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Abstract—Sorting is one of the most researched topics of Computer Science and it is one of the essential operations across 

computing devices. Given the ubiquitous presence of computers, sorting algorithms utilize significant percentage of computation 

times across the globe. In this paper we present a sorting algorithm with worst case time complexity of O(n).   
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I. INTRODUCTION  

Sorting is not only the most researched and analyzed topic among researchers but also the most prevalent and ever present 
algorithm for every introductory computer science classes . As a result of its ubiquitous nature the audience it has attracted in 
solving it is humongous. The best worst case complexity achieved by any comparison based sorting algorithm so far is 
O(nlogn), like quicksort, merge sort, heap sort etc, and non-comparison based sorting algorithm is O(dn), for radix sort where d 
is the key size. In this paper I have developed a novel stable sorting algorithm of worst case time complexity O(n) using 
Combinatorics and the divide and conquer paradigm. For the ease of understanding and analysis, the whole algorithm, called 
Just Sort , is presented in its naive form, having separate sub routines for each of the base cases. The core subroutine of this 
algorithm is based on Combinatorics, a branch of Mathematics, and uses the Hash Table data structure .Hence it is termed as 
the Combinatorial Hash Sort sub routine. 

II. MATHEMATICAL BACKGROUND 

Given n elements, the problem of sorting can be restated mathematically as finding the only permutation , assuming this 
singleton condition for stability, out of n! permutations which contains all n elements in various orders ,where the n elements 
are arranged in ascending order. Thus for a sorting problem we have n!-1 incorrect outputs and only one correct output in 
which the elements are in sorted order. Unlike permutations, there is only one combination which consists of all these n 
elements. For a set of n unique numbers whose range is k, the sorting problem can be solved partially by identifying a 
combination out of 2

k+1
 combinations, which contains all n unique numbers. We are deriving and exploiting a constraint 

relationship between the set of n unique elements and 2
k+1

 combinations in our approach. 

As mentioned before, the heart of this algorithm is based on the knowledge derived from Combinatorics. According to 
Combinatorics the total number of possible combinations of n distinct items is given by 2

n
. Let there be, for instance, 5 

numbers from 0 to 4. The total number of possible combinations of these 5 numbers is 32 and it is listed in Table I where the 
presence or absence of a number in a combination is represented in binary digit and the numbers in column headers are in 
sorted order. 1 denotes its presence and 0 denotes its absence in that particular combination. The decimal equivalents of these 
binary numbers represented by these combinations are given under the Sum column of Table I.  It is easy to note that these 
binary numbers represented in decimal number system are continuous in nature and it is unique for each sequence. In other 
words, the presence or absence of a number in a sequence is reflected in its decimal sum S. Let b0, b1, b2, b3 and b4 be the bits 
of these binary numbers from least to most significant bit, its decimal sum is given by 

S = b0×2
0 
+ b1×2

1 
+ b2×2

2 
+ b3×2

3 
+ b4×2

4 

In general the Sum of j
th
 row is given by  

      ∑   
    

                                              (1) 

Where n is the number of elements in our collection and   
 
 is the i

th
 bit of the binary number corresponding to the j

th
 row of 

Table I. 

We are storing the numbers in an array which are present in each combination from Least Significant Bit to Most 
Significant Bit, i.e. from b0 to b4, only if they are present i.e. if bi=1 or its face value in binary sequence is 1, while maintaining 
its order from LSB to MSB. For instance the first combination has no elements and the tenth combination has 1 and 4, which is 
stored in an array in the exact order. We are storing this knowledge in the form of a two dimensional array  and we are 
denoting it as Sort Table(sorttable) ,where the outer array is indexed by the respective decimal sum    of the j

th
 combination 

calculated by  (1). For instance, the 10
th
 row and 32

nd
  row of the sort table are denoted as 

    sorttable [9]  = {1,4} 

       sorttable [31] = {1,2,3,4,5} 

 

Where the term within square brackets denote the Sum column of Table I and its corresponding elements present are 
represented as an array within curly braces. 



 

Equation (1) can be restated as 

                ∑   
    

                                  (2) 

Where         is the weight or place value of that element in the binary sequence of the j
th

 combination or the 
contribution of i

th
 bit towards the sum Sj. For the scenario considered above, the value of n would be 5, as there are 5 elements  

the weight values wi are stored in an array w of size 5. 

  w = { 1 , 2 , 4 , 8 , 16 } 

TABLE I    Combination sequences of 5 elements and its   decimal sum. 

