How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra

October 14, 2017

James Smith
nitac14b@yahoo.com
https://mx.linkedin.com/in/james-smith-1b195047

Abstract

We show how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that uses formulas developed, previously, for a single rotation. The work presented here (which includes a sample calculation) also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations.

"Rotation of the vector \mathbf{v} through the bivector angle $\mathbf{M}_{1} \mu_{1}$, to produce the vector \mathbf{v}^{\prime}."

Contents

1 Introduction
2 A Brief Review of How a Rotation of a Given Vector Can be Effected via GA
3 Identifying the "Representation" of a Composite Rotation
6 Appendix: Identifying the Bivector Angle $\mathbf{S} \sigma$ through which the Vector v can be Rotated to Produce $\mathrm{v}^{\prime \prime}$ in a Single Operation

1 Introduction

Suppose that we rotate some vector \mathbf{v} through the bivector angle $\mathbf{M}_{1} \mu_{1}$ to produce the vector that we shall call \mathbf{v}^{\prime} (Fig. 11), and that we then rotate \mathbf{v}^{\prime} through the bivector angle $\mathbf{M}_{2} \mu_{2}$ to produce the vector that we shall call $\mathbf{v}^{\prime \prime}$. That sequence of rotations is called the composition of the two rotations. It is equal to the rotation through some bivector angle $\mathbf{S} \sigma$ (1), pp. 89-91). Geometric Algebra (GA) is a convenient and efficient tool for manipulating rotations - single as well as composite - as abstract symbols, but what form does a numerical calculation of a rotation take in a concrete situation? And how can we calculate the bivector angle $\mathbf{S} \sigma$?

Those are two of the questions that we will address in this document. Our procedure will make use of single-rotation formulas that were developed in [2]. We'll begin with a review of how a given vector can be rotated via GA. In that review, we'll discuss the important concept of the representation of a rotation, after which we'll present an formula that can be implemented in Excel for to calculate single rotations of a given vector.

Having finished that review, we'll see how to express the representation of a composite rotation in terms that can be substituted directly in the formula for single rotations. We'll then work a sample problem in which we'll calculate the results of successive rotations of a vector. We'll also calculate the bivector angle that produces the same rotation in a single operation. The method used for calculating that bivector angle is presented in the Appendix.

Figure 1: Rotation of the vector \mathbf{v} through the bivector angle $\mathbf{M}_{2} \mu_{2}$, to produce the vector \mathbf{v}^{\prime}.

Figure 2: Rotation of the vector \mathbf{v}^{\prime} through the bivector angle $\mathbf{M}_{2} \mu_{2}$, to produce the vector $\mathbf{v}^{\prime \prime}$.

Figure 3: Rotation of \mathbf{v} through the bivector angle $\mathbf{S} \sigma$, to produce the vector $\mathbf{v}^{\prime \prime}$ in a single operation.

2 A Brief Review of How a Rotation of a Given Vector Can be Effected via GA

References [3] (pp. 280-286) and [1] (pp. 89-91) derive and explain the following formula for finding the new vector, \mathbf{w}^{\prime}, that results from the rotation of a vector \mathbf{w} through the angle θ with respect to a plane that is parallel to the unit bivector Q:

Figure 4: Rotation of the vector \mathbf{w} through the bivector angle \mathbf{Q}_{1}, to produce the vector \mathbf{w}^{\prime}.

$$
\begin{equation*}
\mathbf{w}^{\prime}=\underbrace{\left[e^{-\mathbf{Q} \theta / 2}\right][\mathbf{w}]\left[e^{\mathbf{Q} \theta / 2}\right]}_{\text {Notation: } \mathbf{R}_{\mathbf{Q} \theta}(\mathbf{w})} \tag{2.1}
\end{equation*}
$$

For our convenience later in this document, we will follow Reference [1] (p. 89) in saying that the factor $e^{-\mathbf{Q} \theta / 2}$ represents the rotation $\mathrm{R}_{\mathbf{Q} \theta}$. That factor is a quaternion, but in GA terms it is a multivector:

$$
\begin{equation*}
e^{-\mathbf{Q} \theta / 2}=\cos \frac{\theta}{2}-\mathbf{Q} \sin \frac{\theta}{2} \tag{2.2}
\end{equation*}
$$

