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Improved similarity measure
in neutrosophic environment and
its application in finding minimum
spanning tree

Kanika Mandal and Kajla Basu∗
Department of Mathematics, NIT, Durgapur, India

Abstract. Minimum spanning tree finds its huge application in network designing, approximation algorithms for NP-hard
problems, clustering problems and many more. Many research works have been done to find minimum spanning tree due to
its various applications. But, till date very few research works are available in finding minimum spanning tree in neutrosophic
environment. This paper contributes significantly by defining the weight of each network edge using single valued neutro-
sophic set (SVNS) and introduce a new approach using similarity measure to find minimum spanning tree in neutrosophic
environment. Use of SVNS makes the problem realistic as it can describe the uncertainty, indeterminacy and hesitancy of the
real world in a better way. We introduce two new and simple similarity measures to overcome some disadvantages of existing
Jaccard, Dice and Cosine similarity measures of SVNSs for ranking the alternatives. Further from the similarity measures
we have developed two formulas for the entropy measure proving a fundamental relation between similarity measure and
entropy measure. The new entropy measures define the uncertainty more explicitly in comparison to other entropy measure
existing in the literature which has been established using an example.
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1. Introduction

A minimum spanning tree of a weighted graph G
as discussed by Bang Ye Wu and Kun-Mao Chao in
[2] is a spanning tree of G whose edges sum to min-
imum weight. In other words, a minimum spanning
tree is a tree formed from a subset of the edges in
a given undirected graph, with two properties: (1) it
spans the graph, i.e., it includes every vertex in the
graph, and (2) it is minimum, i.e., the total weight of
all the edges is as low as possible. The minimum span-
ning tree problem is very important since it arises in
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many applications, it is an important example where
greedy algorithms always deliver an optimal solution
and clever data structures are necessary to make it
work efficiently.

Zadeh in 1965 defined the fuzzy set (FS) [17]
which is an extension of ordinary or crisp set by
introducing the degree of membership/truth (t). The
elements in the fuzzy set are characterised by the
grade of membership to the set. Atanasov introduced
the concept of intuitionistic fuzzy set (IFS) [18] in
1986 as an extension of FS considering membership
and non membership degrees of an element to the set.
Smarandache first introduced the degree of indeter-
minacy/neutrality as independent component in 1995
(published in 1998) and defined the neutrosophic set
(NS) [19]. He has coined the words neutrosophy and
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neutrosophic. Neutrosophy means knowledge of neu-
tral thought while neutrosophic means having the
nature of, or having the characteristic of Neutrosophy.
In 2013 he refined the NS to n components: t1, t2, . . .,
tj; i1, i2, . . ., ik; f1, f2, . . ., fl, with j + k + l = n

> 3. NS generalizes the concept of crisp set, FS,
IFS as the elements in the NS are characterised by
the grade of truth membership, indeterminacy mem-
bership and falsity membership. It can effectively
solve uncertainty problems involving indeterminate
and inconsistent information.

In [20] Zhang-peng Tian et al. solved green
product design selection problems using neutro-
sophic linguistic information. Xiao-hui Wu et al. [21]
established ranking methods for simplified neutro-
sophic sets based on prioritized aggregation operators
and cross-entropy measures to solve multi crite-
ria decision making (MCDM) problem. Interval
neutrosophic linguistic aggregation operators were
developed and applied to the medical treatment selec-
tion process [22] by Yin-xiang Ma et al. Zhang-peng
Tian, Hong-yu Zhang et al. [23] established a MCDM
method based on cross entropy. Several similar-
ity measures for NS were defined by Broumi and
Smarandache [24]. They also defined weighted inter-
val valued neutrosophic sets (IVNSs) [11] and found a
cosine similarity measure between two IVNSs. They
applied it to problems related to pattern recognition.
Jun Ye introduced in [4] a generalized single-valued
neutrosophic weighted distance measure and pre-
sented two distance-based similarity measures in a
single-valued neutrosophic setting. He established a
single-valued neutrosophic clustering algorithm on
the basis of the two similarity measures. He further
generalized the Jaccard, Dice, and cosine similarity
measures between two vectors in simplified neutro-
sophic sets (SNSs) [9]. He then applied the three
similarity measures to a MCDM problem in the sim-
plified neutrosophic setting. In [3] Jun Ye defined
a generalized single-valued neutrosophic weighted
distance and proposed the single valued minimum
spanning tree (MST) clustering algorithm.