Four(b4) Three(b3) Two(b2) One(b1) Zero(b0) Sum 

0 0 0 0 0 0 

0 0 0 0 1 1 

0 0 0 1 0 2 

0 0 0 1 1 3 

0 0 1 0 0 4 

0 0 1 0 1 5 

0 0 1 1 0 6 

0 0 1 1 1 7 

0 1 0 0 0 8 

0 1 0 0 1 9 

0 1 0 1 0 10 

0 1 0 1 1 11 

0 1 1 0 0 12 

0 1 1 0 1 13 

0 1 1 1 0 14 

0 1 1 1 1 15 

1 0 0 0 0 16 

1 0 0 0 1 17 

1 0 0 1 0 18 

1 0 0 1 1 19 

1 0 1 0 0 20 

1 0 1 0 1 21 

1 0 1 1 0 22 

1 0 1 1 1 23 

1 1 0 0 0 24 

1 1 0 0 1 25 

1 1 0 1 0 26 

1 1 0 1 1 27 

1 1 1 0 0 28 

1 1 1 0 1 29 

1 1 1 1 0 30 

1 1 1 1 1 31 

 



 

 

TABLE II   SORT TABLE 

Index Array Elements 

0 {} 

1 { 0 } 

2 { 1 } 

3 { 0 , 1 } 

4 { 2 } 

5 { 0 , 2 } 

6 { 1 , 2 } 

7 { 0 , 1 , 2 } 

8 { 3 } 

9 { 0 , 3 } 

10 {  1 , 3 } 

11 { 0 , 1 , 3 } 

12 { 2 , 3 } 

13 { 0 , 2 , 3 } 

14 { 1 , 2 , 3 } 

15 { 0 , 1 , 2 , 3 } 

16 { 4 } 

17 { 0 , 4 } 

18 { 1 , 4 } 

19 { 0 , 1 , 4 } 

20 { 2 , 4 } 

21 { 0 , 2 , 4 } 

22 { 1 , 2 , 4 } 

23 { 0 , 1 , 2 , 4 } 

24 { 3 , 4 } 

25 { 0 , 3 , 4 } 

26 { 1 , 3 , 4 } 

27 { 0 , 1 , 3 , 4 } 

28 { 2 , 3 , 4 } 

29 { 0 , 2 , 3 , 4 } 

30 { 1 , 2 , 3 , 4 } 

31 { 0 , 1 , 2 , 3 , 4 } 

 

 

This knowledge can be used for sorting in the following way. For instance if we are to sort an array { 4 , 3 , 2 } we can 
traverse the array and add the corresponding weights wi to compute S  cumulatively which will be equal to 28 at the end of our 
traversal and we can get the corresponding sequence of numbers from the sorttable whose index  S is equal to 28 i.e. S[28] 
which has the elements { 2 , 3, 4 } which is sorted. Thus we just need to traverse these elements in order to sort it. 

If the numbers to be sorted are not within the interval of      [ 0 , 4 ], for instance 14, 13 and 12, but its range lies in the 
interval [ 0 , 4 ], we could consider the modulo 5 operation of the numbers and use the result as  indices to store the numbers in 
an array, which holds a constraint that the value of an index is directly proportional to the value of the number stored in that 
index and hence the number stored in lesser value of index is always lesser than the number stored in greater value of index 
.We  calculate S from the value of indices and then we could retrieve the sorted indices from the sorttable whose index is S, 
from which we could retrieve the numbers in sorted order. 

 Thus we could partition the numbers to be sorted such that the range of each partition is less than the range of the sortable 
and then we could sort the elements using sortable by using the method elucidated above. 

We are defining the Order of a Sort Table α as the number of unique elements present in it and TABLE I is of the order 5 as 
it has 5 unique elements. We are using this combinatorial knowledge in the form of two dimensional array denoted as sorttable 
, as a pre-computed constant in our sorting algorithm. The computation time of this Sort Table of order 5 is infinitesimal, 
obviously, and we need not even bother computing it and it can be integrated into the libraries of programming languages. For 
the ease of analysis, going forward we use a Sort Table of order (α) 10 in our algorithm, which has elements from 0 to 9, 
inclusive, and it takes 1024 computations which is executed under 6 milliseconds in Java Standard Edition 8. 