As further preparation for work that we'll do later, we'll mention that for any given right-handed reference system with orthonormal basis vectors $\hat{\mathbf{a}}, \hat{\mathbf{b}}$, and $\hat{\mathbf{c}}$, we may express the unit bivector \mathbf{Q} as a linear combination of the basis bivectors $\hat{\mathbf{a}} \hat{\mathbf{b}}, \hat{\mathbf{b}} \hat{\mathbf{c}}$, and $\hat{\mathbf{a}} \hat{\mathbf{c}}$:

$$
\mathbf{Q}=\hat{\mathbf{a}} \hat{\mathbf{b}} q_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} q_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} q_{a c}
$$

in which $q_{a b}, q_{b c}$, and $q_{a c}$ are scalars, and $q_{a b}^{2}+q_{b c}^{2}+q_{a c}^{2}=1$.
To present a convenient way of calculating rotations via Excel spreadsheets, Ref. [2] built upon that idea to write $e^{-\mathbf{Q} \theta / 2}$ as

$$
\begin{equation*}
e^{-\mathbf{Q} \theta / 2}=f_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} f_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} f_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} f_{a c}\right) \tag{2.3}
\end{equation*}
$$

with $f_{o}=\cos \frac{\theta}{2} ; f_{a b}=q_{a b} \sin \frac{\theta}{2} ; f_{b c}=q_{b c} \sin \frac{\theta}{2} ;$ and $f_{a c}=q_{a c} \sin \frac{\theta}{2}$. Similarly,

$$
\begin{equation*}
e^{\mathbf{Q} \theta / 2}=f_{o}+\left(\hat{\mathbf{a}} \hat{\mathbf{b}} f_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} f_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} f_{a c}\right) \tag{2.4}
\end{equation*}
$$

Using these expressions for $e^{-\mathbf{Q} \theta / 2}$ and $e^{\mathbf{Q} \theta / 2}$, and writing \mathbf{w} as $\mathbf{w}=\hat{\mathbf{a}} w_{a}+$ $\hat{\mathbf{b}} w_{b}+\hat{\mathbf{c}} w_{c}$, Eq. 2.1 becomes

$$
\mathbf{w}^{\prime}=\left[f_{o}-\hat{\mathbf{a}} \hat{\mathbf{b}} f_{a b}-\hat{\mathbf{b}} \hat{\mathbf{c}} f_{b c}-\hat{\mathbf{a}} \hat{\mathbf{c}} f_{a c}\right]\left[\hat{\mathbf{a}} w_{a}+\hat{\mathbf{b}} w_{b}+\hat{\mathbf{c}} w_{c}\right]\left[f_{o}+\hat{\mathbf{a}} \hat{\mathbf{b}} f_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} f_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} f_{a c}\right]
$$

By expanding and simplifying the right-hand, side we obtain

$$
\begin{align*}
\mathbf{w}^{\prime}= & \hat{\mathbf{a}}\left[w_{a}\left(f_{o}^{2}-f_{a b}^{2}+f_{b c}^{2}-f_{a c}^{2}\right)+w_{b}\left(-2 f_{o} f_{a b}-2 f_{b c} f_{a c}\right)+w_{c}\left(-2 f_{o} f_{a c}+2 f_{a b} f_{b c}\right)\right] \\
& +\hat{\mathbf{b}}\left[w_{a}\left(2 f_{o} f_{a b}-2 f_{b c} f_{a c}\right)+w_{b}\left(f_{o}^{2}-f_{a b}^{2}-f_{b c}^{2}+f_{a c}^{2}\right)+w_{c}\left(-2 f_{o} f_{b c}-2 f_{a b} f_{a c}\right)\right] \tag{2.5}\\
& +\hat{\mathbf{c}}\left[w_{a}\left(2 f_{o} f_{a c}+2 f_{a b} f_{b c}\right)+w_{b}\left(2 f_{o} f_{b c}-2 f_{a b} f_{a c}\right)+w_{c}\left(f_{o}^{2}+f_{a b}^{2}-f_{b c}^{2}-f_{a c}^{2}\right)\right]
\end{align*}
$$

Because this result can be implemented conveniently in (for example) a spreadsheet similar to Ref. 4], the sections that follow will show how to express the representation of a composite rotation in the form of Eq. (2.3).