Many research works have been done on the span-
ning trees [12, 13, 29, 32] so far, but very few of them
are in neutrosophic environment. The weights in the
graph may not be known with certainty in real life
problems and so can not be defined precisely. Using
NS the uncertainty in defining the parameters can be
solved in a more efficient manner. In [3] Jun Ye estab-
lished a method to find MST of a graph where nodes
i.e. samples are represented in the form of SVNSs
and distance between two nodes which represents the

dissimilarity between the corresponding samples has
been derived. But in this paper we at first introduce
two new similarity measure functions to overcome
some disadvantages of existing Jaccard, Dice and
cosine similarity measures of SVNSs discussed in [9]
for ranking alternatives. Using those new similarity
measure formulae, a method to find optimum span-
ning tree is developed considering the weight of each
edge in the graph as SVNS. This paper considers a
network problem with multiple criteria which are rep-
resented by weight of each edge in NS and finds the
optimum spanning tree in neutrosophic environment.

Entropy is also an important conception to mea-
sure uncertainty. Eulalia Szmidt and Janusz Kacprzyk
introduced a measure of entropy for an IFS in [1].
Hung and Yang discussed a new entropy measure in
IFS and compared the degree of fuzziness with dif-
ferent entropy measures in [7]. Ali Aydogdu studied
on similarity and entropy of IVNS in [28]. Pinaki
Majumdar and S.k. Samanta [5] introduced similarity
measure and entropy measure of SVNSs. A relation-
ship between similarity measure and entropy measure
was investigated in [25] for IFS and for interval val-
ued IFS in [26]. In this paper a fundamental relation
between similarity measure and entropy measure of
SVNS has been established and thereby, two new
entropy measures have been posed. With an example
it has also been proved that the new entropy measures
give more meaningful result.

The rest of the paper is structured as follows:
Section 2 introduces some concepts of NSs and sim-
plified neutrosophic sets. Section 3 describes the
basic concept of the graph and minimum spanning
trees. In Section 4 we define a new similarity measure
and entropy function to compare the NSs. Section
5 presents algorithm for finding optimum spanning
tree in neutrosophic environment. In Section 6, a
numerical example demonstrates the application and
effectiveness of the proposed similarity measure in
decision-making problems and the solution approach
to find minimum spanning tree in neutrosophic envi-
ronment. We conclude the paper in Section 7.

2. Neutrosophic sets

2.1. Definition [19]

Let U be an universe of discourse then the neutro-
sophic set A is defined as
A = {〈x : TA(x), IA(x), FA(x)〉, x ∈ U}, where the
functions T, I, F: U →] −0, 1+ [define respectively
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the degree of membership (or Truth), the degree of
indeterminacy and the degree of non-membership (or
falsehood) of the element x ∈ U to the set A with the
condition −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

To apply NS to science and technology, we con-
sider the NS which takes the value from the subset of
[0, 1] instead of ]−0, 1+[; i.e., we consider SNS as
defined by Ye in [14].

2.2. Simplified neutrosophic set

Let X be a space of points (objects) with generic
elements in X denoted by x. An NS A in X
is characterized by a truth-membership function
TA(x), an indeterminacy membership function IA(x),
and a falsity-membership function FA(x), if the
functions TA(x), IA(x), FA(x) are singletone subin-
tervals/subsets in the real standard [0, 1], i.e., TA(x) :
X → [0, 1], IA(x) : X → [0, 1] and FA(x) : X →
[0, 1]. Then a simplification of the NS A is denoted
by A = {〈x, TA(x), IA(x), FA(x)〉 , x ∈ X}.

2.3. Single valued neutrosophic sets (SVNS)

Let X be a space of points (objects) with generic
elements in X denoted by x. A SVNS A in X is
characterized by a truth-membership function TA(x),
an indeterminacy membership function IA(x) and a
falsity-membership function FA(x), for each point
x ∈ X, TA(x), IA(x), FA(x) ∈ [0, 1]. Therefore, a
SVNS A can be written as
ASVNS = {〈x, TA(x), IA(x), FA(x)〉 , x ∈ X}. For
two SVNSs,
ASVNS = {〈x, TA(x), IA(x), FA(x)〉 , x ∈ X} and
BSVNS = {〈x, TB(x), IB(x), FB(x)〉 , x ∈ X}, the
following expressions are defined in [15] as follows:
ANS ⊆ BNS if and only if TA(x) ≤ TB(x), IA(x) ≥
IB(x), FA(x) ≥ FB(x).
ANS = BNS if and only if TA(x) = TB(x), IA(x) =
IB(x), FA(x) = FB(x).
Ac = 〈x, FA(x), 1 − IA(x), TA(x)〉.

