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Abstract: The investment in and development of mineral resources play an important role in the
national economy. A good mining project investment can improve economic efficiency and increase
social wealth. Faced with the complexity and uncertainty of a mine’s circumstances, there is great
significance in evaluating investment risk scientifically. In order to solve practical engineering
problems, this paper presents an extended TOPSIS method combined with linguistic neutrosophic
numbers (LNNs). Firstly, considering that there are several qualitative risk factors of mining
investment projects, the paper describes evaluation information by means of LNNs. The advantage
of LNNs is that major original information is reserved with linguistic truth, indeterminacy, and false
membership degrees. After that, a number of distance measures are defined. Furthermore, a common
status is that the decision makers can’t determine the importance degrees of every risk factor directly
for a few reasons. With respect to this situation, the paper offers a weight model based on maximizing
deviation to obtain the criteria weight vector objectively. Subsequently, a decision-making approach
through improving classical TOPSIS with LNNs comes into being. Next, a case study of the proposed
method applied in metallic mining projects investment is given. Some comparison analysis is also
submitted. At last, the discussions and conclusions are finished.

Keywords: metallic mine project; investment risks evaluation; linguistic neutrosophic numbers;
maximum deviation; extended TOPSIS

1. Introduction

The assessment of investment risk has always attracted the attention of many researchers
in different fields [1]. For example, Wu et al. [2] proposed an improved Analytical Hierarchy
Process (AHP) approach to select an optimal financial investment strategy. An extended TOPSIS
method was provided by Hatami-Marbini and Kangi [3], and applied in the Tehran stock exchange.
Yazdani-Chamzini et al. [4] constructed a model on the basis of AHP, decision-making trial and
evaluation, and TOPSIS to evaluate investment risk in the private sector of Iran. A VIKOR-DANP
method was presented by Shen et al. [5] and a case study of Taiwan’s semiconductor industry was
also given to demonstrate the effectiveness of the approach. Dincer and Hacioglu [6] discussed the
relationships of financial stress and conflict risk in emerging capital markets with a fuzzy AHP-TOPSIS
and VIKOR method. In high-tech fields, such as nanotechnology, Hashemkhani, Zolfani, and
Bahrami [7] provided a SWARA-COPRAS decision-making method. Unlike other general industries,
investment in the mining industry usually has a long cycle and large uncertainty [8]. There are a
lot of risk factors in the process of mining investment. Consequently, identifying and assessing the
investment venture of a mine accurately and properly is vital for any project.
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The widely-used risk evaluation methods of mining investment can be divided into two main
categories [9]. Traditional methods include fault tree analysis, Monte Carlo Simulation, breakeven
analysis, the decision tree method, and so on. Another kind contains Analytic Hierarchy process
(AHP), fuzzy comprehensive evaluation, and so on. Many researchers have paid particular attention
to the latter method, which is based on fuzzy mathematics. Chen et al. [10] sorted and summarized
the risk elements of metallic mines, and then presented a method based on a fuzzy set and a neural
network. Wang et al. [11] constructed the fuzzy comprehensive appraisal model through creating a risk
estimation indicator system. San et al. [12] focused on Tongxin mine, and established an investment
risk assessment model with a fuzzy analytic hierarchy process. These methods take the ambiguity of
the assessment process into consideration.

However, the fuzzy numbers, such as interval numbers [13], triangular fuzzy numbers [14,15],
and trapezoidal fuzzy numbers [16], used in most approaches have some limitations. On the one hand,
they only described limited consistent information, while the hesitant and inconsistent values are
not indicated. Furthermore, qualitative information is also not expressed. Smarandache [17] firstly
put forward the concept of neutrosophic sets (NSs) to deal with consistent, hesitant, and inconsistent
information simultaneously. After that, many extensions based on NSs have been presented [18–20].
Related decision-making methods include TOPSIS [21], VIKOR [22], TODIM [23], COPRAS [24,25],
WASPAS [26], MULTIMOORA [27], ELECTRE [28,29], QUALIFLEX [30], and other approaches [31,32].
Among them, TOPSIS is widely used. The basic idea of this method is that the distance of the optimal
alternative with the positive ideal solution is nearest, and the negative-position ideal solution is
farthest [21]. It is easy to understand and operate for decision makers.

In order to qualitatively evaluate risk, like social environment risk and management risk
in a mining project, linguistic variables may be a good description [33,34]. Much literature has
focused on risk assessment with linguistic information. A venture analysis method on the basis of
Dempster–Shafer theory under linguistic environment was presented in the literature [35]. Liu et al. [36]
established a risk linguistic decision matrix and discussed the situation when weight informationis
unknown. An unbalanced linguistic weighted geometric average operator was proposed to deal with
fuzzy risk evaluation problems in [37]. Peiris et al. [38] built three linguistic models to assess alien
plants’ invasion risks.

For the sake of keeping as much linguistic evaluation information as possible, multiple extensions
about language were suggested. For example, the notion of 2-dimensional uncertain linguistic
variables occurred some researchers [39–41]. The idea of single-valued neutrosophic linguistic numbers
occurred to Ye [42]. Other extensive forms are intuitionistic linguistic sets [43], hesitant fuzzy linguistic
term sets [44,45], probabilistic linguistic term sets [46,47], and so on [48,49]. It is worth noting that
Chen et al. [50] proposed a group decision-making method in the light of linguistic intuitionistic
fuzzy numbers (LIFNs). They connected linguistic values with intuitionistic fuzzy numbers [51].
Then, the linguistic intuitionistic Frank Heronian average operator [52] and some improved linguistic
intuitionistic fuzzy operators [53] were proposed.

However, there are only linguistic membership degrees and linguistic non-membership
degrees reflected in LIFNs. To overcome this shortcoming, Fang and Ye [54] came up with
the concept of linguistic neutrosophic numbers (LNNs). They are based on linguistic terms
and simplified neutrosophic numbers [55]. The truth-membership, indeterminacy-membership,
and false-membership in a linguistic neutrosophic number (LNN) are found using linguistic
information. The difference of LNNs with neutrosophic linguistic numbers (NLNs) [56] is that
there is only a linguistic value in NLNs, and the truth-membership, indeterminacy-membership, and
false-membership are crisp numbers. For instance, (s1, s2, s3) is a LNN, while (s1,< 0.1, 0.2, 0.3 >) is
a neutrosophic linguistic number (NLN). Of course, they are independent of each other as well.
In addition, Fang and Ye [54] defined the operations and comparison rules of LNNs, and then
decision-making methods based on of several weighted mean operators were raised.
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From this we can see, considering the complicacy of mine environment and the ambiguity of
the human mind, assessing the ventures of mining projects on the basis of LNNs may be feasible
and advisable. As a result, this paper considers metallic mine investment risk under a linguistic
neutrosophic situation with incomplete weight information. A new and reasonable way to evaluate
risk degrees by means of LNNs is proposed. In summary, the fundamental innovations of this article
are conveyed as follows:

(1) Present a number of distance measures between two LNNs, such as the Hamming distance, the
Euclidean distance, and the Hausdorff distance. Equally important, prove relevant properties of
these formulas;

(2) Use the thought of maximum deviation for our reference, build a model with respect to linguistic
neutrosophic environment to obtain the values of mine risk evaluation criteria weight;

(3) Come up with the extended TOPSIS model with LNNs. Importantly, utilize this method to cope
with investment decision-making matter of metallic mine projects;

(4) Compare with other methods, in order to demonstrate the significance and superiority.