3 Identifying the "Representation" of a Composite Rotation

Let's begin by defining two unit bivectors, \mathbf{M}_{1} and \mathbf{M}_{2} :

$$
\begin{aligned}
& \mathbf{M}_{1}=\hat{\mathbf{a}} \hat{\mathbf{b}} m_{1 a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} m_{1 b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} m_{1 a c} \\
& \mathbf{M}_{2}=\hat{\mathbf{a}} \hat{\mathbf{b}} m_{2 a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} m_{2 b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} m_{2 a c}
\end{aligned}
$$

Now, write the rotation of a vector \mathbf{v} by the bivector angle $\mathbf{M}_{1} \mu_{1}$ to produce the vector \mathbf{v}^{\prime} :

$$
\mathbf{v}^{\prime}=\left[e^{-\mathbf{M}_{1} \mu_{1} / 2}\right][\mathbf{v}]\left[e^{\mathbf{M}_{1} \mu_{1} / 2}\right]
$$

Next, we will rotate \mathbf{v}^{\prime} by the bivector angle $\mathbf{M}_{2} \mu_{2}$ to produce the vector $\mathbf{v}^{\prime \prime}$:

$$
\mathbf{v}^{\prime \prime}=\left[e^{-\mathbf{M}_{2} \mu_{2} / 2}\right]\left[\mathbf{v}^{\prime}\right]\left[e^{\mathbf{M}_{2} \mu_{2} / 2}\right]
$$

Combining those two equations,

$$
\mathbf{v}^{\prime \prime}=\left[e^{-\mathbf{M}_{2} \mu_{2} / 2}\right]\left\{\left[e^{-\mathbf{M}_{1} \mu_{1} / 2}\right][\mathbf{v}]\left[e^{\mathbf{M}_{1} \mu_{1} / 2}\right]\right\}\left[e^{\mathbf{M}_{2} \mu_{2} / 2}\right]
$$

The vector $\mathbf{v}^{\prime \prime}$ was produced from \mathbf{v} via the composition of the rotations by the bivector angles $\mathbf{M}_{1} \mu_{1}$ and $\mathbf{M}_{2} \mu_{1}$. The representation of that composition is the product $\left[e^{-\mathbf{M}_{2} \mu_{1} / 2}\right]\left[e^{-\mathbf{M}_{1} \mu_{1} / 2}\right]$. We'll rewrite the previous equation to make that idea clearer:

$$
\mathbf{v}^{\prime \prime}=\underbrace{\left\{\left[e^{-\mathbf{M}_{2} \mu_{2} / 2}\right]\left[e^{-\mathbf{M}_{1} \mu_{1} / 2}\right]\right\}}_{\begin{array}{c}
\text { Representation } \\
\text { of the composition }
\end{array}}[\mathbf{v}]\left\{\left[e^{\mathbf{M}_{1} \mu_{1} / 2}\right]\left[e^{\mathbf{M}_{2} \mu_{2} / 2}\right]\right\} .
$$