For convenience, a SVNS A is denoted by A =
〈TA(x), IA(x), FA(x)〉 for any x in X. For two SVNSs
A and B, the operational relations are defined
by [15]:

A ∪ B =〈max
(
TA(x), TB(x)

)
,

min
(
IA(x), IB(x)

)
,

min
(
FA(x), FB(x)

)〉
(1)

A ∩ B =〈min
(
TA(x), TB(x)

)
,

max
(
IA(x), IB(x)

)
,

max
(
FA(x), FB(x)

)〉
(2)

3. Graph and minimum spanning trees

A graph G consists of a set V of vertices and a
collection E (not necessarily a set) of unordered pairs
of vertices, called edges. A graph is symbollically
represented as G = (V, E). The order of a graph is
the number of its vertices, and its size is the number
of its edges. A graph may be of two types: an undi-
rected graph and a directed graph. Each edge in the
undirected graph is an unordered pair vi, vj , whereas
each edge in the directed graph is an ordered pair
vi, vj , where the vertices vi and vj are called the end
points of an edge. A sequence of edges and vertices
that can be traveled between two different vertices is
called a path.

3.1. Weighted graphs

A weighted graph is a graph, in which each edge
has a weight (some real number).

3.2. Weight of a graph

The sum of the weights of all edges of a graph G
is the weight of that graph.

3.3. Subgraphs

The graph H = (W, F) is a subgraph of the graph G
= (V, E) if W is a subset of V and F is a subset of E.

3.4. Connected graphs

A pair of vertices in a graph is a connected pair if
there is a path between them. A graph is a connected
graph if every pair of vertices in G is a connected pair,
otherwise it is disconnected graph.

3.5. Cycle

A closed walk in a graph is a walk between a vertex
and itself. A closed walk in which no edges repeat
is a circuit. A cycle is a circuit with no repeated
vertices.
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3.6. Acyclic graph

An acyclic graph is a graph with no cycles. A tree
is a connected acyclic graph.

3.7. Spanning tree

A connected acyclic graph that contains all nodes
of G is called a spanning tree of the graph. Any set of
straight line segments connecting pairs of nodes such
that

1. no closed loops occur,
2. each node is visited by at least one line, and
3. a tree is connected is also called a spanning tree

of the graph.

3.8. Minimum Spanning Tree

Minimum spanning tree in an undirected con-
nected weighted graph is a spanning tree of minimum
weight (among all spanning trees).

4. Similarity measure

4.1. Definition 1

As stated in [9], [10], [11] similarity measure S for
SVNS(X) is a real function on universe X such that
S : SVNS(X) × SVNS(X) → [0, 1] and satisfies the
following properties:

(i) 0 ≤ S(A, B) ≤ 1, ∀A, B ∈ SVNS(X),
(ii) S(A, B) = S(B, A), ∀A, B ∈ SVNS(X),

(iii) S(A, B) = 1, when A = B, ∀A,

B ∈ SVNS(X).

We state the additional two properties (iv) and (v)
for the similarity measure.

(iv) S(A, Ac) = 0 if A is a crisp set, ∀A ∈ P(X),
(v) S(A, B) ≥ S(A, C) if |TA(x) − TB(x) | ≤ |

TA(x) − TC(x)|, |FA(x) − FB(x)| ≤ |FA(x) −
FC(x)| along with |IA(x) − TB(x)| ≤ |IA(x) −
IC(x)|, ∀A, B ∈ SVNS(X).