III. JUST SORT OVERVIEW 

We use the knowledge derived above in our sorting algorithm using divide and conquer paradigm by partitioning the 
numbers into buckets whose size is equal to the Order of Sort Table α. Let A[n] denote an array of n elements and R be the 
range of the numbers in it. The primary data structure used by this sorting algorithm is Hash table. The size of the Hash table β 
is determined by the range R of the numbers to be sorted and the Order of the Sort Table α .Each entry of the Hash table 
represents a bucket .Therefore the size of the Hash table β is  equal to the number of buckets. We divide the Range R into k 
buckets of size α. Thus each entry of the Hash Table H corresponds to a bucket. We define a suitable hash function involving α 
and place each element of the array in its corresponding bucket. 

    Size of Hash Table = Range/Order of the Sort Table 

     ⁄  

    The hash function  (    ) is given by   

            (    )       α                               (4)                    

         where the operator ‘/ ‘ in (4) denotes integer division and A[i] is the i
th
 element of array A and the above division is 

integer division and it just gives the quotient excluding the remainder. 

      It is obvious that the space complexity of this algorithm is dependent on the range of the numbers to be sorted. In order to 
minimize the space complexity we first separate the numbers into groups , where every number in a group has same number of 
digits. If necessary we further divide the groups as per our space constraints. We then sort each group separately and then 
merge them in the end. 

 
Algorithm 1. Range Reduction 

  
Input    :   A [ 1 … n ] 

Output : Array of arrays(or list of lists) B 

 

1: i = 0 

2: k = 0 

3: While i ≠ n 

4:       k = A [i] / 10 

5:      Add A [i] to B based on k value 

6:      i++ 

7: end while 
8: return B 
 

 
  

While we are traversing each element of the array , we identify the corresponding bucket using the hash function given by 
(4) and we calculate the sum   (    ) for that bucket simultaneously by adding the respective weight   ( )  to that bucket’s sum 

  (    ) , where  ( ) is given by the number  modulo α in (5) .  

          ( ) = A[i] mod α                       (5) 

 We use this sum   (    ) to retrieve the corresponding array from the sorttable whose values denotes the sorted indices of 

the elements present in that particular bucket. While traversing the numbers, we insert the active buckets, i.e. the bucket which 
contains atleast one element in it, into a list denoted as keys. We then sort keys using the algorithm keyssort. It is evident that 
the total number of active buckets is always lesser than or equal to the total number of element in the array A[n] and as a result 
the time complexity of sorting the keys, which is a list of active buckets, is always lesser than or equal to the time complexity 
of sorting A[n].  Thus we are placing the numbers to be sorted into its corresponding buckets while computing the sum   (    ) 

for every active bucket simultaneously during the traversal and we are sorting keys, which is the list of active buckets, using 
keyssort algorithm recursively, which internally calls the algorithm Combinatorial hashsort.  We traverse the list keys whose 
elements are now sorted, i.e. it contains active buckets in sorted order, and with the help of the sum   (    ) calculated for each 

active bucket, we retrieve the sorted indices for each active bucket present in keys using the algorithm  Combinatorial 
hashsort_d, and from those indices we are retrieving the numbers present in that active bucket in sorted order and storing it in a 
list. We then merge these lists which contains the elements in sorted order. 

This algorithm comprises of three subroutines which are called internally by the main algorithm JUST SORT. 



A. Keysort 

This subroutine sorts the active buckets recursively and its output consist of a list which consists of the active 

buckets in sorted order. The input of this sub routine consists of unique elements as it is evident that the buckets are 

unique and it calls the Combinatorial Hash Sort sub routine internally. 

 

B. Combinatorial Hash Sort 

The input of this subroutine consists of unique numbers whose range is always lesser than or equal to the order of 

the sorttable α and it is invoked by Keysort subroutine.  Thus the maximum number of elements passed as its input never 

exceeds the order of the sorttable α. This is the key subroutine of this algorithm and its input elements are traversed and 

its sum S is computed and then the sorted indices are retrieved from the sortable. This algorithm exploits the key idea 

discussed in section II. 

 

C. Combinatorial Hash Sort_d 

This subroutine is similar to the above sub routine but it handles duplicate elements in its input. This is invoked by 

the main algorithm to sort the elements in each active bucket. 

 

 Each entry of the hash table is associated with a list whose head and tail pointers are maintained so as to merge two 

list in O(1) time. Other list operations like Insert are also completed in O(1) time. The order of the sortable used in the 

following sections is 10. 
 