We methodize the rest of this article as follows. In Section 2, basic background and knowledge
related to risk factors, linguistic information, and LNNs are presented. The extended TOPSIS method
with LNNs is depicted after defining the distance measures of LNNs and constructing the weight
model in Section 3. Section 4 studies a case of metallic mining investment, and the proposed approach is
applied in it. In Section 5, we make comparison with several current literatures. And then, conclusions
are made in the last section.

2. Background

In this section, some preliminaries about mining investment risk factors, linguistic term sets,
linguistic scale functions, and LNNs are presented.

2.1. Risk Factors of Mining Project Investment

The economic factors of mines and the risk influence factors of metallic mines are introduced in
this subsection.

According to the situation of mining investment in China and the research results of the World
Bank’s investment preference, Pan [57] divided the economic venture of mining investment into five
types. They are financial risk, production risk, market risk, personnel risk, and environmental risk,
respectively. More details can be seen in Table 1.

Table 1. The economic risk factors of mines.

Risk Factors Explanations

Financial risk Caused by the unexpected changes in the mine’s balance of payments. It largely
consists of financial balance, exchange rate, interest rate, and other factors.

Production risk
Caused by accident, which makes it impossible to produce the production plan
according to the predetermined cost. Mainly including production cost, technical
conditions, selection scheme, and so on.

Market risk
Caused by the unexpected changes in the market, which makes the mine unable to
sell its products according to the original plan. It chiefly contains demand forecasting,
substitution products, peer competition, and other factors.

Personnel risk
Caused by accident or change of the important personnel in the mine, which causes a
significant impact on the production and operation of the mine. The main factors
include accidental casualties, confidential leaks, and personnel changes.

Environmental risk
Caused by the changes of the external environment of the mining industry, which
primarily comprises the national policies, geological conditions, and
pollution control.
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In 2011, Chen et al. [10] summarized and classified the influence factors of the metallic mining
investment process based on strategic angle of investment implementation. The presented risk system
(see Table 2.) includes two levels of indicators, which are five primary indicators and sixty secondary
indicators. The secondary index corresponds to the attributes of the primary one.

Table 2. Investment risk evaluation system of metallic mining.

Assessment Indicators

Primary indicators Secondary indicators

Production risk Mining type, production equipment level, and mining technology

Geological risk Geological grade, mine reserves, hydrogeology, and surrounding rock conditions

Social environment Marco economy, national industrial policy, and international environment

Market risk Marketing ability, product market price, and potential competition

Management risk Rationality of enterprise organization, scientific decision, and
management personnel

2.2. Linguistic Term Sets and Linguistic Scale Function

Xu [58] first put forward the concept of linguistic term sets. For a certain linguistic term set,
there are a group of linguistic values si (i = 0, 1, . . . , 2g). Consequently, the linguistic term set can be
denoted as S = {si|i = 0, 1, . . . , 2g}.

While the linguistic values in the above-mentioned linguistic term set are discrete, they may
not work on aggregated linguistic information. Accordingly, Xu [58] redefined the linguistic term
set with S = {si|i ∈ [0, 2u]} (u > g), where the elements are continuous. Moreover, we can compare
arbitrary linguistic terms in accordance with their subscripts. Namely, when i > j, si > sj is established.
The operational rules of any two linguistic values si, sj ∈ S are indicated: (1) the addition operator
si ⊕ sj = si+j; (2) the scalar multiplication τsi = sτi, 0 ≤ τ ≤ 1; (3) the negation operator ne(si) = s−i.

Definition 1. [59] The linguistic scale function is regarded as a mapping from linguistic values si
(i = 0, 1, · · · , 2g) to a corresponding crisp number cni ∈ [0, 1]. Furthermore, it should meet the requirement
of monotonically increasing, that is to say, 0 ≤ cn0 < cn1 < · · · < cn2g ≤ 1.

As the continuous linguistic term sets are defined, we use f (si) = cni =
i

2u (i ∈ [0, 2u]) as the linguistic
scale function in this essay. The inverse function can be described as f−1(cni) = 2u · cni (i ∈ [0, 2u]).

2.3. Linguistic Neutrosophic Numbers

Definition 2. [54] Given the linguistic term set S = {si|i ∈ [0, 2u]}, if sT , sI , sF ∈ S, then η = (sT , sI , sF)

can be regarded as a LNN, where sT , sI , and sF are independent, and describe the linguistic truth-membership
degree, the linguistic indeterminacy-membership degree, and the linguistic falsity-membership degree in turn.

Definition 3. [54] Assume η1 = (sT1 , sI1 , sF1) and η2 = (sT2 , sI2 , sF2) are two LNNs, then the operations of
them are represented as follows:

(1) η1 ⊕ η2 = (sT1 , sI1 , sF1)⊕ (sT2 , sI2 , sF2) = (s
T1+T2−

T1T2
2u

, s I1 I2
2u

, s F1F2
2u

);

(2) η1 ⊗ η2 = (sT1 , sI1 , sF1)⊕ (sT2 , sI2 , sF2) = (s T1T2
2u

, s
I1+I2−

I1 I2
2u

, s
F1+F2−

F1F2
2u

);

(3) qη1 = q(sT1 , sI1 , sF1) = (s
2u−2u(1− T1

2u )
q , s

2u( I1
2u )

q , s
2u( F1

2u )
q), q > 0;

(4) η1
q = (sT1 , sI1 , sF1)

q = (s
2u( T1

2u )
q , s

2u−2u(1− I1
2u )

q , s
2u−2u(1− F1

2u )
q), q > 0.
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Definition 4. [54] Suppose η = (sT , sI , sF) is an optional LLN, the following are the score function and the
accuracy function, respectively:

SC(η) = (4u + T − I − F)/(6u), (1)

AC(η) = (T − F)/(2u). (2)

Definition 5. [54] If η1 = (sT1 , sI1 , sF1) and η2 = (sT2 , sI2 , sF2) are two LNNs, then the comparison rule is:

(1) η1 > η2 if SC(η1) > SC(η2);
(2) η1 > η2 if SC(η1) = SC(η2) and AC(η1) > AC(η2);
(3) η1 = η2 if SC(η1) = SC(η2) and AC(η1) = AC(η2).