4.2. Jaccard, Dice and cosine similarity
measures

Jaccard, Dice, cosine weighted similarity measures
between two SVNSs A and B as discussed by Jun Ye
in [9] are

WJ(A, B)

= ∑n
i=1 wi

TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi)
(TA(xi))2 + (IA(xi))2 + (FA(xi))2+
(TB(xi))2 + (IB(xi))2 + (FB(xi))2−

TA(xi)TB(xi) − IA(xi)IB(xi)−FA(xi)FB(xi)

WD(A, B)

= ∑n
i=1 wi

2(TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi))
(TA(xi))2 + (IA(xi))2+

(FA(xi))2 + (TB(xi))2+(IB(xi))2 + (FB(xi))2

WC(A, B)

= ∑n
i=1 wi

TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi)√
(TA(xi))2 + IA(xi))2 + FA(xi))2

√
(TB(xi))2 + IB(xi))2 + FB(xi))2

4.3. The proposed similarity measures for SVNSs

In this paper we propose two new similarity
measures for SVNSs. Let U be the universe.
A = {〈xi : TA(xi), IA(xi), FA(xi)〉 , xi ∈ A} and
B = {〈xi : TB(xi), IB(xi), FB(xi)〉 , xi ∈ B} are two
SVNSs in U. Then Our proposed similarity functions
between A and B are:

S1(A, B)= 1

n

∑
xi∈X

[1−log2[1+ 1

4
[|TA(xi)−TB(xi)|

+2|IA(xi) − IB(xi)| + |FA(xi) − FB(xi)|]]].
(3)

S2(A, B) = 1

n

∑
xi∈X

cos(
π

2
.
1

4
[|TA(xi) − TB(xi)|

+2|IA(xi) − IB(xi)| + |FA(xi) − FB(xi)|]).
(4)

The similarity measures defined above are better
than existing ones which can be established by the
fact given below:

For two SVNSs A and B in X, if TA(xi) = IA(xi) =
FA(xi) = 0 and/or TB(xi) = IB(xi) = FB(xi) = 0 for
any xi in X (i = 1, 2 . . . , n) Jaccard, Dice and cosine
similarity measures are undefined. But our pro-
posed similarity measures (3), (4) overcome this
drawback.

4.3.1. Theorem 1
Both the proposed similarity measure functions

satisfy the properties as defined in subsection 4.1

Proof. Clearly Si(A, B) (i=1,2) satisfies the proper-
ties (i), (ii), (iii), and (iv). We prove only property (v).

If |TA(x) − TB(x)| ≤ |TA(x) − TC(x)|, |FA(x) −
FB(x)| ≤ | FA(x) − FC(x)|, |IA(x) − TB(x)| ≤ |IA(x)
− IC(x)|, [|TA(xi) − TB(xi)| + 2|IA(xi) − IB(xi)| +
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|FA(xi) − FB(xi)|] ≤ [|TA(xi) − TC(xi)| + 2|IA(xi)
− IC(xi)| + |FA(xi) − FC(xi)|]

i.e. 1 − log2

[
1 + 1

4n

∑
xi∈X [|TA(xi) − TB(xi)|

+ 2|IA(xi) − IB(xi)| + |FA(xi) − FB(xi)|]
] ≥ 1 −

log2

[
1 + 1

4n

∑
xi∈X [|TA(xi) − TC(xi)| + 2|IA(xi) −

IC(xi)| + |FA(xi) − FC(xi)|]
]

i.e S1(A, B) ≥ S1(A, C).
And in similar way S2(A, B) also satisfies the prop-

erty (v).

4.4. Weighted similarity measure

The weighted similarity measure Sw, between two
SVNSs A and B satisfies the following properties:

(i) 0 ≤ Sw(A, B) ≤ 1,
(ii) Sw(A, B) = Sw(B, A),

(iii) Sw(A, B) = 1, when A=B,
(iv) Sw(A, Ac) = 0 when A is a crisp set,
(v) Sw(A, B) ≥ Sw(A, C) when |TA(x) − TB(x)|

≤ |TA(x) − TC(x)|, |FA(x) − FB(x)| ≤
|FA(x) − FC(x)| and |IA(x) − TB(x)| ≤
|IA(x) − IC(x)|.

4.4.1. Proposed weighted similarity function
Let wi be the weight for each element xi (i =

1, 2, . . . , n), wi ∈ [0, 1] and
∑n

i=1 wi = 1. Then our
proposed weighted similarity functions are

S1
w(A, B) =

∑
xi∈X

wi[1 − log2[1 + 1

4
[|TA(xi)

−TB(xi)| + 2|IA(xi) − IB(xi)|
+|FA(xi) − FB(xi)|]]]. (5)

S2
w(A, B) =

∑
xi∈X

wi cos[
π

2

1

4
[|TA(xi) − TB(xi)|

+2|IA(xi) − IB(xi)|
+|FA(xi) − FB(xi)|]]. (6)

4.4.2. Theorem 2
It is very clear that both the proposed weighted

similarity measure functions satisfy the properties as
defined in subsection 4.4.

