How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra

October 14, 2017

James Smith nitac14b@yahoo.com https://mx.linkedin.com/in/james-smith-1b195047

Abstract

We show how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that uses formulas developed, previously, for a single rotation. The work presented here (which includes a sample calculation) also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations.

"Rotation of the vector \mathbf{v} through the bivector angle $\mathbf{M}_1 \mu_1$, to produce the vector \mathbf{v}' ."

Contents

1	Introduction	2
2	A Brief Review of How a Rotation of a Given Vector Can be Effected via GA	4
3	Identifying the "Representation" of a Composite Rotation	5
4	A Sample Calculation	7
5	Summary	8
6	Appendix: Identifying the Bivector Angle $S\sigma$ through which the Vector v can be Rotated to Produce v'' in a Single Opera-	

12

1 Introduction

tion

Suppose that we rotate some vector \mathbf{v} through the bivector angle $\mathbf{M}_1\mu_1$ to produce the vector that we shall call \mathbf{v}' (Fig. 1), and that we then rotate \mathbf{v}' through the bivector angle $\mathbf{M}_2\mu_2$ to produce the vector that we shall call \mathbf{v}'' . That sequence of rotations is called the *composition* of the two rotations. It is equal to the rotation through some bivector angle $\mathbf{S}\sigma$ ([1], pp. 89-91). Geometric Algebra (GA) is a convenient and efficient tool for manipulating rotations—single as well as composite—as abstract symbols, but what form does a numerical calculation of a rotation take in a concrete situation? And how can we calculate the bivector angle $\mathbf{S}\sigma$?

Those are two of the questions that we will address in this document. Our procedure will make use of single-rotation formulas that were developed in [2]. We'll begin with a review of how a given vector can be rotated via GA. In that review, we'll discuss the important concept of the *representation* of a rotation, after which we'll present an formula that can be implemented in Excel for to calculate single rotations of a given vector.

Having finished that review, we'll see how to express the representation of a composite rotation in terms that can be substituted directly in the formula for single rotations. We'll then work a sample problem in which we'll calculate the results of successive rotations of a vector. We'll also calculate the bivector angle that produces the same rotation in a single operation. The method used for calculating that bivector angle is presented in the Appendix.

Figure 1: Rotation of the vector ${\bf v}$ through the bivector angle ${\bf M}_2\mu_2,$ to produce the vector ${\bf v}'.$

Figure 2: Rotation of the vector \mathbf{v}' through the bivector angle $\mathbf{M}_2\mu_2$, to produce the vector \mathbf{v}'' .

Figure 3: Rotation of **v** through the bivector angle $\mathbf{S}\sigma$, to produce the vector \mathbf{v}'' in a single operation.

2 A Brief Review of How a Rotation of a Given Vector Can be Effected via GA

References [3] (pp. 280-286) and [1] (pp. 89-91) derive and explain the following formula for finding the new vector, $\mathbf{w'}$, that results from the rotation of a vector \mathbf{w} through the angle θ with respect to a plane that is parallel to the unit bivector \mathbf{Q} :

Figure 4: Rotation of the vector \mathbf{w} through the bivector angle \mathbf{Q}_1 , to produce the vector \mathbf{w}' .

$$\mathbf{w}' = \underbrace{\left[e^{-\mathbf{Q}\theta/2}\right][\mathbf{w}]\left[e^{\mathbf{Q}\theta/2}\right]}_{\text{Notation: } \mathsf{R}_{\mathbf{Q}\theta}(\mathbf{w})}.$$
(2.1)

For our convenience later in this document, we will follow Reference [1] (p. 89) in saying that the factor $e^{-\mathbf{Q}\theta/2}$ represents the rotation $\mathsf{R}_{\mathbf{Q}\theta}$. That factor is a quaternion, but in GA terms it is a multivector:

$$e^{-\mathbf{Q}\theta/2} = \cos\frac{\theta}{2} - \mathbf{Q}\sin\frac{\theta}{2}.$$
 (2.2)