Definition 6. [54] Assume there are a group of LNNs ηi = (sTi , sIi , sFi ) (i = 1, 2, . . . , n), the linguistic
neutrosophic weight arithmetic mean (LNWAM) operator is:

LNWAM(η1, η2, . . . , ηn) =
n

∑
i=1

γiηi = (s
2u−2u

n
∏

i=1
(1− Ti

2u )
γi , s

2u
n
∏

i=1
(

Ii
2u )

γi , s
2u

n
∏

i=1
(

Fi
2u )

γi ), (3)

where γi is the corresponding weight value of ηi, 0 ≤ γi ≤ 1 and
n
∑

i=1
γi = 1.

Definition 7. [54] Assume ηi = (sTi , sIi , sFi ) (i = 1, 2, . . . , n) are a set of LNNs, the linguistic neutrosophic
weight geometric mean (LNWGM) operator is:

LNWGM(η1, η2, . . . , ηn) =
n

∑
i=1

ηi
γi = (s

2u
n
∏

i=1
(

Ti
2u )

γi , s
2u−2u

n
∏

i=1
(1− Ii

2u )
γi , s

2u−2u
n
∏

i=1
(1− Fi

2u )
γi ), (4)

where γi is the related weight value of ηi, 0 ≤ γi ≤ 1 and
n
∑

i=1
γi = 1.

3. Extended TOPSIS Method with Incomplete Weight Information

In this section, we present the idea of an extended TOPSIS method with LNNs, and discuss the
situation in which weight information is completely unknown.

3.1. Descriptions

With respect to the multi-criteria decision-making problems under linguistic neutrosophic
situations, k decision makers evaluate a set of options X = {x1, x2, . . . , xn} under some attributes
A = {a1, a2, . . . , am}. ωj is the corresponding weight of aj, which is completely unknown, but satisfies

ωj ∈ [0, 1] and
m
∑

i=1
ωj = 1. There are k decision makers {b1, b2, . . . , bk} with the related weight

{γ1, γ2, . . . , γk}, 0 ≤ γl ≤ 1 (l = 1, 2, . . . , k) and
k
∑

l=1
γl = 1. S = {si|i ∈ [0, 2u]} is the predefined

linguistic term set. In order to rank the objects or pick out the optimal one(s), each decision-maker
(bl(l = 1, 2, . . . , k)) makes evaluations and then constructs the corresponding decision-making matrix,
that is:

N(l) = (η
(l)
ij )

n×m
=


η
(l)
11 · · · η

(l)
1m

η
(l)
21 · · · η

(l)
2m

... · · ·
...

η
(l)
n1 · · · η

(l)
nm

 =


(s(l)T11

, s(l)T11
, s(l)T11

) · · · (s(l)T1m
, s(l)T1m

, s(l)T1m
)

(s(l)T21
, s(l)T21

, s(l)T21
) · · · (s(l)T2m

, s(l)T2m
, s(l)T2m

)
... · · ·

...

(s(l)Tn1
, s(l)Tn1

, s(l)Tn1
) · · · (s(l)Tnm

, s(l)Tnm
, s(l)Tnm

)

, (l = 1, 2, . . . , k).
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The basic elements of the matrix N(l) are by means of LNNs, where
η
(l)
ij = (s(l)Tij

, s(l)Tij
, s(l)Tij

)(s(l)Tij
, s(l)Tij

, s(l)Tij
∈ S) means the assessment information of bl about xi related to

criteria aj.

3.2. Distance Measures of LNNs

In this subsection, we intend to introduce several distance formulas of LNNs, so that the discussion
behind these can be smoothly advanced.

Definition 8. Let η1 = (sT1 , sI1 , sF1) and η2 = (sT2 , sI2 , sF2) be two haphazard LNNs. S = {si|i ∈ [0, 2u]} is
the linguistic term set, and f (si) =

i
2u is the linguistic scale function. Then, the distance between η1 and η2 are

denoted as follows:

d(η1, η2) = ( 1
3 (| f (sT1)− f (sT2)|λ + | f (s2u−I1)− f (s2u−I2)|λ + | f (s2u−F1)− f (s2u−F2)|λ))

1
λ , λ > 0. (5)

Remarkably:

(1) when λ = 1, the Hamming distance

dHm(η1, η2) =
1
3
(| f (sT1)− f (sT2)|+ | f (s2u−I1)− f (s2u−I2)|+ | f (s2u−F1)− f (s2u−F2)|); (6)

(2) when λ = 2, the Euclidean distance

dEd(η1, η2) =

√
1
3
(| f (sT1)− f (sT2)|2 + | f (s2t−I1)− f (s2t−I2)|2 + | f (s2t−F1)− f (s2t−F2)|2); (7)

(3) the Hausdorff distance

dHd(η1, η2) = max
{
| f (sT1)− f (sT2)|, | f (s2t−I1)− f (s2t−I2)|, | f (s2t−F1)− f (s2t−F2)|

}
. (8)

Property 1. Given three arbitrary LNNs η1 = (sT1 , sI1 , sF1), η2 = (sT2 , sI2 , sF2) and η3 = (sT3 , sI3 , sF3). The
linguistic term set is S = {si|i ∈ [0, 2u]}, and the universal set of LNNs is Ω . For any η1, η2, η3 ∈ Ω, the
following properties are met:

(1) 0 ≤ d(η1, η2) ≤ 1;
(2) d(η1, η2) = d(η2, η1);
(3) d(η1, η2) = 0 if η1 = η2;
(4) d(η1, η3) ≤ d(η1, η2) + d(η2, η3).

Proof.

(1) Because f (si) =
i

2u ∈ [0, 1]⇒ | f (sT1)− f (sT2)| ∈ [0, 1], | f (s2u−I1)− f (s2u−I2)| and | f (s2u−F1)−
f (s2u−F2)|, as λ > 0, then 0 ≤ d(η1, η2) ≤ 1.

(2) This proof is obvious.



Symmetry 2017, 9, 149 7 of 18

(3) Since η1 = η2, then SC(η1) = SC(η2) and AC(η1) = AC(η2)

⇒ (4u + T1 − I1 − F1)/(6u) = (4u + T2 − I2 − F2)/(6u) and (T1 − F1)/(2u) = (T2 − F2)/(2u)
⇒ T1 − I1 − F1 = T2 − I2 − F2 and T1 − F1 = T2 − F2 ⇒ I1 = I2 and T1 − F1 = T2 − F2.