4.5. Comparison of new weighted similarity
measures of SVNS with the existing
measures

Example 1. A = {x1, (0.2, 0.5, 0.6); x2(0.2, 0.4, 0.4)}
and B = {x1, (0.2, 0.4, 0.4); x2(0.4, 0.2, 0.3)} with w1

= 0.55 and w2 = 0.45. Weighted Jaccarad similarity
measure WJ(A, B) = 0.8386. Weighted Dice similar-
ity measure WD(A, B) = 0.9105. Weighted Cosine
similarity measure WC(A, B) = 0.9358. S1

w(A, B) =
0.8197 and S2

w(A, B) = 0.9763;

Example 2. C = {x1, (0.3, 0.2, 0.3); x2 (0.5, 0.2,
0.3); x3, (0.5, 0.3, 0.8)} and D = {x1, (0.7, 0, 0.1);
x2 (0.6, 0.1, 0.2); x3, (0.5, 0.3, 0.8)} with w1 = 0.35,
w2 = 0.25 and w3 = 0.40. Weighted Jaccarad simi-
larity measure WJ(C, D) = 0.8067. Weighted Dice
similarity measure WD(C, D) = 0.8738. Weighted
Cosine similarity measure WC(C, D) = 0.8939.
S1

w(C, D) = 0.8529 and S2
w(C, D) = 0.9702;

It may be observed from the above examples that
the values of similarity from the new formulae are
almost similar to those from the existing measures.

4.6. Entropy measure

Let N(X) be the collection of all SVNS in X. We
introduce the entropy as a function EN : N(X) →
[0, 1] which satisfies the following axioms:

(i) EN (A) = 0 if A is a crisp set
(ii) EN (A) = 1 if (TA(x), IA(x),

FA(x)) = (0.5, 0.5, 0.5) ∀ x ∈ NX

(iii) EN (A) ≤ EN (B) if A is less fuzzy than B. i.e
TA(x) ≤ TB(x) and FA(x) ≥ FB(x) together
with |IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|, for
TB(x) ≤ FB(x).
or TA(x) ≥ TB(x), FA(x) ≤ FB(x) together
with |IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|, for
TB(x) ≥ FB(x).

(iv) EN (A) = EN (Ac).

Different authors have defined different formulas
of entropy for IFS [1, 7, 25, 26], SVNS [5] and IVNS
[28]. In [5] Majumdar and Samanta gave the formula
of entropy for SVNS A in X as follows:

E(A) = 1 − 1

n

∑
xi∈X

(TA(xi)

+FA(xi)).|IA(xi) − IAc (xi)|.
Now we establish a fundamental relation between

similarity measure and entropy measure.

4.7. Theorem

Let S be the similarity measure for SVNS(X) and
A ∈ SVNS(X), then S(A, Ac) = E(A).
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Proof. We need to prove all the properties of entropy
measure defined in 4.4

(P1) When A is crisp set, i.e., A ∈ P(X), then from
definition in 4.1,

S(A, Ac) = 0, i.e., E(A) = 0
(P2) When A = (0.5, 0.5, 0.5), Ac =

(0.5, 0.5, 0.5), i.e., A = Ac, i.e., S(A, Ac) = 1,
i.e., (P2) is satisfied.

(P3)

Case 1: For TB(x) ≤ FB(x) A is less fuzzy
than B, when TA(x) ≤ TB(x) and FA(x) ≥ FB(x)
together with |IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|;
Now from relations of TA, FA, TB and FB

defined above, we get TA(x) ≤ TB(x) ≤ FB(x) ≤
FA(x); this implies |FB(x) − TB(x)| ≤ |FA(x) −
TA(x)|, i.e. |TB − T c

B| ≤ |TA − T c
A| and |FB − Fc

B| ≤
|FA − Fc

A|, as T c
A(x) = FA(x) and Fc

A(x) = TA(x)
and same holds for TB(x) and FB(x). Now these
three relations |TB − T c

B| ≤ |TA − T c
A|,|FB − Fc

B| ≤
|FA − Fc

A| and |IB(x) − IBc (x)| ≤ |IA(x) − IAc (x)|
confirm S(A, Ac) ≥ S(B, Bc).

