Theorem of prime pairs

$$
\begin{gathered}
\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \cdots,\left(A_{n}, B_{n}\right) \\
A_{n}=a_{1} n+a_{2} \\
B_{n}=b_{1} n+b_{2}
\end{gathered}
$$

A_{n}, B_{n} are not an obviously composite
<Theorem1>

For constant c,
If $c \cdot P \ln ^{3} P<n, \forall A_{n}, B_{n}<P^{2}$
$\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \cdots,\left(A_{n}, B_{n}\right)$ contains
$\left(A_{k}, B_{k}\right)$ that both are prime
<proof1>

$$
\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \cdots,\left(A_{n}, B_{n}\right)
$$

Consecutive p pair has at most 2 pairs that has
factor p.
Length of $3,3,5,5,7,7, \cdots, P, P=\frac{2 P}{\ln P}$
And consecutive.

If consecutive 3 pairs contains two pairs that has factor 3,

$$
3,3,5,3,3,5,3,3,7,3,37, \cdots, P, 3,3, P, 3,3
$$

Not longer than $\frac{2 P}{\ln P} \cdot \frac{3+2}{3-2}$
for p, also not longer than $\frac{2 P}{\ln P} \cdot \frac{p+2}{p-2}$
From that $p<\frac{2 P}{\ln P} \cdot \frac{3+2}{3-2} \cdot \frac{5+2}{5-2} \cdot \cdots \cdot \frac{p+2}{p-2}$
If consecutive p pair has at most 2 pairs that has factor p, it's not longer than

$$
\frac{2 P}{\ln P} \cdot \frac{3+2}{3-2} \cdot \frac{5+2}{5-2} \cdot \cdots \cdot \frac{p+2}{p-2}
$$

From that $\frac{p+2}{p-2}<\left(\frac{p}{p-1}\right)^{4}, \frac{3-1}{3} \cdot \frac{5-1}{5} \cdots \ldots \frac{p-1}{p}=\frac{c_{1}}{\ln p}$

We know that $\frac{2 p}{\ln p} \cdot \frac{3+2}{3-2} \cdot \frac{5+2}{5-2} \cdots \cdots \cdot \frac{p+2}{p-2}<c \cdot P \cdot \ln ^{3} P$
And
If $c \cdot P \ln ^{3} P<n, \forall A_{n}, B_{n}<P^{2}$
$\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \cdots,\left(A_{n}, B_{n}\right)$ contains
$\left(A_{k}, B_{k}\right)$ both are prime
<Theorem2>
If $\mathrm{c} \cdot P \ln ^{2 k-1} P<n, \forall A_{k}, B_{k}, C_{k}, \cdots<P^{2}$
$\left(A_{1}, B_{1}, C_{1}, \cdots\right),\left(A_{2}, B_{2}, C_{2} \cdots\right), \cdots,\left(A_{n}, B_{n}, C_{n} \cdots\right)$
Contains
$\left(A_{k}, B_{k}, C_{k}, \cdots\right)$ that $A_{k}, B_{k}, C_{k}, \cdots$ are prime at once <proof2>

Likewise <proof1>

We can solve
1.Goldbach's conjecture

$$
\begin{gathered}
A_{n}=2 n+1 \\
B_{n}=2 N-2 n-1
\end{gathered}
$$

$c \cdot \sqrt{2 N}(\ln \sqrt{2 N})^{3}<N-1$
2.Twin prime conjecture

$$
\begin{aligned}
& A_{n}=2 n+1 \\
& B_{n}=2 n-1
\end{aligned}
$$

Between $2 N$ and $2 N-c \cdot \sqrt{2 N} \cdot(\ln \sqrt{2 N})^{3}$
There is $\left(A_{k}, B_{k}\right)$ that both are prime.