There exists an identifiable bivector angle - we'll call it $\mathbf{S} \sigma$-through which \mathbf{v} could have been rotated to produce $\mathbf{v}^{\prime \prime}$ in a single operation rather than through the composition of rotations through $\mathbf{M}_{1} \mu_{1}$ and $\mathbf{M}_{2} \mu_{2}$. (See the Appendix.) But instead of going that route, let's write $e^{-\mathbf{M}_{1} \mu_{1} / 2}$ and $e^{-\mathbf{M}_{2} \mu_{2} / 2}$ in a way that will enable us to use Eq. (2.3):

$$
\begin{aligned}
& e^{-\mathbf{M}_{1} \mu_{1} / 2}=g_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} g_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} g_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} g_{a c}\right), \text { and } \\
& e^{-\mathbf{M}_{2} \mu_{2} / 2}=h_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} h_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} h_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} h_{a c}\right)
\end{aligned}
$$

where $g_{o}=\cos \frac{\mu_{1}}{2} ; g_{a b}=m_{1 a b} \sin \frac{\mu_{1}}{2} ; g_{b c}=m_{1 b c} \sin \frac{\mu_{1}}{2}$; and $g_{a c}=m_{1 a c} \sin \frac{\mu_{1}}{2}$, and $h_{o}=\cos \frac{\mu_{2}}{2} ; h_{a b}=m_{2 a b} \sin \frac{\mu_{2}}{2} ; h_{b c}=m_{2 b c} \sin \frac{\mu_{2}}{2}$; and $h_{a c}=m_{2 a c} \sin \frac{\mu_{2}}{2}$. Now, we write the representation of the the composition as

$$
\underbrace{\left[h_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} h_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} h_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} h_{a c}\right)\right]}_{e^{-\mathrm{M}_{2} \mu_{2} / 2}} \underbrace{\left[g_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} g_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} g_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} g_{a c}\right)\right]}_{e^{-\mathrm{M}_{1} \mu_{1} / 2}} .
$$

After expanding that product and grouping like terms, the representation of the composite rotation can be written in a form identical to Eq. 2.3:

$$
\begin{equation*}
\mathcal{F}_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}\right) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{align*}
\mathcal{F}_{o} & =\left\langle e^{-\mathbf{M}_{2} \mu_{2} / 2} e^{-\mathbf{M}_{1} \mu_{1} / 2}\right\rangle_{0} \\
& =h_{o} g_{o}-h_{a b} g_{a b}-h_{b c} g_{b c}-h_{a c} g_{a c} \\
\mathcal{F}_{a b} & =h_{o} g_{a b}+h_{a b} g_{o}-h_{b c} g_{a c}+h_{a c} g_{b c} \tag{3.2}\\
\mathcal{F}_{b c} & =h_{o} g_{b c}+h_{a b} g_{a c}+h_{b c} g_{o}-h_{a c} g_{a b}, \text { and } \\
\mathcal{F}_{a c} & =h_{o} g_{a c}-h_{a b} g_{b c}+h_{b c} g_{a b}+h_{a c} g_{o}
\end{align*}
$$

Therefore, with these definitions of $\mathcal{F}_{o}, \mathcal{F}_{a b}, \mathcal{F}_{b c}$, and $\mathcal{F}_{a c}, \mathbf{v}^{\prime \prime}$ can be calculated from \mathbf{v} (written as $\hat{\mathbf{a}} v_{a}+\hat{\mathbf{b}} v_{b}+\hat{\mathbf{c}} v_{c}$) via an equation that is analogous, term for term, with Eq. 2.5):

$$
\begin{align*}
\mathbf{v}^{\prime}= & \hat{\mathbf{a}}\left[v_{a}\left(\mathcal{F}_{o}^{2}-\mathcal{F}_{a b}^{2}+\mathcal{F}_{b c}^{2}-\mathcal{F}_{a c}^{2}\right)+v_{b}\left(-2 \mathcal{F}_{o} \mathcal{F}_{a b}-2 \mathcal{F}_{b c} \mathcal{F}_{a c}\right)+v_{c}\left(-2 \mathcal{F}_{o} \mathcal{F}_{a c}+2 \mathcal{F}_{a b} \mathcal{F}_{b c}\right)\right] \\
& +\hat{\mathbf{b}}\left[v_{a}\left(2 \mathcal{F}_{o} \mathcal{F}_{a b}-2 \mathcal{F}_{b c} \mathcal{F}_{a c}\right)+v_{b}\left(\mathcal{F}_{o}^{2}-\mathcal{F}_{a b}^{2}-\mathcal{F}_{b c}^{2}+\mathcal{F}_{a c}^{2}\right)+v_{c}\left(-2 \mathcal{F}_{o} \mathcal{F}_{b c}-2 \mathcal{F}_{a b} \mathcal{F}_{a c}\right)\right] \\
& +\hat{\mathbf{c}}\left[v_{a}\left(2 \mathcal{F}_{o} \mathcal{F}_{a c}+2 \mathcal{F}_{a b} \mathcal{F}_{b c}\right)+v_{b}\left(2 \mathcal{F}_{o} \mathcal{F}_{b c}-2 \mathcal{F}_{a b} \mathcal{F}_{a c}\right)+v_{c}\left(\mathcal{F}_{o}^{2}+\mathcal{F}_{a b}^{2}-\mathcal{F}_{b c}^{2}-\mathcal{F}_{a c}^{2}\right)\right] . \tag{3.3}
\end{align*}
$$

