shows this list of algorithms, with the 
highest-priority algorithms for implementation shown as 

 

Figure 4. Assembly of data fusion node in a data fusion 
processing compound, here the production of a DEM. 

These data fusion algorithms will finally be assembled to 
build a DFPC, as illustrated in Fig. 4 for the use case of 

DEM production. One of InFuse objectives is to ease this 
integration operation on development and space 
platforms. 

4. CDFF ARCHITECTURE

At the core of the CDFF architecture lie the Data Fusion 
Nodes (DFN) - core libraries each one performing a 
specific subtask. These are connected via a Common 
Interface forming Data Fusion Processing Compounds 
DFPCs. The DFPCs are regulated by the main 
management component, the Orchestrator, which is also 
in charge of handling any external data product requests 
-sent by the Autonomy module-. The last main 
component is the Data Product Management Tool which 
provides data products storage and retrieval services. 
These services can be requested either by the DFNs or by 
the Orchestrator. 

4.1. Main components and terminology 

CDFF-Core 

The CDFF-
state of the art algorithms and techniques currently in use 
and applicable to the Planetary and Orbital RIs within the 
scope of Infuse, as a collection of ready-to-use libraries 

processing methods necessary to fuse sensory data. The 
CDFF-Core is to be implemented in a modular fashion 
with a common interface to allow high flexibility in 
configuration as well as in operation as a distributed 
system on multiple platforms. The core libraries are to be 
deployed on the target system (robotic platform) as well 

 

Examples of core libraries include low-level functions 
such as feature detection, registration and recognition, 
data association, state estimation, outlier removal, and 
filtering which can be assembled into building 
environmental representations, achieving 3D object 
reconstruction or SLAM. The preliminary set of 
algorithms implementable in core libraries is shown in 
Tab. 2. 

CDFF-Support 

The CDFF-Support provides the necessary tools for the 
instantiation and execution of Data Fusion Processing 
Compounds. Under the CDFF-Support functionalities 
can be found the DFPC, the Orchestrator, and the Data 
Product Management Tool (DPM) as shown in Fig. 5. 

1. The Data Fusion Processing Compound (DFPC) is
a combination of several DFN designed to provide a
certain data product (e.g. pose estimation, map...).
The DFPC defines the connections between input
and output ports of different DFNs.

2. The Orchestrator is the component that deals with



  

the activation and deactivation of DFPCs. It is also 
the component that receives and answers the 
requests from the Autonomy Module  Operational 
Grant (OG2). The selection of one or another DFPC 
is done based on availability and quality of data 
sources and on the data product required. 

3. The Data Product Management (DPM) Tool acts 
as a long-term memory for the data fusion products 
generated by the DFPCs to be used by OG2 or other 
DFPCs. 

 
Along with the CDFF-Core entities, all components of 
CDFF-Support will be deployed in the Target System. 
They will also be available for programming and testing 
in the Developer Environment. 
 

 
Figure 5. Interaction among CDFF-Support 

components and interfaces with OG2 and OG4. 
 
4.2. Technical Baseline  

InFuse will be designed and developed primarily as the 
CDFF for space robotics. This implies that the software 
solutions should be compatible or easily portable to space 
related (i) computing architectures (SPARC-Leon II/III) 
(ii) real time operating systems (RTEMS) (iii) 
programming methodologies and paradigms (ECSS 
standards). These challenges impose constraints during 
the design and in development such as following specific 
coding standards, static and fixed memory allocations, 
limited usage of OOPS n order to facilitate the 
development of such data fusion solutions in an 
affordable manner. InFuse has application in two 
separated environments: The Target System and the 
Developers Environment. The first one is controlled by 
the RCOS and the software restrictions above mentioned 
apply, while the second environment will not be 
deployed in the robotic system and thus can make use of 
less limited software and hardware resources for the 
development process.  
 
The CDFF-Core and CDFF-Support components will be 

Environment side, Python bindings will be utilized to 
expose the C/C++ interface of libraries that need to be 

tested independently. By using Python Pandas or any 
similar utility that can replay recorded or logged sensor 
data, any CDFF-Core library can be tested 
independently, and evaluated for performance and 
quality of fused outputs. Note that this approach 
facilitates RCOS independence, as the Developers 
Environment is independent of the Target System. 
 
Environment Representation (EnviRe) is a package for 
representing arbitrary information on the environment for 
robotics [6]. The purpose is to have a common way of 
holding any information of the environment and how 
these information pieces relate to each other in a 
consistent representation across different applications. In 
the context of InFuse, the EnviRe graph will be used as 
symbolic representation and structuring of the spatio-
temporal information, as well as to facilitate the 
attribution of metadata. EnviRe provides a visualizer that 
will be used to analyse data in the Developer's 
Environment. 
 

 
Figure 6: Development flow with pySPACE.  

 
The framework pySPACE [5] will be available to 
evaluate and compare signal processing and machine 
learning algorithms. The main purpose of pySPACE is 
on comparing methods and configurations in terms of 
performance before the designer of a DFPC decides to 
implement or integrate them in a DFPC. pySPACE has 
the concept of node chains. These can be either one DFN 
or a sequence of multiple DFNs. Individual nodes of the 
pySPACE chain can be deployed as DFNs on the target 
system (Fig. 6). 
 