As further preparation for work that we'll do later, we'll mention that for any given right-handed reference system with orthonormal basis vectors $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$, and $\hat{\mathbf{c}}$, we may express the unit bivector \mathbf{Q} as a linear combination of the basis bivectors $\hat{\mathbf{a}}\hat{\mathbf{b}}$, $\hat{\mathbf{b}}\hat{\mathbf{c}}$, and $\hat{\mathbf{a}}\hat{\mathbf{c}}$:

$$\mathbf{Q} = \hat{\mathbf{a}}\hat{\mathbf{b}}q_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}q_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}q_{ac},$$
in which q_{ab} , q_{bc} , and q_{ac} are scalars, and $q_{ab}^2 + q_{bc}^2 + q_{ac}^2 = 1$.

To present a convenient way of calculating rotations via Excel spreadsheets, Ref. [2] built upon that idea to write $e^{-\mathbf{Q}\theta/2}$ as

$$e^{-\mathbf{Q}\theta/2} = f_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}f_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}f_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}f_{ac}\right),\tag{2.3}$$

with
$$f_o = \cos\frac{\theta}{2}$$
; $f_{ab} = q_{ab}\sin\frac{\theta}{2}$; $f_{bc} = q_{bc}\sin\frac{\theta}{2}$; and $f_{ac} = q_{ac}\sin\frac{\theta}{2}$. Similarly,
 $e^{\mathbf{Q}\theta/2} = f_o + \left(\hat{\mathbf{a}}\hat{\mathbf{b}}f_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}f_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}f_{ac}\right).$ (2.4)

Using these expressions for $e^{-\mathbf{Q}\theta/2}$ and $e^{\mathbf{Q}\theta/2}$, and writing \mathbf{w} as $\mathbf{w} = \hat{\mathbf{a}}w_a + \hat{\mathbf{b}}w_b + \hat{\mathbf{c}}w_c$, Eq. (2.1) becomes

$$\mathbf{w}' = \left[f_o - \hat{\mathbf{a}}\hat{\mathbf{b}}f_{ab} - \hat{\mathbf{b}}\hat{\mathbf{c}}f_{bc} - \hat{\mathbf{a}}\hat{\mathbf{c}}f_{ac} \right] \left[\hat{\mathbf{a}}w_a + \hat{\mathbf{b}}w_b + \hat{\mathbf{c}}w_c \right] \left[f_o + \hat{\mathbf{a}}\hat{\mathbf{b}}f_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}f_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}f_{ac} \right].$$

By expanding and simplifying the right-hand, side we obtain

$$\mathbf{w}' = \hat{\mathbf{a}} \Big[w_a \left(f_o^2 - f_{ab}^2 + f_{bc}^2 - f_{ac}^2 \right) + w_b \left({}^2 f_o f_{ab} - 2 f_{bc} f_{ac} \right) + w_c \left({}^2 f_o f_{ac} + 2 f_{ab} f_{bc} \right) \Big] \\ + \hat{\mathbf{b}} \Big[w_a \left(2 f_o f_{ab} - 2 f_{bc} f_{ac} \right) + w_b \left(f_o^2 - f_{ab}^2 - f_{bc}^2 + f_{ac}^2 \right) + w_c \left({}^2 f_o f_{bc} - 2 f_{ab} f_{ac} \right) \Big] \\ + \hat{\mathbf{c}} \Big[w_a \left(2 f_o f_{ac} + 2 f_{ab} f_{bc} \right) + w_b \left(2 f_o f_{bc} - 2 f_{ab} f_{ac} \right) + w_c \left(f_o^2 + f_{ab}^2 - f_{bc}^2 - f_{ac}^2 \right) \Big] .$$

Because this result can be implemented conveniently in (for example) a spreadsheet similar to Ref. [4], the sections that follow will show how to express the representation of a composite rotation in the form of Eq. (2.3).