IV. CORRECTNESS 

     The line by line explanation of the subroutines of this algorithm is as follows 

A. Just Sort         

In lines 1 to 3, the size of the hash table H is determined. 

We are maintaining an array, C0, of size k whose purpose is to track the presence of active buckets followed by its insertion 

into the list of active buckets L and by default all its entries are initialized to 0. Once an element is insert into L at line 7, the 

entry of C0 corresponding to that particular active bucket is assigned a value of 1 in line 8. The input array A[1…n] is 

traversed in lines 4 to 11. The variable key in line 5 denotes  

 
Algorithm 2. Just Sort 

  
Input : A [ 1 … n ] , Hashtable  H [ 0 … k ] , C0 [ 0 … k ] ,  

       List L , max , min 

Output : List result 
 
1: k = max-min 

2: start = min/10 

3: k = k/10 +1 

4: for i = 1 to A.length 

5:   key = (A[i]/10) – start //we are shifting index range of H 

6:   if  C0[key] = 0 

7:       LIST-INSERT (L , key ) 

8:       C0[key] = 1 

9:   end if 

10:   INSERT (H, key ,A[i] ) 

11: end for 

12: keys = keysort (L, k ) // keys are  sorted  

13: temp =  keys.head 

14: while  temp ≠ null  

15:    templist = combinatorialhashsort_d( H[temp.value] ) 

16:    result = LIST-MERGE (result, templist) 

17:    temp = temp.next 

18: end while  

 
 



the hash function given by equation (4) and it denotes a bucket. The range is shifted by subtracting the variable start  from 

key so as to shift the range towards zero. In line 6 the value of C0[key] is checked and if it is equal to 0, which indicates the 

absence of a bucket, that particular key value is inserted into list L which contains all active buckets. In line 8 the value of 

C0[key] is set to 1 and it indicates that the bucket denoted by its index is added to List L. The element A[i]  is inserted into the 

hash table H in line 8, at the entry denoted by key. In line 12 the Keysort  algorithm is called internally and its output is 

assigned to the variable keys which is a sorted list of active buckets, i.e. the active indices of the hash table H in sorted order. 

In lines 14 to 18, for each node of list L, the Combinatorialhashsort_d sub routine is called internally and the output list is 

merged with the result list which gives the sorted elements of A[1…n]. 

B. Keysort 

This algorithm sorts the list of active buckets L using Combinatorialhashsort  sub routine by portioning the list L into 

buckets of size α similar to Just Sort and it recursively calls itself until the range is lesser than 10, which is the order of the 

sortable α and then the recursive calls stop. Its input consists of list L and its range k. If the value of k is  

 
Algorithm 3. Key Sort 

  
Input :  Hashtable  H [ 0 … k ] , C [ 0 … k ] ,  

       List L , Ls , k ,  

Output : List result 
 
1: if  k  >  9 

2:     k = k/10 +1 

3:    temp = L.head 

4:    while temp ≠ null 

5:          key = temp.value  / 10 

6:          if C[key] = 0 

7:             LIST-INSERT ( Ls , key) 

8:            C[key] = 1 

9:         end if   

10:        INSERT ( H , key , temp.value ) 

11:        temp = temp.next 

12:     end while 

13:     Ls = keysort ( Ls , k ) //Ls is now sorted 

14:  else 

15:     Ls = combinatorialhashsort( Ls )// Ls is now sorted 

16:     return Ls 

17: end if  else 
18: temp = Ls.head 

19: while temp ≠ null 

20:    templist = combinatorialhashsort( H[ temp.value ] ) 

21:    result = LIST-MERGE( result , templist ) 

22:    temp = temp.next 

23: end while// result now has elements of L in sorted order 

24: return result 

    
temp = temp.next 

 
 

lesser than or equal to 9, then lines 2 to 13 are skipped and Combinatorialhashsort  sub routine is called directly as in line 15, 

else  the value of k is updated in line 2 and List L is traversed in lines 4 to 12. Similar to Just Sort  a variable  C [ 0 … k ] is 

maintained to keep track of active buckets and the the active buckets are inserted into the list Ls. The value of A[i] is inserted 

into the hash table H [ 0 … k ]. Ls at lines 13 and 15 has elements in sorted order. In lines 18 to 23 the list Ls is traversed and 

for each entry the Combinatorialhashsort  sub routine is called and the resulting list is merged with the list result. At line 24 

the result  list is returned which consists of the active buckets in sorted order. 

