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Abstract

We present here a generalisation of the q-calculus, the qq′-calculus.
The calculus is however limited.

1 The δ-derivation
1.1 Definitions
The derivative of a function f at the point x is usually defined as:

dh(f)(x) = f(x+ h)− f(x)

df

dx
(x) = f ′(x) = lim

h→0

dh(f)
dh(x) (x) = lim

h→0

f(x+ h)− f(x)
h

if the limit exists.

Definition 1 Similarly, the δ-derivative of a function is defined as:

δhh′ (f)(x) = f(x+ h)− f(x+ h′)

δf

δx
(x) = f̃(x) = lim

h,h′→0

δhh′ (f)
δhh′ (x) = lim

h,h′→0

f(x+ h)− f(x+ h′)
h− h′ =

= lim
x0,x1→x

f(x0)− f(x1)
x0 − x1

If the δ-derivative of a function exists, then the derivative of the function
exists and we have δf

δx
(x) = df

dx
(x).

1.2 A counter-example
The derivative can exist even if the δ-derivative doesn’t. Indeed let be f
the fonction such that f(x) = x2, if x ∈ Q and f(x) = x3 if x /∈ Q. This
function admits a derivative in zero which is zero, but has no δ-derivative
as one can verify:

lim
hh′→0

h2 − h′3

h− h′ = lim
hh′→0

h+ h′ + h′2 − h′3

h− h′

doesn’t exist because h− h′ can be as small as we want.
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1.3 The Leibniz rule
The Leibniz rule can be verified:

f(x+ h)g(x+ h)− f(x+ h′)g(x+ h′)
h− h′ =

= f(x+ h)− f(x+ h′)
h− h′ g(x+ h) + g(x+ h)− g(x+ h′)

h− h′ f(x+ h′)

so that:
Proposition 1

δ(fg)
δx

= (δf
δx

)g + f( δg
δx

)

1.4 Some formulas
The following formulas can be easily verified:

˜
( 1
f

) = −1
f2 f̃

˜
(f
g

) = f̃g − fg̃
g2

and also :
˜(f ◦ g) = (f̃ ◦ g)× g̃

1.5 δ-derivative of a function of class C1

Theorem 1 If the fonction f is of class C1, then the δ-derivative exists.

Demonstration 1 By the Taylor’s formula f(x)−f(x′)
x−x′ = f ′(c), c ∈]x, x′[.

So a smooth function is also infinitely δ-derivable.

1.6 The qq′-limit
We have, if the limit exists, for x 6= 0:

lim
qq′→1

f(qx)− f(q′x)
(q − q′)x = f̃(x)

1.7 Integration and δ-derivation
Theorem 2 If f is continuous over the interval [a, b], it is Riemann in-
tegrable and the primitive is δ-derivable, so that we have:

δ

δx
(
∫ x

a

f(t)dt) = f(x)

Demonstration 2

δ

δx
(
∫ x

a

f(t)dt) = lim
hh′→0

∫ h
h′ f(t+ x)dt
h− h′ = f(x)

by the Taylor formula.
So, a function which is C1, is δ-derivable.
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2 qq′-quantum derivation
2.1 Definitions
Definition 2 Let be two numbers q, q′ and let be an arbitrary function f ,
its qq′-differential is:

dqq′ (f)(x) = f(qx)− f(q′x)

In particular dqq′x = (q − q′)x.
We have the following Leibniz rule:

dqq′ (fg)(x) = f(qx)g(qx)− f(q′x)g(q′x) =

= (f(qx)− f(q′x))g(qx) + f(q′x)(g(qx)− g(q′x)
Proposition 2

dqq′ (fg)(x) = dqq′ (f)(x).g(qx) + f(q′x).dqq′ (g)(x)

Definition 3 The following formula:

Dqq′f(x) =
dqq′ (f)(x)
dqq′ (x) = f(qx)− f(q′x)

(q − q′)x

is called the qq′-derivative of the function f

2.2 The Leibniz rule
The Leibiz rule is:
Proposition 3

Dqq′ (fg)(x) = Dqq′ (f)(x).g(qx) + f(q′x).Dqq′ (g)(x)

2.3 Some formulas
The qq′-derivative is a linear operator as we can verify:

Dqq′ (af + bg) = aDqq′ (f) + bDqq′ (g)

for any scalars a, b and functions f, g.
Example 1

Dqq′ (xn) = [n]qq′xn−1

with [n]qq′ = qn−q′n

q−q′

The number [n]qq′ is called the qq′-analog of n as limqq′→1[n]qq′ = n. We
obtain also:
Proposition 4

Dqq′ (f
g

)(x) =
g(q′x)Dqq′ (f)(x)− f(q′x)Dqq′ (g)(x)

g(qx)g(q′x) =

=
g(qx)Dqq′ (f)(x)− f(qx)Dqq′ (g)(x)

g(qx)g(q′x)
For the composition we also have, if u = xa:
Proposition 5

Dqq′ (f ◦ u)(x) = (Dqaq′a (f) ◦ u)(x)×Dqq′ (u)(x)
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3 qq′-analogue of (x− a)n

3.1 Definition
Definition 4

[0]qq′ ! = 1
[n]qq′ ! = [n]qq′ × [n− 1]qq′ × . . .× [1]qq′ if n 6= 0

3.2 The exponential
Definition 5

expqq′ (x) =
∑
n≥0

xn

[n]qq′ !

The derivative is :
Dqq(expqq′ )(x) = expqq′ (x)

3.3 The qq′-analogue of (x− a)n

Definition 6 The qq′-analogue of (x− a)n is:

(x− a)nqq′ =
∏

k,l, k+l=n−1

(x− qkq′la)

We have the following theorem:
Theorem 3

Dqq′ (x− a)nqq′ = [n]qq′ (x− a)n−1
qq′

Demonstration 3

(x− a)nqq′ = (x− qa)n−1
qq′ (x− q′na)

so that, by induction on n, using Leibniz rule:

Dqq′ (x− a)nqq′ = Dqq′ (x− a)n−1
qq′ (q′x− q′n−1a) + (qx− qa)n−1

qq′ =

= [n− 1]qq′q′(x− a)n−2
qq′ (x− q′n−2a) + qn−1(x− a)n−1

qq′ = [n]qq′ (x− a)n−1
qq′

We have also:

(x− a)n+m
qq′ = (x− q′ma)nqq′ (x− qna)mqq′

4 qq′-Taylor’s Formula for polynomials
4.1 The Taylor’s expansion
Theorem 4 For any polynomial P (X) of degree n, and any number a,
we have the following qq′-Taylor expansion:

P (x) =
n∑
j=0

(Dj
qq′P )(a)

(x− a)j
qq′

[j]qq′ !
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Demonstration 4 Due to the degree, we can write:

P (x) =
n∑
j=0

cj
(x− a)jqq′

[j]qq′ !

and now, by derivation, we have inductively on the degree of P :

ck = (Dk
qq′P )(a)

4.2 A formula
The qq′-Taylor formula for xn about x = 1 then gives:

xn =
n∑
j=0

[n]qq′ . . . [n− j + 1]qq′
(x− a)j

qq′

[j]qq′ !

Formula 1

xn =
n∑
j=0

[n
j

]
qq′ (x− a)jqq′

with
[n
j

]
qq′ = [n]qq′ !

[j]qq′ ![n−j]qq′ ! .
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