3 Identifying the "Representation" of a Composite Rotation

Let's begin by defining two unit bivectors, \mathbf{M}_1 and \mathbf{M}_2 :

$$\mathbf{M}_1 = \hat{\mathbf{a}}\mathbf{b}m_{1ab} + \mathbf{b}\hat{\mathbf{c}}m_{1bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}m_{1ac};$$
$$\mathbf{M}_2 = \hat{\mathbf{a}}\hat{\mathbf{b}}m_{2ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}m_{2bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}m_{2ac}.$$

Notation: $R_{Q\theta}(w)$ is the rotation of the vector w by the bivector angle $Q\theta$. Now, write the rotation of a vector \mathbf{v} by the bivector angle $\mathbf{M}_1\mu_1$ to produce the vector \mathbf{v}' :

$$\mathbf{v}' = \left[e^{-\mathbf{M}_1\mu_1/2}\right] \left[\mathbf{v}\right] \left[e^{\mathbf{M}_1\mu_1/2}\right]$$

Next, we will rotate \mathbf{v}' by the bivector angle $\mathbf{M}_2\mu_2$ to produce the vector \mathbf{v}'' :

$$\mathbf{v}^{\prime\prime} = \left[e^{-\mathbf{M}_2 \mu_2 / 2} \right] \left[\mathbf{v}^{\prime} \right] \left[e^{\mathbf{M}_2 \mu_2 / 2} \right]$$

Combining those two equations,

$$\mathbf{v}'' = \left[e^{-\mathbf{M}_2\mu_2/2}\right] \left\{ \left[e^{-\mathbf{M}_1\mu_1/2}\right] \left[\mathbf{v}\right] \left[e^{\mathbf{M}_1\mu_1/2}\right] \right\} \left[e^{\mathbf{M}_2\mu_2/2}\right].$$

The vector \mathbf{v}'' was produced from \mathbf{v} via the composition of the rotations by the bivector angles $\mathbf{M}_1 \mu_1$ and $\mathbf{M}_2 \mu_1$. The representation of that composition is the product $\left[e^{-\mathbf{M}_2 \mu_1/2}\right] \left[e^{-\mathbf{M}_1 \mu_1/2}\right]$. We'll rewrite the previous equation to make that idea clearer:

$$\mathbf{v}'' = \underbrace{\left\{ \begin{bmatrix} e^{-\mathbf{M}_{2}\mu_{2}/2} \end{bmatrix} \begin{bmatrix} e^{-\mathbf{M}_{1}\mu_{1}/2} \end{bmatrix} \right\}}_{Representation} [\mathbf{v}] \left\{ \begin{bmatrix} e^{\mathbf{M}_{1}\mu_{1}/2} \end{bmatrix} \begin{bmatrix} e^{\mathbf{M}_{2}\mu_{2}/2} \end{bmatrix} \right\}.$$

There exists an identifiable bivector angle —we'll call it $\mathbf{S}\sigma$ —through which \mathbf{v} could have been rotated to produce \mathbf{v}'' in a single operation rather than through the composition of rotations through $\mathbf{M}_1\mu_1$ and $\mathbf{M}_2\mu_2$. (See the Appendix.) But instead of going that route, let's write $e^{-\mathbf{M}_1\mu_1/2}$ and $e^{-\mathbf{M}_2\mu_2/2}$ in a way that will enable us to use Eq. (2.3):

$$e^{-\mathbf{M}_1\mu_1/2} = g_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}g_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}g_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}g_{ac}\right), \text{ and}$$
$$e^{-\mathbf{M}_2\mu_2/2} = h_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}h_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}h_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}h_{ac}\right),$$

where $g_o = \cos \frac{\mu_1}{2}$; $g_{ab} = m_{1ab} \sin \frac{\mu_1}{2}$; $g_{bc} = m_{1bc} \sin \frac{\mu_1}{2}$; and $g_{ac} = m_{1ac} \sin \frac{\mu_1}{2}$, and $h_o = \cos \frac{\mu_2}{2}$; $h_{ab} = m_{2ab} \sin \frac{\mu_2}{2}$; $h_{bc} = m_{2bc} \sin \frac{\mu_2}{2}$; and $h_{ac} = m_{2ac} \sin \frac{\mu_2}{2}$. Now, we write the representation of the the composition as

$$\underbrace{\left[h_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}h_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}h_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}h_{ac}\right)\right]}_{e^{-\mathbf{M}_2\mu_2/2}}\underbrace{\left[g_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}g_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}g_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}g_{ac}\right)\right]}_{e^{-\mathbf{M}_1\mu_1/2}}$$