4.3. Creating and Deploying an InFuse Instance  

As mentioned above, the process of generating a 
Reference Implementation (RI) data fusion solution 
solutions consist of two stages each one taking place in a 
different environment as shown in Fig. 7: (1) 

s 
Environment and (2) deployment and testing on the 
Target System. These two stages can be reiterated: after 



  

evaluating the initial solution on the Target System, the 

Environment to analyse and improve the solution. On the 

evaluation are available. The developed perception 
solution is designed to be easy to integrate in any Target 
System, independently of the RCOS and the specific 
hardware. 
 

 
Figure 7. Migration of software components from the 

 
 
CDFF-Dev 

The CDFF-Dev provides the tools to develop, test, 
visualize, and perform analysis on data fusion products. 
None of the components of the CDFF-Dev are deployed 
on the target system. 

  
1. The CDFF-Dev Common Interface (Python level) 

are python bindings provided for the DFN common 
interface.  

2. The Middleware Facilitator provides the CDFF the 
capability to partially convert a DFPC from the 
designer's environment in the corresponding DFPC 
on the target RCOS.  

3. The Logs and Data Flow Management allows 
injecting logged data to a data fusion process in a 
chronological fashion. It is envisioned to allow 
loading of log data produced by different RCOS. The 
output of the nodes in the DFPC are also stored in 
logs which are used as input for posterior nodes in 
the processing compound. 

4. The Data Analysis and Performance Tools are 
comprised of statistical analysis tools and graphical 
representations necessary for comparison of data 
fusion products resulting from different processing 
chains. The goal is to provide the designer methods 
to assess the quality of the data products and of the 
DFPC.  

5. The Visualizer is responsible for presenting 
graphical representations of the different data 
products (e.g. 2D/3D plots, maps, camera images). 

6. The Calibration Tools provide a framework for 
automatic (re-)calibration by using a manipulator. 
The goal is to automatically assess the quality of both 
intrinsic and extrinsic/hand-eye calibration and 

trigger an automatic calibration if needed [9]. 
  
During the design of the architecture other features were 
identified with potential interest, which could be 
implemented in the future. For instance, the Data Fusion 
Processing Compound Configurator that enables the 
designer to define intuitively, DFPCs. CDFF-Dev could 
provide in the future monitoring of the execution time 
and memory consumption of individual components in 
order facilitate the design of an embedded DFPC. CDFF 
Software components are classified in Tab. 3.  
 

Table 3. Classification of CDFF Software components  

CDFF-Components Subsystem 
On Target 
System 

Core Libraries CDFF-Core Yes 

Common Interface  
(C++ Level) CDFF-Core Yes 

Data Fusion Processing 
Compound 

CDFF-
Support Yes 

Orchestrator 
CDFF-
Support Yes 

Data Product Management Tool 
CDFF-
Support Yes 

Common Interface (Python 
Level) CDFF-Dev No 

Middleware Facilitator CDFF-Dev No 

Logs and Data Flow Management CDFF-Dev No 

Visualizer CDFF-Dev No 

Data Analysis and Performance 
Tools CDFF-Dev No 

Calibration Tools 
CDFF-Dev 

No 

 
5. CDFF RELEASE AND EXPLOITATION PLAN 

5.1. Open Source Strategy  

On reaching the end of the project, a final version of the 
CDFF will be made publicly available as open source. 
Before its release, the quality of the code and the 
documentation will be reviewed to facilitate its use in 
future projects. A Git server will be used to allocate the 
final software. A second package will be generated as a 
legacy for upcoming Space Robotics Challenge projects 
with potentially some license restricted subparts which 
will be worked out under the Post-Project Follow up 
guidance. 
 
5.2. Exploitation Perspectives  

InFuse main outputs are of three sorts: software 
components, hardware support and contribution to the 



  

robotics community as summarized in Fig. 8 and Fig. 9. 
These outputs offer several exploitation perspectives 
targeting the robotics community, either for space or 
civilian applications. Exploitation perspectives will be 
driven by the open source and freeware releases of the 
software. A commercial support will also be provided to 
help companies to use or integrate CDFF components in 
their products with an appropriate licence. Regarding 
space applications, exploitation activities will first of all 
take place in the future projects of the SRC Space 
Robotics. CDFF components will be used and extended 
to implement targeted scenarios, and address additional 
scenarios such as precision landing and autonomous 
navigation on comets. CDFF components also offer the 

products. Regarding civilian applications, exploitation 
activities will be driven by the technological transfer to 
answer the needs of the market. It includes for instance 
self-localisation for autonomous vehicles (aerial, 
terrestrial, underwater, humanoid) or high-precision pose 
estimation and tracking, e.g. for industrial manipulation 
tasks. 
 

 
Figure 8. Software components developed by InFuse. 

 

 
Figure 9. Hardware supported by InFuse (partial 

support through data types or full support with drivers).  

6. CONCLUSION 

InFuse aims to provide a comprehensive, modular data 
fusion system for future space robotic missions. InFuse 
will explore   optimization and perception techniques to 
estimate location and model the surroundings of a robotic 
platform in order to support the planning and execution. 
In addition, InFuse aims to increase the overall 
performances of the offered DFPCs by providing tools to 
perform fast prototyping with core data fusion libraries 
before their final integration on the target platform. 
Ideally, this approach will bring improvements in the 
parameterisation of DFNs and will enable a rapid and 
probably an autonomous reconfiguration of DFPCs. 
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