At this point, you may (and should) be objecting that I've gotten ahead of myself. Please recall that Eq. 2.5 was derived starting from the "rotation" equation (2.1)

$$
\mathbf{w}^{\prime}=\left[e^{-\mathbf{Q} \theta / 2}\right][\mathbf{w}]\left[e^{\mathbf{Q} \theta / 2}\right] .
$$

The quantities $f_{o}, f_{o}, f_{a b}, f_{b c}$, and $f_{a c}$ in Eq. 2.5, for which

$$
\begin{equation*}
e^{-\mathbf{Q} \theta / 2}=f_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} f_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} f_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} f_{a c}\right), \tag{3.4}
\end{equation*}
$$

also meet the condition that

$$
\begin{equation*}
e^{\mathbf{Q} \theta / 2}=f_{o}+\left(\hat{\mathbf{a}} \hat{\mathbf{b}} f_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} f_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} f_{a c}\right) . \tag{3.5}
\end{equation*}
$$

We are not justified in using $\mathcal{F}_{o}, \mathcal{F}_{a b}, \mathcal{F}_{b c}$, and $\mathcal{F}_{a c}$ in Eq. 2.5 unless we first prove that these composite-rotation " \mathcal{F} 's", for which

$$
\begin{equation*}
\mathcal{F}_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}\right)=e^{-\mathbf{M}_{2} \mu_{2} / 2} e^{-\mathbf{M}_{1} \mu_{1} / 2}, \tag{3.6}
\end{equation*}
$$

also meet the condition that

$$
\begin{equation*}
\mathcal{F}_{o}+\left(\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}\right)=e^{\mathbf{M}_{1} \mu_{1} / 2} e^{-\mathbf{M}_{2} \mu_{2} / 2} \tag{3.7}
\end{equation*}
$$

Although more-elegant proofs may well exist, "brute force and ignorance" gets the job done. We begin by writing $e^{\mathbf{M}_{1} \mu_{1} / 2} e^{-\mathbf{M}_{2} \mu_{2} / 2}$ in a way that is analogous to that which was presented in the text that preceded Eq. (3.1):

$$
\underbrace{\left[g_{o}+\left(\hat{\mathbf{a}} \hat{\mathbf{b}} g_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} g_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} g_{a c}\right)\right]}_{e^{\mathrm{M}_{1} \mu_{1} / 2}} \underbrace{\left[h_{o}+\left(\hat{\mathbf{a}} \hat{\mathbf{b}} h_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} h_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} h_{a c}\right)\right]}_{e^{\mathrm{M}_{2} \mu_{2} / 2}} .
$$

Expanding, simplifying, and regrouping, we fine that $e^{\mathbf{M}_{1} \mu_{1} / 2} e^{-\mathbf{M}_{2} \mu_{2} / 2}$ is indeed equal to $\mathcal{F}_{o}+\left(\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}\right)$, as required.