After expanding that product and grouping like terms, the representation of the composite rotation can be written in a form identical to Eq. (2.3):

$$\mathcal{F}_{o} - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}\mathcal{F}_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}\mathcal{F}_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\mathcal{F}_{ac}\right),\tag{3.1}$$

with

$$\mathcal{F}_{o} = \langle e^{-\mathbf{M}_{2}\mu_{2}/2}e^{-\mathbf{M}_{1}\mu_{1}/2}\rangle_{0}$$

$$= h_{o}g_{o} - h_{ab}g_{ab} - h_{bc}g_{bc} - h_{ac}g_{ac} ,$$

$$\mathcal{F}_{ab} = h_{o}g_{ab} + h_{ab}g_{o} - h_{bc}g_{ac} + h_{ac}g_{bc} ,$$

$$\mathcal{F}_{bc} = h_{o}g_{bc} + h_{ab}g_{ac} + h_{bc}g_{o} - h_{ac}g_{ab} , \text{ and}$$

$$\mathcal{F}_{ac} = h_{o}g_{ac} - h_{ab}g_{bc} + h_{bc}g_{ab} + h_{ac}g_{o} .$$

$$(3.2)$$

Therefore, with these definitions of \mathcal{F}_o , \mathcal{F}_{ab} , \mathcal{F}_{bc} , and \mathcal{F}_{ac} , \mathbf{v}'' can be calculated from \mathbf{v} (written as $\hat{\mathbf{a}}v_a + \hat{\mathbf{b}}v_b + \hat{\mathbf{c}}v_c$) via an equation that is analogous, term for term, with Eq. (2.5):

$$\mathbf{v}' = \hat{\mathbf{a}} \Big[v_a \left(\mathcal{F}_o^2 - \mathcal{F}_{ab}^2 + \mathcal{F}_{bc}^2 - \mathcal{F}_{ac}^2 \right) + v_b \left({}^2 \mathcal{F}_o \mathcal{F}_{ab} - 2 \mathcal{F}_{bc} \mathcal{F}_{ac} \right) + v_c \left({}^2 \mathcal{F}_o \mathcal{F}_{ac} + 2 \mathcal{F}_{ab} \mathcal{F}_{bc} \right) \Big] + \hat{\mathbf{b}} \Big[v_a \left(2 \mathcal{F}_o \mathcal{F}_{ab} - 2 \mathcal{F}_{bc} \mathcal{F}_{ac} \right) + v_b \left(\mathcal{F}_o^2 - \mathcal{F}_{ab}^2 - \mathcal{F}_{bc}^2 + \mathcal{F}_{ac}^2 \right) + v_c \left({}^2 \mathcal{F}_o \mathcal{F}_{bc} - 2 \mathcal{F}_{ab} \mathcal{F}_{ac} \right) \Big] + \hat{\mathbf{c}} \Big[v_a \left(2 \mathcal{F}_o \mathcal{F}_{ac} + 2 \mathcal{F}_{ab} \mathcal{F}_{bc} \right) + v_b \left(2 \mathcal{F}_o \mathcal{F}_{bc} - 2 \mathcal{F}_{ab} \mathcal{F}_{ac} \right) + v_c \left(\mathcal{F}_o^2 + \mathcal{F}_{ab}^2 - \mathcal{F}_{bc}^2 - \mathcal{F}_{ac}^2 \right) \Big] .$$

$$(3.3)$$

At this point, you may (and should) be objecting that I've gotten ahead of myself. Please recall that Eq. (2.5) was derived starting from the "rotation" equation ((2.1))

$$\mathbf{w}' = \left[e^{-\mathbf{Q}\theta/2}\right] \left[\mathbf{w}\right] \left[e^{\mathbf{Q}\theta/2}\right].$$