Case 2: For TB(x) ≥ FB(x), A is less fuzzy than
B,when TA(x) ≥ TB(x), FA(x) ≤ FB(x) together
with |IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|. From
above we get FA(x) ≤ FB(x) ≤ TB(x) ≤ TA(x);
this implies |TB(x) − FB(x)| ≤ |TA(x) − FA(x)|, i.e.
|TB − T c

B| ≤ |TA − T c
A| and |FB − Fc

B| ≤ |FA −
Fc

A|. Also |IB(x) − IBc (x)| ≤ |IA(x) − IAc (x)| holds
and results in S(A, Ac) ≥ S(B, Bc).

4.8. Formulation of entropy measure

From similarity measure functions as proposed in
4.3, we get two formulae of entropy measure:

E1(A) = 1

n

∑
xi∈X

[1 − log2[1 + 1

2
|TA(xi) − FA(xi)|

+|IA(xi) − IAc (xi)|]]. (7)

E2(A) = 1

n

∑
xi∈X

cos[
π

2

1

2
(|TA(xi) − FA(xi)|

+|IA(xi) − IAc (xi)|)]. (8)

Formulae (7) and (8) clearly satisfy the axioms (i),
(ii) and (iv).

To prove the axiom (iii), let A is less fuzzy
than B.

Case 1. When TB(x) ≤ FB(x), TA(x) ≤ TB(x) and
FA(x) ≥ FB(x) together with |IB(x) − IBc (x)| ≤
|IA(x) − IAc (x)|,

i.e., (TA(x) − FA(x)) ≤ (TB(x) − FB(x) ≤ 0 and
|IB(x) − IBc (x)| ≤ |IA(x) − IAc (x)|,

i.e., |TA(x) − FA(x)| ≥ |TB(x) − FB(x)| and
|IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|,

i.e., E1(A) ≤ E1(B) and also E2(A) ≤ E2(B).

Case 2. When TB(x) ≥ FB(x), TA(x) ≥ TB(x) and
FA(x) ≤ FB(x) together with |IA(x) − IAc (x)| ≥
|IA(x) − IAc (x)|,

i.e., (TA(x) − FA(x)) ≥ (TB(x) − FB(x) ≥ 0 and
|IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|,

i.e., |TA(x) − FA(x)| ≥ |TB(x) − FB(x)| and
|IA(x) − IAc (x)| ≥ |IB(x) − IBc (x)|,

i.e., E1(A) ≤ E1(B) and also E2(A) ≤ E2(B).

4.8.1. Example
Let X = {a, b, c, d} be the universe and A be a

SVNS in X defined as:

A = {(a, 〈0.5, 0.2, 0.9〉), (b, 〈0.8, 0.4, 0.2〉),
(c, 〈0.3, 0.8, 0.7〉), (d, 〈0.6, 0.3, 0.5〉)}.

E(A) = 0.48, E1(A) = 0.493024, E2(A) =
0.786984.

4.9. Analysis of entropy measures

Example 1. On a surface with cracks there is a chance
that a coin while flipping, falls into a crack and gets
stuck on its edge [31]. In this case if A is an event
of getting head then A can be written as (0, 1, 0)
(chance(Head), indeterminacy, chance(Tale)) in neu-
trosophic environment. Entropy measure defined
in [5] gives the following result: E(A) = 1. But
E1(A) = 0.415 and E2(A) = 0.707. Considering the
event some certainty is there as the position is neither
head nor tail for sure. But immediately some factors
like wind or severe rain that may turn the coin down
to either head or tail or keep it in indeterminate posi-
tion. Though it is certainly an indeterminacy case but
natural factors may pour the uncertainty to it and it is
not sure what the result will be among head, tail and
indeterminacy. The event seems to be a certain one
but uncertainty may arise due to the existence of some
factors. So the event is a mix of certainty and uncer-
tainty. So uncertainty measure should be neither 1 nor
0, rather it should be between 0 and 1. So the results
from our entropy measures are more meaningful.
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5. Algorithm for finding optimum spanning
tree in neutrosophic environment

Let A = {A1, A2, . . . , An} be a set of nodes of
a network. eij(i, j = 1, 2, . . . , n) are the collection
of SVNSs which express the weightage of the path
AiAj . Let for each of the path AiAj there be m cri-
teria c1, c2, . . . , cm which are represented by weight
of each edge, where each ck are in neutrosophic

form and ck =
{

T k
eij

, Ik
eij

, Fk
eij

}
, (k = 1, 2, . . . m).

