An Elegant Solution to the Cosmological Constant Problem based on The Bohm-Poisson Equation

Carlos Castro Perelman

October 2017

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA. 30314
perelmanc@hotmail.com

Abstract

After applying the recently proposed Bohm-Poisson equation [1] to the observable Universe as a whole, and by introducing an ultraviolet (Planck) and infrared (Hubble) scale, one can naturally obtain a value for the vacuum energy density of the same magnitude as the extremely small observed vacuum energy density, and explain the origins of its repulsive gravitational nature. Because Bohm’s formulation of QM is by construction non-local, it is this non-locality which casts light into the crucial ultraviolet/infrared entanglement of the Planck/Hubble scales which was required in order to obtain the observed value of the vacuum energy density.

Exact solutions to the stationary spherically symmetric Newton-Schroedinger equation

\[i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{r},t) - \left(Gm^2 \int \frac{|\Psi(\vec{r}',t)|^2}{|\vec{r} - \vec{r}'|} \, d^3r' \right) \Psi(\vec{r},t) \] (1)

were proposed recently in terms of integrals involving generalized Gaussians [1]. The energy eigenvalues were also obtained in terms of these integrals which agree with the numerical results in the literature. We proceeded to replace the nonlinear Newton-Schroedinger equation for a non-linear quantum-like Bohm-Poisson equation involving Bohm’s quantum potential, and where the fundamental quantity is no longer the wave-function \(\Psi \) but the real-valued probability density \(\rho \).

Bohm’s quantum potential \(V_Q = -\frac{\hbar^2}{2m} (\nabla^2 \sqrt{\rho}/\sqrt{\rho}) \) has a geometrical derivation in terms of the Weyl scalar curvature produced by an ensemble density of paths associated with one, and only one particle [2]. This geometrization process of quantum mechanics allowed to derive the Schroedinger, Klein-Gordon [2] and Dirac equations [3]. Most recently, a related geometrization of quantum mechanics was proposed [4] that describes
the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity. Based on these results we proposed [1] the following nonlinear quantum-like Bohm-Poisson equation for static solutions $\rho = \rho(\vec{r})$, after reabsorbing a mass factor inside ρ so that ρ is now a mass-density,

$$\nabla^2 V_Q = 4\pi Gm\rho \Rightarrow -\frac{\hbar^2}{2m} \nabla^2 \left(\frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right) = 4\pi Gm\rho$$

(2)

such that one could replace the nonlinear Newton-Schroedinger equation for the above non-linear quantum-like Bohm-Poisson equation (2) where the fundamental quantity is no longer the wave-function Ψ (complex-valued in general) but the real-valued probability density $\rho = \Psi^*\Psi$.

It has been proposed by [5], [6] to give up the description of physical states in terms of ensembles of state vectors with various probabilities, relying instead solely on the density matrix as the description of reality. The time evolution of ρ is governed by the Lindblad equation. The authors [6] also investigated a number of unexplored features of quantum theory, including an interesting geometrical structure- which they called subsystem space- that they believed merits further study.

An infinite-derivative-gravity generalization of eq-(2) is [1]

$$-\frac{\hbar^2}{2m} (e^{-\frac{\sigma^2}{4}} \nabla^2) \left(\frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right) = 4\pi Gm\rho$$

(3)

the above equation is nonlinear and nonlocal.

If one wishes to introduce a temporal evolution to ρ via a Linblad-like equation, for instance, this would lead to an overdetermined system of differential equations for $\rho(\vec{r}, t)$. This problem might be another manifestation of the problem of time in Quantum Gravity. Naively replacing ∇^2 in eqs-(2,3) for the D’Alambertian operator $\partial_\mu \partial^\mu, \mu = 0, 1, 2, 3$ has the caveat that in QFT $\rho(x^\mu) = \rho(\vec{r}, t)$ no longer has the interpretation of a probability density (it is now related to the particle number current). For the time being we shall just focus on static solutions $\rho(\vec{r})$.

It is straightforward to verify that a spherically symmetric solution to eq-(2) in $D = 3$ is

$$\rho(r) = \frac{A}{r^4}, \quad A = -\frac{\hbar^2}{2\pi Gm^2} < 0$$

(4)

At first glance, since $\rho(r) \leq 0$ one would be inclined to dismiss such solution as being unphysical. Nevertheless, we can bypass this problem by focusing instead on the shifted density $\tilde{\rho}(r) \equiv \rho(r) - \rho_0$ obeying the Bohm-Poisson equation

$$-\frac{\hbar^2}{2m} \nabla^2 \left(\frac{\nabla^2 \sqrt{\tilde{\rho}}}{\sqrt{\tilde{\rho}}} \right) = 4\pi Gm\tilde{\rho}$$

(5)

\[1\]To be more precise it is the Gorini-Kossakowski-Sudarshan-Lindblad equation
and whose solution for the *shifted* density is given by

\[\tilde{\rho} = \frac{A}{r^4} = \rho(r) - \rho_o \leq 0, \Rightarrow \rho(r) = \frac{A}{r^4} + \rho_o, \quad A = -\frac{\hbar^2}{2\pi Gm^2} \]

(6)