The quantities f_o , f_o , f_{ab} , f_{bc} , and f_{ac} in Eq. (2.5), for which

$$e^{-\mathbf{Q}\theta/2} = f_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}f_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}f_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}f_{ac}\right),\tag{3.4}$$

also meet the condition that

$$e^{\mathbf{Q}\theta/2} = f_o + \left(\hat{\mathbf{a}}\hat{\mathbf{b}}f_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}f_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}f_{ac}\right). \tag{3.5}$$

We are not justified in using \mathcal{F}_o , \mathcal{F}_{ab} , \mathcal{F}_{bc} , and \mathcal{F}_{ac} in Eq. (2.5) unless we first prove that these composite-rotation " \mathcal{F} 's", for which

$$\mathcal{F}_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}\mathcal{F}_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}\mathcal{F}_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\mathcal{F}_{ac}\right) = e^{-\mathbf{M}_2\mu_2/2}e^{-\mathbf{M}_1\mu_1/2} , \qquad (3.6)$$

also meet the condition that

$$\mathcal{F}_{o} + \left(\hat{\mathbf{a}}\hat{\mathbf{b}}\mathcal{F}_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}\mathcal{F}_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\mathcal{F}_{ac}\right) = e^{\mathbf{M}_{1}\mu_{1}/2}e^{-\mathbf{M}_{2}\mu_{2}/2} .$$
(3.7)

Although more-elegant proofs may well exist, "brute force and ignorance" gets the job done. We begin by writing $e^{\mathbf{M}_1\mu_1/2}e^{-\mathbf{M}_2\mu_2/2}$ in a way that is analogous to that which was presented in the text that preceded Eq. (3.1):

$$\underbrace{\left[g_o + \left(\hat{\mathbf{a}}\hat{\mathbf{b}}g_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}g_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}g_{ac}\right)\right]}_{e^{\mathbf{M}_1\mu_1/2}}\underbrace{\left[h_o + \left(\hat{\mathbf{a}}\hat{\mathbf{b}}h_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}h_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}h_{ac}\right)\right]}_{e^{\mathbf{M}_2\mu_2/2}}.$$

Expanding, simplifying, and regrouping, we fine that $e^{\mathbf{M}_1 \mu_1/2} e^{-\mathbf{M}_2 \mu_2/2}$ is indeed equal to $\mathcal{F}_o + \left(\hat{\mathbf{a}} \hat{\mathbf{b}} \mathcal{F}_{ab} + \hat{\mathbf{b}} \hat{\mathbf{c}} \mathcal{F}_{bc} + \hat{\mathbf{a}} \hat{\mathbf{c}} \mathcal{F}_{ac} \right)$, as required.

4 A Sample Calculation

The vector $\mathbf{v} = \frac{4}{3}\hat{\mathbf{a}} - \frac{4}{3}\hat{\mathbf{b}} + \frac{16}{3}\hat{\mathbf{c}}$ is rotated through the bivector angle $\hat{\mathbf{a}}\hat{\mathbf{b}}\pi/2$ radians to produce a new vector, \mathbf{v}' . That vector is then rotated through the bivector angle $\left(\frac{\hat{\mathbf{a}}\hat{\mathbf{b}}}{\sqrt{3}} + \frac{\hat{\mathbf{b}}\hat{\mathbf{c}}}{\sqrt{3}} - \frac{\hat{\mathbf{a}}\hat{\mathbf{c}}}{\sqrt{3}}\right)\left(-\frac{2\pi}{3}\right)$ to produce vector \mathbf{v}'' . Calculate

Figure 5: Rotation of **v** through the bivector angle $\hat{\mathbf{ab}}\pi/2$, to produce the vector \mathbf{v}' .

- a The vectors \mathbf{v}' and \mathbf{v}'' , and
- b The bivector angle $\mathbf{S}\sigma$ through which \mathbf{v} could have been rotated to produce \mathbf{v}'' in a single operation.