In this case each eij(i, j = 1, 2, . . . , n) is rep-
resented by the following form of a SVNS:

eij =
{〈

ck, T
k
eij

, Ik
eij

, Fk
eij

〉
, ck ∈ {c1, c2, . . . , cm}

}
.

Assume that the weight of the criterion
ck(k = 1, 2, . . . , m), entered by the decision-
maker, is wk, wk ∈ [0, 1] and

∑m
k=1 wk = 1. We

propose a method to derive the single valued neutro-
sophic optimum spanning tree through the algorithm
given below:

Step 1: Calculate the ideal weight O∗ among all
the edges eij as per the criteria to be considered.
Generally, the evaluation criteria can be categorized
into two types: benefit criteria and cost criteria.
Let K be a set of benefit criteria and M be a set
of cost criteria. In the proposed decision-making
method, an ideal edge can be identified by using
a maximum operator for the benefit criteria and
a minimum operator for the cost criteria to deter-
mine the best value of each criterion among
all alternatives. So O∗ = {

c∗
1, c

∗
2, c

∗
3, . . . , c

∗
m

}
where for a benefit criterion ck

∗ ={
maxij T k

eij
, minij Ik

eij
, minij Fk

eij

}
, while for a cost

criterion, ck
∗ =

{
minij T k

eij
, maxij Ik

eij
, maxij Fk

eij

}

Step 2: Establish the weighted similarity matrix Sw

= (Swij)n×n = (Sw(eij, O
∗))n×n using formulae (5)

and (6) to measure the similarity between the weight
of each edge and the ideal weight.

Step 3: Construct the optimum spanning tree of the
single valued neutrosophic graph G(A,E) by Kruskal
algorithm [27].

1. Arrange the edges of the weighted graph in
decreasing order by similarity measure values
from the similarity matrix Sw and set a subgraph
S of G to be empty set .

2. At each step choose the edge e with greatest
similarity measure value to be added to the
subgraph S, where the end point of e is discon-
nected.

3. Repeat step 2 until S spans all the vertices.

6. Numerical example

A cable TV company is planning to lay cable to a
new neighborhood (Fig. 1). It is constrained to bury
the cable only along certain paths as shown in the
graph. It wants to avoid some of those paths which
might be more expensive, because they are longer, or
require the cable to be buried deeper. It wants to use
those paths using of which will cost less and signal
will reach faster. A spanning tree for that graph would
be a subset of those paths that has no cycles but still
connects to every house. There might be several span-
ning trees possible. A optimum spanning tree would
be one with the lowest total cost and least signal-flow
time.

A decision maker evaluates the time and cost of
each path in SVNSs which are given by matrix T
and matrix C respectively. The weight vectors of
time and cost are 0.45 and 0.55 respectively. We
use the newly introduced approach to obtain the
optimum spanning tree from the decision matrix
for time T = (Tij)n×n = (T (Ai, Aj))n×n and deci-
sion matrix for cost C = (Cij)n×n = (C(Ai, Aj))n×n

where T (Ai, Aj) and C(Ai, Aj) denote the time and
cost for the path AiAj respectively.

Step 1: Time and cost are cost criteria and they are
to be minimum. From matrix T and C we can obtain
the following ideal weight:

O∗ = {(0.2, 0.4, 0.5), (0.3, 0.5, 0.6)}

Step 2: calculate the weighted similarity matrix
Sw=(Swij)n×n = (Sw(eij, O

∗))n×n. Here, S1
w and

S2
w are the two similarity matrices which have been

obtained by using equations (5) and (6) respectively.