4 A Sample Calculation

The vector $\mathbf{v}=\frac{4}{3} \hat{\mathbf{a}}-\frac{4}{3} \hat{\mathbf{b}}+\frac{16}{3} \hat{\mathbf{c}}$ is rotated through the bivector angle $\hat{\mathbf{a}} \hat{\mathbf{b}} \pi / 2$ radians to produce a new vector, \mathbf{v}^{\prime}. That vector is then rotated through the bivector angle $\left(\frac{\hat{\mathbf{a}} \hat{\mathbf{b}}}{\sqrt{3}}+\frac{\hat{\mathbf{b}} \hat{\mathbf{c}}}{\sqrt{3}}-\frac{\hat{\mathbf{a}} \mathbf{c}}{\sqrt{3}}\right)\left(-\frac{2 \pi}{3}\right)$ to produce vector $\mathbf{v}^{\prime \prime}$. Calculate

Figure 5: Rotation of \mathbf{v} through the bivector angle $\hat{\mathbf{a}} \hat{\mathbf{b}} \pi / 2$, to produce the vector v^{\prime}.
a The vectors \mathbf{v}^{\prime} and $\mathbf{v}^{\prime \prime}$, and
b The bivector angle $\mathbf{S} \sigma$ through which \mathbf{v} could have been rotated to produce $\mathbf{v}^{\prime \prime}$ in a single operation.

We begin by calculating vector \mathbf{v}^{\prime}. The rotation is diagrammed in Fig. 5
As shown in Fig. 6, $\mathbf{v}^{\prime}=\frac{4}{3} \hat{\mathbf{a}}+\frac{4}{3} \hat{\mathbf{b}}+\frac{16}{3} \hat{\mathbf{c}}$.
We'll calculate $\mathbf{v}^{\prime \prime}$ in two ways: as the rotation of \mathbf{v}^{\prime} by the bivector angle $\left(\frac{\hat{\mathbf{a}} \hat{\mathbf{b}}}{\sqrt{3}}+\frac{\hat{\mathbf{b}} \hat{\mathbf{c}}}{\sqrt{3}}-\frac{\hat{\mathbf{a}} \hat{\mathbf{c}}}{\sqrt{3}}\right)\left(-\frac{2 \pi}{3}\right)$, and as the result of the rotation by the composite of the two individual rotations. The rotation of \mathbf{v}^{\prime} by $\left(\frac{\hat{\mathbf{a}} \hat{\mathbf{b}}}{\sqrt{3}}+\frac{\hat{\mathbf{b}} \hat{\mathbf{c}}}{\sqrt{3}}-\frac{\hat{\mathbf{a}} \mathbf{c}}{\sqrt{3}}\right)\left(-\frac{2 \pi}{3}\right)$ is diagrammed in Fig. 7. Fig. 8 shows that $\mathbf{v}^{\prime \prime}=\frac{4}{3} \hat{\mathbf{a}}+\frac{16}{3} \hat{\mathbf{b}}+\frac{4}{3} \hat{\mathbf{c}}$.

As we can see from Fig. 9, that result agrees with that which was obtained by calculating $\mathbf{v}^{\prime \prime}$ in a single step, as the composition of the individual rotations. Fig. 9 also shows that the bivector angle $\mathbf{S} \sigma$ is $\hat{\mathbf{b}} \hat{\mathbf{c}}(-\pi / 2)$, which we can also write as $\hat{\mathbf{c}} \hat{\mathbf{b}}(\pi / 2)$. That rotation is diagrammed in Fig. 10 .

5 Summary

We have seen how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that used formulas developed in [2] for a single rotation. The work presented here also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations.

Rotation of a Vector by a Given Bivector Angle

Derivation is part of the document that is available at https://www.slideshare.net/JamesSmith245/how-to-effect-a-desired-rotation-of-a-vector-about-a-given-axis-via-geometric-clifford-algebra

Result		
The vector, \mathbf{v}^{\prime}, that results from the rotation		
Components a_hat, b_hat, c_hat		
a_hat	b_hat	c_hat
1.33333333	1.33333333	5.33333333

Figure 6: A spreadsheet (Ref. [5) that uses Eq. 2.5) to calculate \mathbf{v}^{\prime} as the rotation of \mathbf{v} through the bivector angle $\hat{\mathbf{a}} \hat{\mathbf{b}} \pi / 2$.