 

C. Combinatorial HashSort 

This subroutine traverses its input elements in lines 2 to 7. The range of the input elements is always less than 10, as α is 

equal to 10. The key  value is computed using equation (5) in line 4 and it is inserted accordingly in Hashtable  H [ 0 … 10 ]  

which is an array of size 10 in this sub routine. The sum value is calculated by the variable C  cumulatively. The sorted active 

indices of  Hashtable  H [ 0 … 10 ] are retrieved in line 8  from sortable and assigned to the variable ind and the elements of 

H [ 0 … 10 ] are populated into the list result in sorted order in lines 9 to 11. This result list is returned in line 12. Thus the 



elements are traversed, its decimal sum is computed for the  combination of input list L and the elements are populated in 

sorted order using the index array returned by the sortable[C]. 

 

 
Algorithm 4. Combinatorial HashSort 

  
Input : Hashtable  H [ 0 … 10 ] , Cw [10] ,  List L  

Output : List result 

 

1: C = 0 

2: temp = L.head 

3: While temp ≠ null 

4:       key = temp.value mod 10 

5:      C = C + Cw[ key ] 

6:      H [ key ] = temp.value 

7:      temp=temp.next 

8: end while 
9: ind = sorttable [ C ] // ind array contains sorted indices 

10: for i = 0 to ind.length 

11:       LIST-INSERT ( result , H[ind[i]] ) 

12: end for // result contains elements of L in sorted order 

13: return result 
 

 
 

D. Combinatorial HashSort_d 

This subroutine is similar to the above sub routine except that it handles duplicate elements. This is called by the main 

algorithm and each entry of the hash table H [ 0 … 10 ] contains a list with its head and tail pointers. 

 

The elements are placed initially in its respective buckets using the hash function given by equation (4). The list of active 

buckets, i.e. L   is populated when an element is inserted into a bucket for the first time. The active buckets are sorted by the 

Keysort sub routine and it returns a list keys which contains elements of L in sorted order. The list keys returned by Keysort  is 

traversed and the elements in those active buckets are sorted using Combinatorialhashsort_d  and the results are merged into 

list result which contains the elements of the array A[1…n] in sorted order. 

   

 
Algorithm 5. Combinatorial HashSort_d 

  
Input : Hashtable  H [ 0 … 10 ] ,C1 [10] , Cw [10] ,  List L  

Output : List result 

 

1: C = 0 

2: temp = L.head 

3: while temp ≠ null 

4:    key = temp.value mod 10 

5:    if C1[key] = 0 

6:       C = C + Cw[key] 

7:       C1[key] = 1 

8:    end if 

9:    INSERT ( H , key , temp.value ) 

10:    temp=temp.next 

11: end while 

12: ind = sorttable [ C ] // ind array now contains sorted indices of keys 

13: for  i = 1 to ind.length 

14:     if H[ind[i]]  contains floats, discretize it and call Just Sort internally and then retransform it to get sorted float values. 

15:     result = LIST-MERGE ( result , H[ind[i]] ) 

16: end for // now result contains elements of L in sorted order 

17: return result 

 



     
 

 

V. ASYMPTOTIC ANALYSIS 

    Let us analyze the algorithm asymptotically starting from smaller subroutines or the internally used subroutines. 

 

A. Combinatorial HashSort_d 

    Let the input list L of the subroutine contain n elements. It is evident that lines 1, 2, 4, 5, 6, 7, 8, 9 and 10 has time 

complexity of O(1). The while loop in line 3 is executed once for all n elements of list L , which contains n elements, and 

therefore its complexity is O(n). The complexity of lines 12 and 14 are also O(1). The length of the array ind is always lesser 

than or equal to n. For instance let the list L has input elements 11, 11, 12, 16, 11, 19, 19, 17 and 14. Then after line 11, the 

hash table H, has the above numbers stored at the indices 1, 2, 6, 9 and 7 which is retrieved in sorted order in line 12. Thus 

the worst case complexity of the for loop at line 13 is O(n) where the list L has no duplicate elements. As a result the overall 

worst case complexity of this sub routine is O(n). 

B. Combinatorial HashSort 

    Similar to the above analysis, let the input list consist of n elements. The time complexity of the lines 1, 2, 4, 5, 6, 7, 9 and 
11 is O(1). The while loop at line 3 is executed n times and hence its complexity is O(n).It is evident that  the array ind has n 
elements always and therefore the complexity of lines 10 to 12 is O(n). Thus the overall worst case time complexity of this sub 
routine is O(n). 