Thus, d(η1, η2) = ( 1
3 (| f (sT1 )− f (sT2 )|λ + | f (s2u−I1 )− f (s2u−I2 )|λ + | f (s2u−F1 )− f (s2u−F2 )|λ))

1
λ

= ( 1
3 (|

T1−T2
2u |λ + | I2−I1

2u |λ + | F2−F1
2u |λ))

1
λ

= ( 1
3 (|

T1−F1+F1−T2
2u |λ + | I2−I1

2u |λ + | F2−T2+T2−F1
2u |λ))

1
λ

= ( 1
3 (|

T2−F2+F1−T2
2u |λ + | I2−I1

2u |λ + | F1−T1+T2−F1
2u |λ))

1
λ

= ( 1
3 (|

F1−F2
2u |λ + | I1−I2

2u |λ + | T2−T1
2u |λ))

1
λ

= ( 1
3 (| f (sT2 )− f (sT1 )|λ + | f (s2u−I2 )− f (s2u−I1 )|λ + | f (s2u−F2 )− f (s2u−F1 )|λ))

1
λ

= d(η2, η1)

(4)
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3.3. Weight Model Based on Maximum Deviation 

Because the weight information is completely unknown, we use the maximum deviation 
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The basic idea of the maximum deviation method is that [60]: 

(1) If there is a tiny difference of evaluation values ijη  among all objects under criteria ja

( 1,2,..., )j m= , it indicates that the criteria ja  has little effect on the sorting results. 

Accordingly, it is appropriate to allocate a small value of the related weight jω . 

Example 1. If u = 4, two LNNs η1 = (s1, s2, s4) and η2 = (s5, s3, s6), the Hamming distance is
dHm(η1, η2) ≈ 0.292, the Euclidean distance is dEd(η1, η2) ≈ 0.331, and the Hausdorff distance is
dHd(η1, η2) = 0.500.

3.3. Weight Model Based on Maximum Deviation

Because the weight information is completely unknown, we use the maximum deviation approach
to determine the weight vector of criteria in this subsection.

The basic idea of the maximum deviation method is that [60]:

(1) If there is a tiny difference of evaluation values ηij among all objects under criteria
aj(j = 1, 2, . . . , m), it indicates that the criteria aj has little effect on the sorting results.
Accordingly, it is appropriate to allocate a small value of the related weight ωj.

(2) Conversely, if there is a significant variance of assessment information ηij among all alternatives
under criteria aj(j = 1, 2, . . . , m), then the criteria aj may be very important to the ranking orders.
In this case, giving a large weight value ωj is reasonable.

(3) Notably, if ηij are the same values among all options under criteria aj ((j = 1, 2, . . . , m)), it means
that the criteria aj doesn’t affect the ranking results. Therefore, we can make the corresponding
weight ωj = 0.

For the sake of obtaining the difference values, we define the deviation degree of a certain object
xi(i = 1, 2, . . . , n) to all objects for a certain criteria aj(j = 1, 2, . . . , m) as follows:

Dij(ωj) =
n

∑
e=1

d(ηij, ηej)ωj, (9)

where d(ηij, ηej) is the distance measure between ηij and ηej.
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Subsequently, the deviation degrees of all options under the criteria aj(j = 1, 2, . . . , m) can be
denoted as:

Dj(ωj) =
n

∑
i=1

Dij(ωj) =
n

∑
i=1

n

∑
e=1

d(ηij, ηej)ωj. (10)

Thus, the total deviation of all alternatives with all criteria is proposed in the following:

D(ω) =
m

∑
j=1

Dj(ωj) =
m

∑
j=1

n

∑
i=1

Dij(ωj) =
m

∑
j=1

n

∑
i=1

n

∑
e=1

d(ηij, ηej)ωj. (11)

As a result, we can build the weight model based on maximum deviation as follows:

max D(ω) =
m
∑

j=1

n
∑

i=1

n
∑

e=1
d(ηij, ηej)ωj

=
m
∑

j=1

n
∑

i=1

n
∑

e=1
( 1

3 (| f (sTij)− f (sTej)|λ + | f (s2u−Iij)− f (s2u−Iej)|λ + | f (s2u−Fij)− f (s2u−Fej)|λ))
1
λ ωj

s.t


m
∑

j=1
ω2

j = 1

0 ≤ ωj ≤ 1, j = 1, 2, . . . , m

(12)

In order to get the solution, we can construct the Lagrange function as that:

L(ω, p) =
m
∑

j=1

n
∑

i=1

n
∑

e=1
( 1

3 (| f (sTij)− f (sTej)|λ + | f (s2u−Iij)− f (s2u−Iej)|λ+

| f (s2u−Fij)− f (s2u−Fej)|λ))
1
λ ωj +

p
2 (

m
∑

j=1
ω2

j − 1)
(13)

Taking the partial deviation of this function, we have:


∂L(ω,p)

∂ω =
m
∑

j=1

n
∑

i=1

n
∑

e=1
( 1

3 (| f (sTij)− f (sTej)|λ + | f (s2u−Iij)− f (s2u−Iej)|λ+| f (s2u−Fij)− f (s2u−Fej)|λ))
1
λ + pωj = 0

∂L(ω,p)
∂p =

m
∑

j=1
ω2

j − 1 = 0

⇒ p =

√
m
∑

j=1
(

n
∑

i=1

n
∑

e=1
( 1

3 (| f (sTij)− f (sTej)|λ + | f (s2u−Iij)− f (s2u−Iej)|λ + |(s2u−Fij)− f (s2u−Fej)|λ))
1
λ )

2
and

ωj =

n
∑

i=1

n
∑

e=1
( 1

3 (| f (sTij
)− f (sTej

)|λ+| f (s2u−Iij
)− f (s2u−Iej

)|λ+|(s2u−Fij
)− f (s2u−Fej

)|λ))
1
λ√√√√ m

∑
j=1

(
n
∑

i=1

n
∑

e=1
( 1

3 (| f (sTij
)− f (sTej

)|λ+| f (s2u−Iij
)− f (s2u−Iej

)|λ+|(s2u−Fij
)− f (s2u−Fej

)|λ))
1
λ )

2
.

(14)

In the end, we can use the following formula to normalize the criteria weights:

ω∗j =
ωj

m
∑

j=1
ωj

, j = 1, 2, . . . , m. (15)

3.4. The Extended TOPSIS Method with LNNs

In this subsection, an extended TOPSIS approach under a linguistic neutrosophic environment
is proposed.

The detailed steps are described as follows:
Step 1: Obtain the normalized decision-making matrix N•(l) = (η

•(l)
ij )

n×m
= (s•(l)Tij

, s•(l)Iij
, s•(l)Fij

)
n×m

.

If the criteria belong to cost type, let s•(l)Tij
= s(l)2u−Tij

, s•(l)Iij
= s(l)2u−Iij

and s•(l)Fij
= s(l)2u−Fij

. If the criteria

belong to benefit type, then the matrix remains, that is to say s•(l)Tij
= s(l)Tij

, s•(l)Iij
= s(l)Iij

and s•(l)Fij
= s(l)Fij

.