We begin by calculating vector \mathbf{v}' . The rotation is diagrammed in Fig. 5

As shown in Fig. 6, $\mathbf{v}' = \frac{4}{3}\hat{\mathbf{a}} + \frac{4}{3}\hat{\mathbf{b}} + \frac{16}{3}\hat{\mathbf{c}}.$

We'll calculate \mathbf{v}'' in two ways: as the rotation of \mathbf{v}' by the bivector angle $\left(\frac{\hat{\mathbf{a}}\hat{\mathbf{b}}}{\sqrt{3}} + \frac{\hat{\mathbf{b}}\hat{\mathbf{c}}}{\sqrt{3}} - \frac{\hat{\mathbf{a}}\hat{\mathbf{c}}}{\sqrt{3}}\right)\left(-\frac{2\pi}{3}\right)$, and as the result of the rotation by the composite of the two individual rotations. The rotation of \mathbf{v}' by $\left(\frac{\hat{\mathbf{a}}\hat{\mathbf{b}}}{\sqrt{3}} + \frac{\hat{\mathbf{b}}\hat{\mathbf{c}}}{\sqrt{3}} - \frac{\hat{\mathbf{a}}\hat{\mathbf{c}}}{\sqrt{3}}\right)\left(-\frac{2\pi}{3}\right)$ is diagrammed in Fig. 7. Fig. 8 shows that $\mathbf{v}'' = \frac{4}{3}\hat{\mathbf{a}} + \frac{16}{3}\hat{\mathbf{b}} + \frac{4}{3}\hat{\mathbf{c}}$.

As we can see from Fig. 9, that result agrees with that which was obtained by calculating \mathbf{v}'' in a single step, as the composition of the individual rotations. Fig. 9 also shows that the bivector angle $\mathbf{S}\sigma$ is $\hat{\mathbf{b}}\hat{\mathbf{c}}(-\pi/2)$, which we can also write as $\hat{\mathbf{c}}\hat{\mathbf{b}}(\pi/2)$. That rotation is diagrammed in Fig. 10.

5 Summary

We have seen how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that used formulas developed in [2] for a single rotation. The work presented here also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations.

Rotation of a Vector by a Given Bivector Angle

Derivation is part of the document that is available at https://www.slideshare.net/JamesSmith245/how-to-effect-a-desired-rotation-of-a-vectorabout-a-given-axis-via-geometric-clifford-algebra

Yellow fields are user inputs.			Gray fields	are informa	tional.		
Pink fields	are checks.						
The vector, V	, to be rotated	1					
Components	a hat, b ha	at.c.hat					
a_hat	b_hat	c hat					
1.333333333		5.333333333					
1.00000000	-1.33333333	3.333333333					
Components	of the unit biv	ector. M1					
a_hat^b_hat b_hat^c_hat a_hat^c_hat			Angle of rotation µ1 in rac		n radians.		
1	0	0			1.570796327		
Ca	lculated value	s of the facto	rs f		Check: Sum of the square		
g.	g ab	96 c	J ac		of the f's = 1	?	
0.70710678	0.70710678	0	0			1	
Result				Check: v' = v ?			
The vector, V' , that results				v' =	5.65685425		
from the rotation				v =	5.65685425		
Components a_hat, b_hat, c_hat							
a_hat	b_hat	c_hat					
1.33333333	1.333333333	5.33333333					

Figure 6: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate \mathbf{v}' as the rotation of \mathbf{v} through the bivector angle $\hat{\mathbf{ab}}\pi/2$.

Figure 7: Rotation of \mathbf{v}' . Note the significance of the negative sign of the scalar angle: the direction in which \mathbf{v}' is to be rotated is contrary to the orientation of the bivector. That significance is clearer in Fig. 10.