C. Key Sort 

    Lines 1, 2, 3, 5, 6, 7, 8, 9, 10 and 11 has time complexity of O(1). At line 13 a recursive call is made. Let the input list L 

consist of n elements and the list Ls consists of ns elements. It is evident that on successive recursive calls, the number of 

elements in list L of the successive recursion will be lesser than n as a result of partitioning the elements into buckets and the 

number of input elements will be lesser than or equal to 10 upon termination of the recursion. Hence we can say that the time 

complexity of this recursion will be lesser than or equal to O(n) . The time complexity of line 15 is O(n) . Lines 18, 21 and 22 

has the time complexity of O(1). The List data structure we use here has head and tail pointers and as a result the merge 

operation in line 21 is completed in constant time. The while loop at line 19 traverses all the active buckets denoted by list Ls 

and for each bucket it calls Combinatorial Hashsort subroutine. Let n  be the number of elements in list Ls and let the n  

elements be partitioned into active buckets ranging from 0 to k . Let ni be the number of elements in the i
th

 active bucket. 

Then n is given by the following equation. 

 

  ∑   
 
                                      (6) 

 

      For each iteration of the while loop the Combinatorial Hashsort subroutine is called which has time complexity of O(ni) 

and by aggregate analysis the time complexity of the while loop at line 19 is O(n). Thus the overall time complexity of this 

subroutine is O(n). 

 

D. Just Sort 

    Lines 1, 2, 3, 5, 6, 7, 8 and 10 has time complexity of O(1). The list data structure we use in this algorithm has head and 

tail pointers and so the insertion is done in constant time. Let the array A contain n elements. The for loop at line 4 has n 

iterations and hence its time complexity is O(n). Line 12 calls keysort subroutine and its complexity is O(n). Lines 13, 16 and 

17 has time complexity of O(1). Again ,the List data structure we use here has head and tail pointers and as a result the merge 

operation in line 16  is completed in constant time. As array A has n elements, these elements are partitioned into the buckets 

represented by the entries of the hash table. The active buckets are inserted into list L at line 7  and this list is sorted by the 

keysort subroutine in line 12.  As a result, he list keys in line 12 contains all the active buckets  list L in sorted order. The sum 

of the elements present in all the active buckets is equal to n. The while loop at line 14 iterates over all the active buckets 

contained by the list keys which are in sorted order. Thus by aggregate analysis the time complexity of the while loop at line 

14 is O(n) and hence the overall time complexity of this subroutine is O(n). 

 

     While the overall time complexity of this algorithm is O(n) the space complexity of this algorithm is O(k) where k is the 

range of the numbers to be sorted. Based on the optimum and affordable value of memory, which varies greatly based on 

system configuration, the input array A can be partitioned into different segments of same or different range and each 

segment can be sorted independently and the sorted lists could be merged. In this way, the space complexity of this algorithm 

can be reduced to a desired value and also it can be used in distributed environment using parallelism and also external 

sorting can be used. 
 



VI. ADAPTATIONS 

    This algorithm can be easily applied to strings using its ASCII values and if the input consists of negative and positive 

values, values can be separated and then sorted and can be combined finally. Reversal of the sort table entries leads to the 

output being in descending order which can be used for sorting negative values. Based on the availability of memory space, 

the input elements can be partitioned range wise , sorted and then combined. In this way, the performance can be tuned as per 

the configuration of the system. 

VII. PERFORMANCE EVALUATION 

    This algorithm is implemented in java , using sort table of order 10 and evaluated using the dataset T40I10D100K [2]. The 

list and hash table data structures are implemented using arrays. The sorting algorithms to be compared with this algorithm 

are Quick sort, Merge sort and Heap sort. The performance is measured in terms of execution time in Milli seconds. 

 

TABLE III  PERFORMANCE EVALUATION 

Algorithm Execution time (ms) 

Just Sort 158 

Quick Sort 250 

Merge Sort 406 

Heap Sort 765 

 

      From the above data is clear that Just sort is nearly 37% faster than Quick Sort, which is the fastest among the three 

popular state of the art algorithms. The performance is measured in a system with the configuration of Intel i5 2
nd

 generation 

desktop processor @ 3.00 GHz and 8 GB RAM. 

VIII. CONCLUSION 

In this paper we have proposed a novel sorting algorithm and have elucidated and analyzed its correctness.Last but not the 

least, the name of this sorting algorithm points to the adjective form of the word ‘Just’. 
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