Fig. 1. Network.
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T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Decision matrix for time (information given by DM)

− (0.7, 0.2, 0.15) (0.6, 0.2, 0.1) (0.3, 0.2, 0.5) (0.4, 0.3, 0.3) (0.55, 0.2, 0.25)

(0.7, 0.2, 0.15) − (0.4, 0.3, 0.35) (0.5, 0.1, 0.4) (0.2, 0.3, 0.3) (0.6, 0.3, 0.3)

(0.6, 0.2, 0.1) (0.4, 0.3, 0.35) − (0.55, 0.2, 0.25) (0.4, 0.2, 0.4) (0.2, 0.4, 0.4)

(0.3, 0.2, 0.5) (0.5, 0.1, 0.4) (0.55, 0.2, 0.25) − (0.4, 0.2, 0.4) (0.9, 0.2, 0)

(0.4, 0.3, 0.3) (0.2, 0.3, 0.3) (0.4, 0.2, 0.4) (0.44, 0.2, 0.35) − (0.5, 0.15, 0.35)

(0.55, 0.2, 0.25) (0.6, 0.3, 0.3) (0.2, 0.4, 0.4) (0.9, 0.2, 0) (0.5, 0.15, 0.35) −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Decision matrix for cost (information given by DM)

− (0.6, 0.3, 0.2) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) (0.57, 0.2, 0.15)

(0.6, 0.3, 0.2) − (0.8, 0.1, 0.1) (0.7, 0.1, 0.1) (0.3, 0.2, 0.6) (0.5, 0.4, 0.2)

(0.7, 0.2, 0.1) (0.8, 0.1, 0.1) − (0.7, 0.1, 0.15) (0.8, 0.2, 0.1) (0.4, 0.5, 0.1)

(0.6, 0.3, 0.1) (0.7, 0.1, 0.1) (0.7, 0.1, 0.15) − (0.6, 0.2, 0.2) (0.8, 0.2, 0.1)

(0.8, 0.1, 0.1) (0.3, 0.2, 0.6) (0.8, 0.2, 0.1) (0.6, 0.2, 0.2) − (0.75, 0.1, 0.2)

(0.57, 0.2, 0.15) (0.5, 0.4, 0.2) (0.4, 0.5, 0.1) (0.8, 0.2, 0.1) (0.75, 0.1, 0.2) −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S1
w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.630684 0.576982 0.715352 0.614436 0.628848

0.630684 1 0.621531 0.574103 0.8227225 0.736966

0.576982 0.621531 1 0.581094 0.628318 0.873071

0.715352 0.574103 0.581094 1 0.659693 0.514573

0.614436 0.827225 0.628318 0.659693 1 0.587619

0.628848 0.736966 0.873071 0.514573 0.587619 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

S2
w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.896447 0.858401 0.931475 0.85593 0.893599

0.896447 1 0.857906 0.84782 0.979284 0.951106

0.858401 0.857906 1 0.854415 0.878184 0.984472

0.931475 0.84782 0.854415 1 0.908482 0.809204

0.85593 0.979284 0.878184 0.908482 1 0.857713

0.893599 0.951106 0.984472 0.809204 0.857713 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 3. Establish the optimum spanning tree of
the single-valued neutrosophic graph G(A,E) by
Kruskal algorithm [27].

1. Sort the edges of G in decreasing order by
weights from matrix S1

w.

S1
w36 > S1

w52 > S1
w62 > S1

w41 > S1
w54 >

S1
w21 > S1

w61 > S1
w53 > S1

w32 > S1
w51 >

S1
w65 > S1

w43 > S1
w31 > S1

w42 > S1
w64.

Sort the edges of G in decreasing order by
weights from matrix S2

w.

S2
w36 > S2

w52 > S2
w62 > S2

w41 > S2
w54 >

S2
w61 > S2

w21 > S2
w53 > S2

w31 > S2
w32 >

S2
w65 > S2

w51 > S2
w43 > S2

w42 > S2
w64.

2. Keep an empty subgraph S of G and add the
edge e with the greatest weight to S, where the
end point of e is disconnected; thus we choose
e36 between A3 and A6 in both cases.

3. Repeat process (2) until the subgraph S spans
six nodes in both cases. Thus, the same optimum
spanning tree of the single-valued neutrosophic
graph G(A,E) is obtained in both the cases, as
shown in Fig. 2.
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Fig. 2. Optimum spanning tree.

7. Conclusion

This paper proposes a solution approach of the
optimum spanning tree problems considering the
inconsistency, incompleteness and indeterminacy of
the information. The approach shows how to fulfill a
network problem with multiple criteria optimally to
get the optimum spanning tree in neutrosophic envi-
ronment. Additionally, this paper proposes a couple
of similarity measure methods which can be used to
compare between NSs. Also we deduce a couple of
entropy measure approaches which give meaningful
result as already discussed in the paper while deter-
mining the uncertainty of events.
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