The Irrationality and Transcendence of e Connected

Timothy W. Jones

Abstract

Using just the derivative of the sum is the sum of the derivatives and simple undergraduate mathematics a proof is given showing e^{n} is irrational. The proof of e's transcendence is a simple generalization from this result.

Using the techniques of a proof of e 's transcendence given in Herstein's Topics in Algebra [2], Beatty gave a proof of the irrationality of e^{n}, n a positive integer [1]. In this article we show how the mean value theorem, used in both Herstein and Beatty's proofs, can be avoided in favor of a simpler approach that yields a nice path from the irrationality of e^{n} to e^{\prime} 's transcendence.

In what follows, x is a real number, all polynomials are integer polynomials, and p is a prime.

Definition 1. Given a polynomial $f(x)$, lowercase, the sum of all its derivatives is designated with $F(x)$, uppercase.

Definition 2. For non-negative integers n, let $\epsilon_{n}(x)$ denote the infinite series

$$
\frac{x}{n+1}+\frac{x^{2}}{(n+1)(n+2)}+\cdots+\frac{x^{j}}{(n+1)(n+2) \ldots(n+j)}+\ldots
$$

Lemma 1. If $f(x)=c x^{n}$, then

$$
\begin{equation*}
F(0) e^{x}=F(x)+\epsilon, \tag{1}
\end{equation*}
$$

where ϵ has polynomial growth in n.

Proof. As $F(x)=c\left(x^{n}+n x^{n-1}+\cdots+n!\right), F(0)=c n!$. Thus,

$$
\begin{aligned}
F(0) e^{x} & =c n!\left(1+x / 1+x^{2} / 2!+\cdots+x^{n} / n!+\ldots\right) \\
& =c x^{n}+c n x^{(n-1)}+\cdots+c n!+c x^{n+1} /(n+1)!+\ldots \\
& =F(x)+c x^{n}\left(x /(n+1)+x^{2} /(n+1)(n+2)+\ldots\right) \\
& =F(x)+f(x) \epsilon_{n}(x) .
\end{aligned}
$$

Now $f(x)$ has polynomial growth in n and $\epsilon_{n}(x) \leq e^{x}$, so the product has polynomial growth in n.

Lemma 2. If $f(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$, then

$$
\begin{equation*}
e^{x} F(0)=F(x)+\epsilon, \tag{2}
\end{equation*}
$$

where ϵ has polynomial growth in the degree of f.
Proof. Let $f_{j}(x)=c_{j} x^{j}$, for $0 \leq j \leq n$. Using the derivative of the sum is the sum of the derivatives,

$$
F=\sum_{k=0}^{n}\left(f_{0}+f_{1}+\cdots+f_{n}\right)^{(k)}=F_{0}+F_{1}+\cdots+F_{n}
$$

where F_{j} is the sum of the derivatives of f_{j}. Using Lemma 1 ,

$$
\begin{equation*}
e^{x} F_{k}(0)=F_{k}(x)+\epsilon \tag{3}
\end{equation*}
$$

and summing (3) from $k=0$ to n, gives

$$
e^{x} F(0)=F(x)+n \epsilon
$$

As the finite sum of functions with polynomial growth in n also has polynomial growth in n, we arrive at (2).

Lemma 3. If the polynomial $f(x)$ has a non-zero root r of multiplicity p, $p!\mid F(r)$.

Proof. We can write $f(x)=(x-r)^{p} Q(x)$, where $Q(x)$ is a polynomial. The sum of the derivatives of $f(x)$ are given by the Leibniz table, Table 1. When $x=r$ only the last column remains non-zero and the value in each of its cells is multiplied by $p!$.

	$(x-r)^{p}$	$p(x-r)^{p-1}$	\ldots	$p!$
$Q(z)$				
$Q^{\prime}(z)$				
\vdots				
$Q^{(k)}(x)$				

Table 1: Leibniz table showing $p!\mid F(r)$, where $F(x)=(x-r)^{p} Q(x)$.

	x^{p-1}	$p x^{p-1}$	\ldots	$(p-1)!$
$\left[\prod\left(x-r_{i}\right)\right]^{p}$				
$p \ldots$				
\vdots				
$p \ldots$				

Table 2: Leibniz table showing $(p-1)!\mid F(0)$, where $F(x)=x^{p-1}\left[\prod\left(x-r_{i}\right)\right]^{p}$.

Lemma 4. Let polynomial $f(x)$ have root $r=0$ of multiplicity $p-1$ and n other roots r_{i} of multiplicity p, then, for large enough p,

$$
\begin{equation*}
F(0)+F\left(r_{1}\right)+\cdots+F\left(r_{n}\right) \tag{4}
\end{equation*}
$$

is a non-zero integer divisible by $(p-1)$!.
Proof. Using Lemma 3, $p!\mid F\left(r_{i}\right)$ for each $i, 1 \leq i \leq n$, and, referring to Table 2, we see $(p-1)!\mid F(0)$, but $p \nmid F(0)$ when $p>r_{1} r_{2} \ldots r_{n}$; (4) follows.

Theorem 1. For positive, non-zero rational r, e^{r} is irrational.
Proof. It is sufficient to prove that e^{n}, n a natural number is irrational. Suppose not, suppose $e^{n}=a / b$ with a, b natural numbers $a>b$. Define $f(x)=x^{p-1}(x-n)^{p}$. Then, using Lemma 2, $e^{n} F(0)=F(n)+\epsilon$ and this implies $a F(0)-b F(n)=b \epsilon$. Dividing by $(p-1)$! gives

$$
\begin{equation*}
\frac{a F(0)-b F(n)}{(p-1)!}=\frac{b \epsilon}{(p-1)!} \tag{5}
\end{equation*}
$$

If p is sufficiently large, (5), using Lemmas 3 and 4, gives an absolute value of the left hand side that is at least 1 while the absolute value of the right hand side is less than 1 , a contradiction.

Theorem 2. e is transcendental.
Proof. A number is transcendental if it doesn't solve an integer polynomial. Suppose e solves an nth degree integer polynomial, then

$$
0=c_{n} e^{n}+c_{n-1} e^{n-1}+\cdots+c_{0}
$$

Define $f_{n}(x)=x^{p-1}[(x-1)(x-2) \cdots(x-n)]^{p}$. Using Lemma 2, we have

$$
\begin{equation*}
0=F_{n}(0)\left(c_{n} e^{n}+c_{n-1} e^{n-1}+\cdots+c_{0}\right)=c_{0} F_{n}(0)+\sum_{k=1}^{n} c_{k} F_{n}(k)+\epsilon \tag{6}
\end{equation*}
$$

Now using Lemma 4, when (6) is divided by $(p-1)$!, $c_{0} F_{n}(0)+\sum_{k=1}^{n} c_{k} F_{n}(k)$ is a non-zero integer. As $\epsilon /(p-1)$! can be made as small as we please with increasing primes p, the sum of the two can't be zero. We have a contradiction of the right hand side of (6).

References

[1] T. Beatty and T.W. Jones, A Simple Proof that $e^{p / q}$ is Irrational, Math. Magazine, 87, (2014) 50-51.
[2] I. N. Herstein, Topics in Algebra, 2nd ed., John Wiley, New York, 1975.