It is not problematic that the terms inside the square roots are less than zero, since a common factor of \(i = \sqrt{-1}\) appears both in the numerator and denominator, and hence it cancels out. The idea now is to focus on the *domain* of values where \(\rho(r) \geq 0\). And, in doing so, it will allows to show that \(\rho_o\) is of the same order of magnitude as the (extremely small) observed vacuum energy density, after introducing an ultraviolet and infrared length scale which are close in values to the Planck \(L_p\) and Hubble scale \(R_H\), respectively. In particular, the ultraviolet Planck scale \(L_p\) is chosen such that

\[\rho(r = L_p) = -\frac{\hbar^2}{2\pi Gm^2} \frac{1}{L_p^4} + \rho_o = 0 \Rightarrow \rho_o = \frac{\hbar^2}{2\pi Gm^2} \frac{1}{L_p^4} \]

(7)

The domain of physical values of \(r\) must be \(r \geq L_p\) in order to ensure a positive-definite density \(\rho(r) \geq 0\). By inserting the observed vacuum energy density \(\rho_o = \frac{3}{8\pi L_p^2 R_H^2}\) (in units \(\hbar = c = 1\)) into eq-(7) one arrives at

\[Gm = \frac{2}{\sqrt{3}} R_H = 1.154 R_H, \quad G = L_p^2, \quad h = c = 1 \]

(8)

Therefore, the value of \(Gm\) is quite close to \(R_H\), which is compatible with the value of the mass of the observable universe \(M_U\) given by \(GM_U = R_H\), and which in Planck mass units is \(M_U = (R_H/L_p)M_p \sim 10^{61} M_p\).

The infrared scale \(L\) is fixed by the normalization condition

\[m = \int_{L_p}^L \rho(r) 4\pi r^2 dr = \int_{L_p}^L \left(\frac{A}{r^4} + \rho_0 \right) 4\pi r^2 dr = \int_{L_p}^L \left(-\frac{1}{2\pi Gm^2} \frac{1}{r^4} + \rho_0 \right) 4\pi r^2 dr \]

(9)

Upon performing the integral in eq-(9), using eq-(8), and after some straightforward algebra one arrives at the relationship

\[\frac{1}{L_p} \left(\frac{1}{3} \left(\frac{L}{L_p} \right)^3 + \frac{L_p}{L} - \frac{4}{3} \right) = \frac{1}{2L_p} \left(\frac{2}{\sqrt{3}} \right)^3 \left(\frac{R_H}{L_p} \right)^3 \]

(10)

which furnishes the value of the infrared scale

\[L \simeq (\frac{4}{\sqrt{3}})^{1/3} R_H = 1.321 R_H \]

(11)

in terms of the Hubble scale. As expected, the value of \(L \simeq R_H\) is of the *same* order of magnitude as the Hubble scale.
On the other hand, if one were to set a priori the value of $L = R_H$ to coincide precisely with the Hubble scale, from the two eqs-(7,9) one would have obtained (in units $\hbar = c = 1$) the following values

$$Gm = (\frac{2}{3})^{1/3} R_H, \quad \rho_o = \frac{1}{2\pi} (\frac{3}{2})^{2/3} (\frac{L_p}{R_H})^2 \frac{1}{L_p^4}$$

(12)

for the mass m and the vacuum energy density ρ_0. The ratio of the value of ρ_0 obtained in eq-(12) with the observed value of ρ_o associated with a de Sitter expanding universe is $\frac{4}{3} (\frac{3}{2})^{2/3} = 1.746$; i.e. the values are of the same order of magnitude. This result is to be contrasted with the 10^{122} discrepancy associated with the cosmological constant problem. A third scenario is to fix a priori the values of $Gm = R_H$, and $\rho_o = \frac{3}{8\pi L_p^2 R_H^2}$, and then from eqs-(7,9) derive the values of the ultraviolet and infrared scales, which will also turn out to be quite close to the Planck and Hubble scale, respectively, as expected.

Not only one is able to derive very acceptable results for the vacuum energy density from the Bohm-Poisson equation, but one also finds the correct physical interpretation of the vacuum energy density as a repulsive gravitational force. The reasoning goes as follows. A simple inspection of the left hand side of the Bohm-Poisson equation (5) for $\tilde{\rho} = \rho - \rho_o = 4r^{-4} \leq 0$, allows to multiply the numerator and denominator by $i = \sqrt{-1}$. Whereas in the right hand side one can simply rewrite $G\tilde{\rho} = (-G)(-\tilde{\rho})$, leading now to a Bohm-Poisson equation corresponding to a positive definite expression $-\tilde{\rho} = \rho_o - \rho = -4r^{-4} \geq 0$, but with a negative gravitational constant $-G < 0$, associated to repulsive gravity.

Concluding, after applying the Bohm-Poisson equation to the observable Universe as a whole, and by introducing an ultraviolet (Planck) and infrared (Hubble) scale, one can naturally obtain a value for the vacuum energy density of the same magnitude as the extremely-small observed vacuum energy density, and explain the origins of its repulsive gravitational nature. Is it numerical coincidence or design? Because Bohm’s formulation of QM is by construction non-local, it is this non-locality which casts light into the crucial ultraviolet/infrared entanglement of the Planck/Hubble scales which was required in order to obtain the observed values of the vacuum energy density.

Acknowledgments

We thank M. Bowers for her assistance. To Ramon Carbo-Dorca and Paul Slater for many very useful discussions concerning other solutions to the Bohm-Poisson equation.

References