Step 2: Get the comprehensive decision-making matrix N• = (η•ij)n×m
= (s•Tij

, s•Iij
, s•Fij

)
n×m

using

the LNWAM operator or LNWGM operator on the basis of Formula (3) or Formula (4).
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Step 3: Use the weight model to calculate the weight values ωj (j = 1, 2, . . . , m) based on
Formula (9), and then normalize the weight information in line with Formula (10), denoted as ω•j
(j = 1, 2, . . . , m).

Step 4: Establish the weight standardized decision-making matrix N∗ = (η∗ij)n×m
=

(s∗Tij
, s∗Iij

, s∗Fij
)

n×m
through multiplying the normalized matrix with weight vector, where s∗Tij

= ωjs•Tij
,

s∗Iij
= ωjs•Iij

and s∗Fij
= ωjs•Fij

.

Step 5: Distinguish the positive ideal solution η+ and the negative ideal solution η−, respectively,
then:

η+ = (η+
1 , η+

1 , . . . , η+
m ), η+

j = max
i

(η∗ij), (j = 1, 2, . . . , m) (16)

And
η− = (η−1 , η−1 , . . . , η−m ), η−j = min

i
(η∗ij), (j = 1, 2, . . . , m) (17)

Step 6: Based on Formula (5), calculate the distance measures of the positive ideal solution to all
options, and the distance measures of the negative ideal solution to all options in proper sequence.
The computation formulas are:

d+ = (d+1 , d+1 , . . . , d+n ), d+i =
m

∑
j=1

d(η+
j , η∗ij), (i = 1, 2, . . . , n) (18)

And

d− = (d−1 , d−1 , . . . , d−n ), d−i =
m

∑
j=1

d(η−j , η∗ij), (i = 1, 2, . . . , n). (19)

Step 7: For each option xi (i = 1, 2, . . . , n), compute the values of correlation coefficient Di with
the following equation:

Di =
d−i

d+i + d−i
. (20)

Step 8: Achieve the ranking orders according to the values of Di (i = 1, 2, . . . , n). The bigger the
value of Di, the better the alternative xi is.

4. Case Study

In this section, we study a case of evaluating investment risks of a gold mine using the
proposed approach.

Recently, a construction investment company in Hunan province, called JK MINING Co., Ltd.,
had a plan for investing in a domestic metal mine. After an initial investigation and screening, four
famous metal mines, described as {x1, x2, x3, x4}, have been under consideration. The enterprise
establishes a team of three experts to conduct field explorations and surveys in depth, so that the
optimal mine can be selected. The specialists need to evaluate the investment risk in line with their
findings, professional knowledge, and experience. Assume the importance of each professional is
equal, that is to say γ1 = γ2 = γ3 = 1

3 . After heated discussions, five attributions are recognized as the
evaluation criteria. They are geological risk (a1), production risk (a2), market risk (a3), management
risk (a4), and social environment risk (a5), separately. Then, the experts defined the linguistic term set,
S = {si|i ∈ [0, 8]}, where s = {s0 = exceedingly low, s1 = pretty low, s2 = low, s3 = slightly low,
s4 = medium, s5 = slightly high, s2 = high, s3 = pretty high, s4 = exceedingly high}. Afterwards,
they can give scores (or score ranges) or linguistic information directly of options under each attribute.
The corresponding relationships between grade and linguistic term can been seen in Table 3.
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Table 3. Reference of investment risk evaluation.

Grade 0~19 20~29 30~39 40~49 50~59 60~69 70~79 80~89 90~100

Evaluation exceedingly
low

pretty
low low slightly

low medium slightly
high high pretty

high
exceedingly

high

Linguistic
term s0 s1 s2 s3 s4 s5 s6 s7 s8

In order to describe the ambiguity and uncertainty of risks, their evaluation information is
represented by LNNs. Subsequently, these assessment matrices are formed as Tables 4–6:

Table 4. Decision-making matrix N(1).

N(1) a1 a2 a3 a4 a5

x1 (s1, s2, s1) (s2, s3, s2) (s4, s4, s3) (s1, s5, s1) (s3, s3, s2)
x2 (s2, s6, s2) (s3, s8, s2) (s2, s4, s1) (s3, s1, s2) (s1, s2, s1)
x3 (s2, s3, s1) (s3, s2, s3) (s1, s4, s1) (s3, s5, s1) (s5, s2, s4)
x4 (s3, s1, s2) (s1, s7, s1) (s4, s6, s3) (s2, s5, s1) (s4, s6, s4)

Table 5. Decision-making matrix N(2).

N(2) a1 a2 a3 a4 a5

x1 (s1, s6, s1) (s4, s3, s4) (s2, s6, s2) (s3, s5, s2) (s5, s2, s4)
x2 (s1, s4, s1) (s3, s2, s1) (s2, s3, s4) (s4, s0, s5) (s2, s6, s4)
x3 (s3, s5, s2) (s2, s4, s3) (s1, s6, s5) (s3, s5, s3) (s2, s6, s1)
x4 (s2, s7, s2) (s4, s6, s1) (s3, s7, s2) (s4, s4, s2) (s3, s8, s4)

Table 6. Decision-making matrix N(3).

N(3) a1 a2 a3 a4 a5

x1 (s2, s4, s1) (s3, s5, s2) (s5, s1, s4) (s2, s6, s1) (s3, s3, s2)
x2 (s1, s2, s1) (s2, s4, s2) (s1, s5, s3) (s4, s2, s0) (s0, s5, s6)
x3 (s2, s3, s3) (s1, s5, s2) (s2, s4, s5) (s0, s4, s6) (s3, s2, s4)
x4 (s2, s3, s2) (s4, s2, s1) (s1, s4, s3) (s3, s4, s5) (s0, s4, s5)

Next, the extended TOPSIS approach presented in Section 3.4 is employed to identify the optimal
metal mine. A concrete calculation process is delivered as follows:

Step 1: Obtain the normalized decision matrix. As all the criteria are risk element, regarded as
a part of cost, then normalizing evaluation values with function s•(l)Tij

= s(l)2u−Tij
, s•(l)Iij

= s(l)2u−Iij
and

s•(l)Fij
= s(l)2u−Fij

. The followings (Tables 7–9) are the normalized decision-making matrix of each expert.

Table 7. Normalized decision-making matrix N•(1).

