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Abstract

Using just the derivative of the sum is the sum of the derivatives

and simple undergraduate mathematics a proof is given showing e
n is

irrational. The proof of e’s transcendence is a simple generalization

from this result.

Using the techniques of a proof of e’s transcendence given in Herstein’s
Topics in Algebra [2], Beatty gave a proof of the irrationality of en, n a
positive integer [1]. In this article we show how the mean value theorem,
used in both Herstein and Beatty’s proofs, can be avoided in favor of a
simpler approach that yields a nice path from the irrationality of en to e’s
transcendence.

In what follows, x is a real number, all polynomials are integer polyno-
mials, and p is a prime.

Definition 1. Given a polynomial f(x), lowercase, the sum of all its deriva-
tives is designated with F (x), uppercase.

Definition 2. For non-negative integers n, let εn(x) denote the infinite series

x

n + 1
+

x2

(n + 1)(n + 2)
+ · · · +

xj

(n + 1)(n + 2) . . . (n + j)
+ . . . .

Lemma 1. If f(x) = cxn, then

F (0)ex = F (x) + ε, (1)

where ε has polynomial growth in n.
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Proof. As F (x) = c(xn + nxn−1 + · · · + n!), F (0) = cn!. Thus,

F (0)ex = cn!(1 + x/1 + x2/2! + · · · + xn/n! + . . . )

= cxn + cnx(n−1) + · · · + cn! + cxn+1/(n + 1)! + . . .

= F (x) + cxn(x/(n + 1) + x2/(n + 1)(n + 2) + . . . )

= F (x) + f(x)εn(x).

Now f(x) has polynomial growth in n and εn(x) ≤ ex, so the product has
polynomial growth in n.

Lemma 2. If f(x) = c0 + c1x + · · · + cnxn, then

exF (0) = F (x) + ε, (2)

where ε has polynomial growth in the degree of f .

Proof. Let fj(x) = cjx
j, for 0 ≤ j ≤ n. Using the derivative of the sum is

the sum of the derivatives,

F =
n∑

k=0

(f0 + f1 + · · · + fn)
(k) = F0 + F1 + · · · + Fn,

where Fj is the sum of the derivatives of fj. Using Lemma 1,

exFk(0) = Fk(x) + ε (3)

and summing (3) from k = 0 to n, gives

exF (0) = F (x) + nε.

As the finite sum of functions with polynomial growth in n also has polyno-
mial growth in n, we arrive at (2).

Lemma 3. If the polynomial f(x) has a non-zero root r of multiplicity p,
p!|F (r).

Proof. We can write f(x) = (x− r)pQ(x), where Q(x) is a polynomial. The
sum of the derivatives of f(x) are given by the Leibniz table, Table 1. When
x = r only the last column remains non-zero and the value in each of its cells
is multiplied by p!.
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(x − r)p p(x − r)p−1 . . . p!
Q(z)
Q′(z)
...

Q(k)(x)

Table 1: Leibniz table showing p!|F (r), where F (x) = (x − r)pQ(x).

xp−1 pxp−1 . . . (p − 1)!
[
∏

(x − ri)]
p

p . . .
...
p . . .

Table 2: Leibniz table showing (p−1)!|F (0), where F (x) = xp−1[
∏

(x−ri)]
p.

Lemma 4. Let polynomial f(x) have root r = 0 of multiplicity p − 1 and n
other roots ri of multiplicity p, then, for large enough p,

F (0) + F (r1) + · · · + F (rn) (4)

is a non-zero integer divisible by (p − 1)!.

Proof. Using Lemma 3, p!|F (ri) for each i, 1 ≤ i ≤ n, and, referring to Table
2, we see (p − 1)!|F (0), but p - F (0) when p > r1r2 . . . rn; (4) follows.

Theorem 1. For positive, non-zero rational r, er is irrational.

Proof. It is sufficient to prove that en, n a natural number is irrational.
Suppose not, suppose en = a/b with a, b natural numbers a > b. Define
f(x) = xp−1(x − n)p. Then, using Lemma 2, enF (0) = F (n) + ε and this
implies aF (0) − bF (n) = bε. Dividing by (p − 1)! gives

aF (0)− bF (n)

(p − 1)!
=

bε

(p − 1)!
. (5)

If p is sufficiently large, (5), using Lemmas 3 and 4, gives an absolute value
of the left hand side that is at least 1 while the absolute value of the right
hand side is less than 1, a contradiction.
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Theorem 2. e is transcendental.

Proof. A number is transcendental if it doesn’t solve an integer polynomial.
Suppose e solves an nth degree integer polynomial, then

0 = cnen + cn−1e
n−1 + · · · + c0.

Define fn(x) = xp−1[(x − 1)(x − 2) · · · (x − n)]p. Using Lemma 2, we have

0 = Fn(0)(cne
n + cn−1e

n−1 + · · · + c0) = c0Fn(0) +
n∑

k=1

ckFn(k) + ε. (6)

Now using Lemma 4, when (6) is divided by (p−1)!, c0Fn(0)+
∑n

k=1 ckFn(k)
is a non-zero integer. As ε/(p − 1)! can be made as small as we please with
increasing primes p, the sum of the two can’t be zero. We have a contradiction
of the right hand side of (6).
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