Figure 7: Rotation of \mathbf{v}^{\prime}. Note the significance of the negative sign of the scalar angle: the direction in which \mathbf{v}^{\prime} is to be rotated is contrary to the orientation of the bivector. That significance is clearer in Fig. 10.

Rotation of a Vector by a Given Bivector Angle

Figure 8: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate $\mathbf{v}^{\prime \prime}$ as the rotation of \mathbf{v}^{\prime}.

Composite Rotation of a Vector

Figure 9: A spreadsheet (Ref. [6]) that uses Eq. (3.2 to calculate $\mathbf{v}^{\prime \prime}$ via the composite rotation of \mathbf{v}.

Figure 10: Rotation of \mathbf{v} by $\mathbf{S} \sigma$ to produce $\mathbf{v}^{\prime \prime}$ in a single operation. Note the significance of the negative sign of the scalar angle: the direction in which \mathbf{v}^{\prime} rotated is contrary to the orientation of the bivector $\hat{\mathbf{b}} \hat{\mathbf{c}}$, and contrary also to the direction of the rotation from $\hat{\mathbf{b}}$ to $\hat{\mathbf{c}}$.

6 Appendix: Identifying the Bivector Angle $\mathbf{S} \sigma$ through which the Vector v can be Rotated to Produce $\mathrm{v}^{\prime \prime}$ in a Single Operation

Let \mathbf{v} be an arbitrary vector. We want to identify the bivector angle $\mathbf{S} \sigma$ through which the initial vector, \mathbf{v}, can be rotated to produce the same vector $\mathbf{v}^{\prime \prime}$ that results from the rotation of \mathbf{v} through the composite rotation by $\mathbf{M}_{1} \mu_{1}$, then by $\mathbf{M}_{2} \mu_{2}$:

$$
\begin{equation*}
\left[e^{-\mathbf{M}_{2} \mu_{2} / 2}\right]\left[e^{-\mathbf{M}_{1} \mu_{1} / 2}\right][\mathbf{v}]\left[e^{\mathbf{M}_{1} \mu_{1} / 2}\right]\left[e^{\mathbf{M}_{2} \mu_{2} / 2}\right]=\mathbf{v}^{\prime \prime}=\left[e^{-\mathbf{S} \sigma / 2}\right][\mathbf{v}]\left[e^{\mathbf{S} \sigma / 2}\right] \tag{6.1}
\end{equation*}
$$

We want Eq. 6.1) to be true for all vectors \mathbf{v}. Therefore, $e^{\mathbf{S} \sigma / 2}$ must be equal to $\left[e^{\mathbf{M}_{1} \mu_{1} / 2}\right]\left[e^{\mathbf{M}_{2} \mu_{2} / 2}\right]$, and $e^{-\mathbf{S} \sigma / 2}$ must be equal to $\left[e^{-\mathbf{M}_{1} \mu_{1} / 2}\right]\left[e^{\mathbf{M}_{2} \mu_{2} / 2}\right]$. The second of those conditions is the same as saying that the representations of the $\mathbf{S} \sigma$ rotation and the composite rotation must be equal. We'll write that condition using the \mathcal{F}_{o} 's defined in Eq. (3.2), with \mathbf{S} expressed in terms of the unit bivectors $\hat{\mathbf{a}} \hat{\mathbf{b}}, \hat{\mathbf{b}} \hat{\mathbf{c}}$, and $\hat{\mathbf{a}} \hat{\mathbf{c}}$:

$$
\cos \frac{\sigma}{2}-\underbrace{\left(\hat{\mathbf{a}} \hat{\mathbf{b}} S_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} S_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} S_{a c}\right)}_{\mathbf{S}} \sin \frac{\sigma}{2}=\mathcal{F}_{o}-\left(\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}\right) .
$$