N•(1) a1 a2 a3 a4 a5

x1 (s7, s6, s7) (s6, s5, s6) (s4, s4, s5) (s7, s3, s7) (s5, s5, s6)
x2 (s6, s2, s6) (s5, s0, s6) (s6, s4, s7) (s6, s7, s6) (s7, s6, s7)
x3 (s6, s5, s7) (s5, s6, s5) (s7, s4, s7) (s5, s3, s7) (s3, s6, s4)
x4 (s5, s7, s6) (s7, s1, s7) (s4, s2, s5) (s6, s3, s7) (s4, s2, s4)
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Table 8. Normalized decision-making matrix N•(2).

N•(2) a1 a2 a3 a4 a5

x1 (s7, s2, s7) (s4, s5, s4) (s6, s2, s6) (s5, s3, s6) (s3, s6, s4)
x2 (s7, s4, s7) (s5, s6, s7) (s6, s5, s4) (s4, s8, s3) (s6, s2, s4)
x3 (s5, s3, s6) (s6, s4, s5) (s7, s2, s3) (s5, s3, s5) (s6, s2, s7)
x4 (s6, s1, s6) (s4, s3, s7) (s5, s1, s6) (s4, s4, s6) (s5, s0, s4)

Table 9. Normalized decision-making matrix N•(3).

N•(3) a1 a2 a3 a4 a5

x1 (s6, s4, s7) (s5, s3, s6) (s3, s7, s4) (s6, s2, s7) (s5, s5, s6)
x2 (s7, s6, s7) (s6, s4, s6) (s7, s3, s5) (s4, s6, s8) (s8, s3, s2)
x3 (s6, s5, s5) (s7, s3, s6) (s6, s4, s3) (s8, s4, s2) (s5, s6, s4)
x4 (s6, s5, s6) (s4, s6, s7) (s7, s4, s5) (s5, s4, s3) (s8, s4, s3)

Step 2: Using the LNWAM operator in line with Formula (3) to get the comprehensive decision
matrix as Table 10:

Table 10. Comprehensive decision-making matrix N•.

N• a1 a2 a3 a4 a5

x1 (s6.74, s3.63, s7) (s5.12, s4.22, s5.24) (s4.58, s3.83, s4.93) (s6.18, s2.62, s6.65) (s4.44, s5.31, s5.24)
x2 (s6.74, s3.63, s6.65) (s5.38, s0, s6.32) (s6.18, s3.91, s5.19) (s4.83, s6.95, s5.24) (s8, s3.3, s3.83)
x3 (s5.71, s4.22, s5.94) (s6.18, s4.16, s5.31) (s6.74, s3.17, s3.98) (s8, s3.3, s4.12) (s4.89, s4.16, s4.82)
x4 (s5.71, s3.27, s6) (s5.48, s2.62, s7) (s5.71, s2, s5.31) (s5.11, s3.63, s5.01) (s8, s0, s3.63)

Step 3: Calculate the values of the criteria weight ωj (suppose λ = 1) on the basis of Formula
(9) as follows: ω1 ≈ 0.17, ω2 ≈ 0.42, ω3 ≈ 0.31, ω4 ≈ 0.55 and ω1 ≈ 0.63. Normalize them based on
Formula (10): ω•1 = ω1

ω1+ω2+ω3+ω4+ω5
≈ 0.08, ω•2 ≈ 0.20, ω•3 ≈ 0.15, ω•4 ≈ 0.27 and ω•5 ≈ 0.30.

Step 4: Establish the weight standardized decision-making matrix as Table 11.

Table 11. Weight standardized decision-making matrix Nw.

Nw a1 a2 a3 a4 a5

x1 (s1.1, s7.51, s7.91) (s1.48, s7.04, s7.35) (s0.96, s7.16, s7.44) (s2.64, s5.92, s7.61) (s1.73, s7.07, s7.05)
x2 (s1.1, s7.51, s7.88) (s1.6, s0, s7.63) (s1.59, s7.19, s7.5) (s1.77, s7.7, s7.14) (s8, s6.13, s6.41)
x3 (s0.76, s7.6, s7.81) (s2.05, s7.02, s7.37) (s1.94, s6.96, s7.2) (s8, s6.3, s6.69) (s1.97, s6.57, s6.87)
x4 (s0.76, s7.45, s7.82) (s1.65, s6.4, s7.79) (s1.37, s6.5, s7.53) (s1.92, s6.46, s7.05) (s8, s0, s6.31)

Step 5: Identify the positive ideal solution and the negative ideal solution, respectively. See
Table 12.

Table 12. Positive ideal solution and negative ideal solution.

η+
1 η+

2 η+
3 η+

4 η+
5

(s1.1, s7.51, s7.88) (s1.6, s0, s7.63) (s1.94, s6.96, s7.2) (s8, s6.3, s6.69) (s8, s0, s6.31)

η−1 η−2 η−3 η−4 η−5

(s0.76, s7.6, s7.81) (s1.48, s7.04, s7.35) (s0.96, s7.16, s7.44) (s1.77, s7.7, s7.14) (s1.73, s7.07, s7.05)

Step 6: In line with Formula (5), the distances are measured as follows (assume λ = 1): d+1 ≈ 9.88,
d+2 ≈ 5.06, d+3 = 7.13, d+4 = 5.01, d−1 ≈ 1.22, d−2 ≈ 5.50, d−3 ≈ 3.68 and d−4 ≈ 6.04.
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Step 7: Compute the values of correlation coefficient: D1 ≈ 0.11, D2 ≈ 0.52, D3 ≈ 0.34 and
D4 ≈ 0.55.

Step 8: Since D4 > D2 > D3 > D1, then the ranking order is x4 > x2 > x3 > x1, and the best
metal mine is x4.

5. Comparison Analysis

In this section, several related studies are compared through solving the same problem of gold
mine venture assessment.

The comparison results can be seen in Table 13, and the particularized discussions and analysis
are depicted in the following:

Table 13. Ranking orders using different approaches.

Approaches Ranking Orders Optimal
Alternatives

Worst
Alternatives

Approach with the LNWAM operator [54] x4 > x2 > x3 > x1 x4 x1
Approach with the LNWGM operator [54] x4 > x3 > x2 > x1 x4 x1

Approach with uij =
1
3 sTij [50] x4 > x3 > x2 > x1 x4 x1

Approach with uij =
1
3 sTij +

1
6 sIij [50] x1 > x3 > x2 > x4 x1 x4

Approach with uij =
1
3 sTij +

1
3 sFij [50] x2 > x1 > x3 > x4 x2 x4

Approach with SVNLN-TOPSIS [42] x4 > x2 > x3 > x1 x4 x1
The presented approach x4 > x2 > x3 > x1 x4 x1

(1) The information in Reference [54] is LNNs. The multi-criteria group decision-making methods
based on the LNWM operator or LNGM operator are presented. If we use the LNWAM operator to
deal with the same problem in this paper, we have the comprehensive evaluations of each alternative as
follows: c1 = (s5.4, s3.87, s5.67), c2 = (s8, s0, s5.04) c3 = (s8, s3.76, s4.65) c4 = (s8, s0, s4.98). Since the score
function SC(c1) ≈ 0.494, SC(c2) = 0.790, SC(c3) ≈ 0.650, SC(c4) ≈ 0.793, then SC(c4) > SC(c2) >

SC(c3) > SC(c1)⇒x4 > x2 > x3 > x1. If the LNWGM operator is used, then c#
1 = (s5.19, s4.15, s5.87),

c#
2 = (s6.12, s4.6, s5.32), c#

3 = (s6.22, s3.81, s4.75), c#
4 = (s6.08, s2.24, s5.43). As SC(c#

1) ≈ 0.465, SC(c#
2) ≈ 0.508,

SC(c#
3) ≈ 0.569, SC(c#

4) ≈ 0.600, we have SC(c#
4) > SC(c#

3) > SC(c#
2) > SC(c#

1)⇒ x4 > x3 > x2 > x1.
(2) The information in Reference [50] is linguistic intuitionistic fuzzy numbers (LIFNs). In the

first place, it is necessary to translate LNNs into LIFNs. However, there is no existing universal
conversion method. In this case, we have three ideas. The first idea is that all the linguistic
indeterminacy-membership degrees in LNNs are allocated to linguistic non-membership degrees
in LIFNs. In other words, uij = 1

3 sTij and vij = 1
3 sIij +

1
3 sFij . For example, a LNN (s3, s6, s6) can

be changed into a linguistic intuitionistic fuzzy number (LIFN) (s1, s4). The second opinion is that
linguistic indeterminacy-membership degrees in LNNs are assigned to linguistic membership degrees
and linguistic non-membership degrees in LIFNs on average. That is to say, uij =

1
3 sTij +

1
6 sIij and

vij = 1
6 sIij +

1
3 sFij . For instance, the LIFN (s2, s3) may take the place of a LNN (s3, s6, s6). On the

contrary, the last attitude is that all the linguistic indeterminacy-membership degrees in LNNs are
allotted to linguistic membership degrees in LIFNs. So to speak, uij =

1
3 sTij +

1
3 sFij and vij =

1
3 sFij . As

an example, a LNN (s3, s6, s6) may be replaced by a LIFN (s3, s2).
Owing to the limited space, we take the first idea as an example in the following. The converted

decision-making matrices of each expert are shown as Tables 14–16:
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Table 14. Converted decision-making matrix Nco(1).

Nco(1) a1 a2 a3 a4 a5

x1 (s7/3, s13/3) (s2, s11/3) (s4/3, s3) (s7/3, s10/3) (s5/3, s11/3)
x2 (s2, s8/3) (s5/3, s2) (s2, s11/3) (s2, s13/3) (s7/3, s13/3)
x3 (s2, s4) (s5/3, s11/3) (s7/3, s11/3) (s5/3, s10/3) (s1, s10/3)
x4 (s5/3, s13/3) (s7/3, s8/3) (s4/3, s7/3) (s2, s10/3) (s4/3, s2)

Table 15. Converted decision-making matrix Nco(2).

Nco(2) a1 a2 a3 a4 a5

x1 (s7/3, s3) (s4/3, s3) (s2, s8/3) (s5/3, s3) (s1, s10/3)
x2 (s7/3, s11/3) (s5/3, s13/3) (s2, s3) (s4/3, s11/3) (s2, s2)
x3 (s5/3, s3) (s2, s3) (s7/3, s5/3) (s5/3, s8/3) (s2, s3)
x4 (s2, s7/3) (s4/3, s10/3) (s5/3, s7/3) (s4/3, s10/3) (s5/3, s4/3)

Table 16. Converted decision-making matrix Nco(3).

Nco(3) a1 a2 a3 a4 a5

x1 (s2, s11/3) (s5/3, s3) (s1, s11/3) (s2, s3) (s5/3, s11/3)
x2 (s7/3, s13/3) (s2, s10/3) (s7/3, s8/3) (s4/3, s14/3) (s8/3, s5/3)
x3 (s2, s10/3) (s7/3, s3) (s2, s7/3) (s8/3, s2) (s5/3, s10/3)
x4 (s2, s11/3) (s4/3, s13/3) (s7/3, s3) (s5/3, s7/3) (s8/3, s7/3)

Then, using the method in Reference [50], the collective evaluations of each option are
x1 = (s83/48, s173/52), x2 = (s103/52, s68/21), x3 = (s133/73, s257/84) and x4 = (s173/96, s29/11) (let
the position weight w = (0.2, 0.3, 0.5)T). Then the score functions are L(x1) ≈ −1.60, L(x2) ≈ −1.26,
L(x3) ≈ −1.24 and L(x4) ≈ −0.83. Because L(x4) > L(x3) > L(x2) > L(x1), the ranking result is
x4 > x3 > x2 > x1.

Likewise, we use the approach in Reference [50] with the second and third thought to deal
with the same problem, successively. Afterwards, we get the corresponding ranking orders are
x1 > x3 > x2 > x4 and x2 > x1 > x3 > x4, respectively (suppose the position weight is constant and
that w = (0.2, 0.3, 0.5)T).

(3) The information in Reference [42] consists of single valued neutrosophic linguistic numbers
(SVNLNs). The first step is to change the LNNs into SVNLNs. For a certain LNN η = (sT , sI , sF), if
g = max(T, I, F), we can make the linguistic value in a single valued neutrosophic linguistic number
(SVNLN) equal to sg, then the truth-membership, indeterminacy-membership, and false-membership
degrees in a SVNLN are described as T/g, I/g and F/g in proper order. So to say, a LNN η = (sT , sI , sF)

may be converted into a SVNLN (sg,< T/g, I/g, F/g >). For example, a LNN (s3, s3, s6) and a SVNLN
(s6,< 0.5, 0.5, 1 >) are equivalent in manner.

The transformed decision-making matrices of each specialist are listed as Tables 17–19:

Table 17. Transformed decision-making matrix Ntr(1).

Ntr(1) a1 a2 a3 a4 a5

x1 (s7,< 1, 6/7, 1 >) (s6,< 1, 5/6, 1 >) (s5,< 4/5, 4/5, 1 >) (s7,< 1, 3/7, 1 >) (s6,< 5/6, 5/6, 1 >)
x2 (s6,< 1, 1/3, 1 >) (s6,< 5/6, 0, 1 >) (s7,< 6/7, 4/7, 1 >) (s7,< 6/7, 1, 6/7 >) (s7,< 1, 6/7, 1 >)
x3 (s7,< 6/7, 5/7, 1 >) (s6,< 5/6, 1, 5/6 >) (s7,< 1, 4/7, 1 >) (s7,< 5/7, 3/7, 1 >) (s6,< 1/2, 1, 2/3 >)
x4 (s7,< 5/7, 1, 6/7 >) (s7,< 1, 1/7, 1 >) (s5,< 4/5, 2/5, 1 >) (s7,< 6/7, 3/7, 1 >) (s4,< 1, 1/2, 1 >)



Symmetry 2017, 9, 149 14 of 18

Table 18. Transformed decision-making matrix Ntr(2).