Now, we want to identify σ and the coefficients of $\hat{\mathbf{a}} \hat{\mathbf{b}}, \hat{\mathbf{b}} \hat{\mathbf{c}}$, and $\hat{\mathbf{a}} \hat{\mathbf{c}}$. First, we note that both sides of the previous equation are multivectors. According to the postulates of GA, two multivectors \mathcal{A}_{1} and \mathcal{A}_{2} are equal if and only if for every grade $k,\left\langle\mathcal{A}_{1}\right\rangle_{k}=\left\langle\mathcal{A}_{2}\right\rangle_{k}$. Equating the scalar parts, we see that $\cos \frac{\sigma}{2}=\mathcal{F}_{o}$. Equating the bivector parts gives $\left(\hat{\mathbf{a}} \hat{\mathbf{b}} S_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} S_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} S_{a c}\right) \sin \frac{\sigma}{2}=\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+$
$\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}$. Comparing like terms, $S_{a b}=\mathcal{F}_{a b} / \sin \frac{\sigma}{2}, S_{b c}=\mathcal{F}_{b c} / \sin \frac{\sigma}{2}$, and $S_{a c}=\mathcal{F}_{a c} / \sin \frac{\sigma}{2}$.

Next, we need to find $\sin \frac{\sigma}{2}$. Although we could do so via $\sin \frac{\sigma}{2}=\sqrt{1-\cos ^{2} \frac{\sigma}{2}}$, for the purposes of this discussion we will use the fact that \mathbf{S} is, by definition, a unit bivector. Therefore, $\|\mathbf{S}\|=1$, leading to

$$
\begin{aligned}
\left\|\sin \frac{\sigma}{2}\right\| & =\left\|\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{a b}+\hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{b c}+\hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{a c}\right\| \\
& =\sqrt{\mathcal{F}_{a b}^{2}+\mathcal{F}_{b c}^{2}+\mathcal{F}_{a c}^{2}}
\end{aligned}
$$

Now, the question is whether we want to use $\sin \frac{\sigma}{2}=+\sqrt{\mathcal{F}_{a b}^{2}+\mathcal{F}_{b c}^{2}+\mathcal{F}_{a c}^{2}}$, or $\sin \frac{\sigma}{2}=-\sqrt{\mathcal{F}_{a b}^{2}+\mathcal{F}_{b c}^{2}+\mathcal{F}_{a c}^{2}}$. The truth is that we can use either: if we use $-\sqrt{\mathcal{F}_{a b}^{2}+\mathcal{F}_{b c}^{2}+\mathcal{F}_{a c}^{2}}$ instead of $+\sqrt{\mathcal{F}_{a b}^{2}+\mathcal{F}_{b c}^{2}+\mathcal{F}_{a c}^{2}}$, then the sign of \mathbf{S} changes as well, leaving the product $\mathbf{S} \sin \frac{\sigma}{2}$ unaltered.

The choice having been made, we can find the scalar angle σ from the values of $\sin \frac{\sigma}{2}$ and $\cos \frac{\sigma}{2}$, thereby determining the bivector angle $\mathbf{S} \sigma$.

References

[1] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012).
[2] J. A. Smith, 2017, "How to Effect a Desired Rotation of a Vector about a Given Axis via Geometric (Clifford) Algebra" http://vixra.org/abs/1708.0462.
[3] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).
[4] J. A. Smith, 2017, "Rotation of a Vector about an Axis" (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4Tq×B32RRNHBHV2tpSUhRTUk/view?usp=sharing.
[5] J. A. Smith, 2017, "Rotation by a given bivector angle" (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4Tq×B32RRX2JfcDd5NjZiZoo/view?usp=sharing.
[6] J. A. Smith, 2017, "Composite rotation in GA" (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4Tq×B32RRaktDZktjcExPeUE/view?usp=sharing.

Why is it correct to identify the \mathcal{S} 's by comparing like terms? In simple terms, because the unit bivectors $\hat{\mathbf{a}} \hat{\mathbf{b}}, \hat{\mathbf{b}} \hat{\mathbf{c}} \mathrm{a} \hat{\mathbf{b}}$ are orthogonal. Two linear combinations of those bivectors are equal if and only if the coefficients match, term for term.