Ntr(2) a1 a2 a3 a4 a5

x1 (s7,< 1, 2/7, 1 >) (s5,< 4/5, 1, 4/5 >) (s6,< 1, 1/3, 1 >) (s6,< 5/6, 1/2, 1 >) (s6,< 1/2, 1, 2/3 >)
x2 (s7,< 1, 4/7, 1 >) (s7,< 5/7, 6/7, 1 >) (s6,< 1, 5/6, 2/3 >) (s8,< 1/2, 1, 3/8 >) (s6,< 1, 1/3, 2/3 >)
x3 (s6,< 5/6, 1/2, 1 >) (s6,< 1, 2/3, 5/6 >) (s7,< 1, 2/7, 3/7 >) (s5,< 1, 3/5, 1 >) (s7,< 6/7, 2/7, 1 >)
x4 (s6,< 1, 1/6, 1 >) (s7,< 4/7, 3/7, 1 >) (s6,< 5/6, 1/6, 1 >) (s6,< 2/3, 2/3, 1 >) (s5,< 1, 0, 4/5 >)

Table 19. Transformed decision-making matrix Ntr(3).

Ntr(3) a1 a2 a3 a4 a5

x1 (s7,< 6/7, 4/7, 1 >) (s6,< 5/6, 1/2, 1 >) (s7,< 3/7, 1, 4/7 >) (s7,< 6/7, 2/7, 1 >) (s6,< 5/6, 5/6, 1 >)
x2 (s7,< 1, 6/7, 1 >) (s6,< 1, 2/3, 1 >) (s7,< 1, 3/7, 5/7 >) (s8,< 1/2, 3/4, 1 >) (s8,< 1, 3/8, 1/4 >)
x3 (s6,< 1, 5/6, 5/6 > (s7,< 1, 3/7, 6/7 >) (s6,< 1, 2/3, 1/2 >) (s8,< 1, 1/2, 1/4 >) (s6,< 5/6, 1, 2/3 >)
x4 (s6,< 1, 5/6, 1 >) (s7,< 4/7, 6/7, 1 >) (s7,< 1, 4/7, 5/7 >) (s5,< 1, 4/5, 3/5 >) (s8,< 1, 1/2, 3/8 >)

After that, the extended SVNLN-TOPSIS approach in literature [42] is employed to assess the
metal mine’s investment venture. The relative closeness coefficients of each mine are calculated as
follows: rc1 = 21/25, rc2 = 54/67, rc3 = 5/6 and rc4 = 29/36. Because rc4 < rc2 < rc3 < rc1, we have
x4 > x2 > x3 > x1.

From Table 13, we can see that there are diverse ranking results with distinct methods. In order to
attain the ideal ranking order, we can assign grades for alternatives in these seven rankings successively.
The better the option is, the higher the score is. That is to say, the optimal alternative in a ranking
may be distributed with 4, the second is 3, the third is 2, and the worst is 1. As an illustration,
according to the ranking x4 > x2 > x3 > x1 in literature [54] with the LNWAM operator, we have
G1(x4) = 4, G1(x2) = 3, G1(x3) = 2 and G1(x1) = 1. Similarly, grades in other ranking methods can
be determined. In the end, the overall grades of all alternatives can be earned through summation as
follows: G(x1) = 12, G(x2) = 19, G(x3) = 17 and G(x4) = 22. Because G(x4) > G(x2) > G(x3) >

G(x1), the ideal ranking result may be regarded as x4 > x2 > x3 > x1. It is obvious that the result is
the same with the proposed method in this paper. The feasibility and availability of the presented
approach are indicated.

Besides, the best and worst objects are identical in the literature [42,54] and our approach. The
reasons for the differences between literature [54] with our method may be the decision-making
thought. Our measure is based on distance, while the literature [54] is based on aggregation operators.
Some initial information may be missing in the process of aggregating. Moreover, diverse conclusions
may occur with different aggregation operators, which has been demonstrated in the second and
third line in Table 13. Both the method in Reference [42] and ours are in line with TOPSIS, and the
same orders are received. However, there may be some limitations in [42]. Because the attribute
weight vector is given directly, the positive and negative ideal solutions are absolute. In addition, the
rankings in literature [50] are all different from the presented method. The reason for the distinction
may be that the indeterminacy-membership information in LNNs is unavoidably distorted in LIFNs to
some extent.

From the analysis above, the advantages of the proposed method can be summarized as follows:

(1) Evaluating the risk degree of mining projects under qualitative criteria by means of LNNs is a
good choice. As all the consistent, hesitant, and inconsistent linguistic information are taken
into account.

(2) The flexibility has increased because various distance measures, aggregation operators, and
linguistic scale functions can be chosen according to the savants’ experience or reality.

(3) A common situation, in which the criteria weight information is unknown, is under consideration.
There are many complex risk factors in the process of metallic mining investment. Thus, it
is difficult or unrealistic for decision makers to give the weight vector directly. The weight



Symmetry 2017, 9, 149 15 of 18

model based on the thought of maximum deviation may be a simple and suitable way to resolve
this problem.

(4) Instead of using absolute ideal points, the extended TOPSIS method defined the relative ideal
solutions. The strength of it is that different ideal solutions are calculated corresponding with the
different original information of different mining projects. This may be more in line with reality.

6. Discussion and Conclusions

To evaluate risk is the beginning of a metallic mining project investment. Proper risk assessments
have great significance on the success of investments. Owing to the uncertainty and complexity in mine
surroundings, this paper advised an extended TOPSIS method with LNNs to rise to this challenge.
LNNs were suggested to manifest the indeterminate and inconsistent linguistic values, so that the
evaluation information can be retained as much as possible. Then, generalized distance formulas
were presented to calculate the difference degrees of two LNNs. As it is not easy for the mining
investment decision makers to directly determine criteria weight values, a weight model based on
maximum deviation was recommended. Afterwards, the method of ranking mines was shown by a
case study. Furthermore, the effectiveness and highlights of the presented approach can be reflected in
the comparison analysis.

Even though the extended TOPSIS with LNNs method is a good solution, there are still some
limitations. For example, the determination of the criteria weight values does not take the subjective
elements into consideration. Hence, a more reasonable weight determination method should be
further proposed. Besides, the sub-attribute risk factors may be considered in the future. The
presented method with LNNs for evaluating the investment risks may be extended to interval linguistic
neutrosophic numbers.
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