Rotation of a Vector by a Given Bivector Angle

Derivation is part of the document that is available at							
https://www.	slideshare.ne	t/JamesSmith	245/how-to-e	effect-a-desire	ed-rotation-of-a	a-vector-	
about-a-giver	n-axis-via-geo	metric-cliffor	d-algebra				
Yellow field	Yellow fields are user inputs.			Gray fields are informational.			
Pink fields a	are checks.						
The vector, V	, to be rotate	d					
Components	a hat, b ha	at c hat					
a_hat	b_hat	c_hat					
1.333333333							
Components of the unit bivector, M2				Angle of	and of rotation u2 in radians		
a_hat^b_hat	b_hat^c_hat	a_hat^c_hat		Angle Of	Angle of rotation $\mu 2$ in radians.		
0.57735027	0.57735027	-0.5773503			-2.094395102		
	culated value				Check: Sum of the square		
h _o	hab	h _{bc}	hac		of the f's = 1?		
0.5	-0.5	-0.5	0.5		1	L	
Result				Check:	v" = v' ?		
The vector, W , that results				v" =	5.65685425		
from the rotation				v' =	5.65685425		
Components a_hat, b_hat, c_hat							
a_hat	b_hat	c_hat					
1.33333333	5.33333333	1.33333333					

Figure 8: A spread sheet (Ref. [5]) that uses Eq. (2.5) to calculate ${\bf v}''$ as the rotation of ${\bf v}'$.

Compo	site Ro	tation	of a Ve	ctor		
Yellow field	ls are user in	puts.		Gray fields a	re informatio	onal.
Pink fields a	re checks.					
The vector,	v, to be rotat	ed				
Component	ts a_hat, b_h	iat, c_hat				
a_hat	b_hat	c_hat				
1.333333	-1.33333	5.333333				
		The	two rota	tions		
	rst rotatio				ond rotat	
μ ₁ (rac	lians):	1.570796		μ ₂ (rad	lians):	-2.094395
U	nit bivector N	1,		L	Init bivector N	1 ₂
M_{1ab}	M _{1be}	M_{1ac}		M_{2ab}	M _{2be}	Mzac
1	0	0		0.57735	0.57735	-0.57735
Check: Is M	1unitary?			Check: Is M	2 unitary?	
M1 =	1			M 2 =	1	
Calculate	Calculated values of coefficients			Calculated values of coefficients		
g ,	0.7071	106781		h,	.5	
9	0.7071	106781		h "	-0).5
9	()		h _{se} -0.5).5
9	()		h ",	0.5	
	Calculate	d parame	ters of the	e composite	e rotation	
F_	F.	F⊾c	F _{ac}	ICheck: Surr	ofthe	
0.707107	0	-0.70711		squares of t	he F's = 1?	1
		-		ation in a sing		
o (radians		S.	S.,	Check: Surr		0.5
1.570796	0	-0.70711	0	squares of t	he 5's = 1?	
	_					
	Result			Check: [[w]]	= w ?	
The vector, v', that results				v' =	5.656854	
from the composite rotation				v =	5.656854	
	ts a_hat, b_h					
a_hat 1.3333333	b_hat 5.333333	c_hat 1.3333333				
1.000000	3.3333333	1.000000				

Figure 9: A spreadsheet (Ref. [6]) that uses Eq. (3.2) to calculate \mathbf{v}'' via the composite rotation of \mathbf{v} .

Figure 10: Rotation of \mathbf{v} by $\mathbf{S}\sigma$ to produce \mathbf{v}'' in a single operation. Note the significance of the negative sign of the scalar angle: the direction in which \mathbf{v}' rotated is contrary to the orientation of the bivector $\hat{\mathbf{b}}\hat{\mathbf{c}}$, and contrary also to the direction of the rotation from $\hat{\mathbf{b}}$ to $\hat{\mathbf{c}}$.

6 Appendix: Identifying the Bivector Angle $S\sigma$ through which the Vector v can be Rotated to Produce v" in a Single Operation

Let \mathbf{v} be an arbitrary vector. We want to identify the bivector angle $\mathbf{S}\sigma$ through which the initial vector, \mathbf{v} , can be rotated to produce the same vector \mathbf{v}'' that results from the rotation of \mathbf{v} through the composite rotation by $\mathbf{M}_1\mu_1$, then by $\mathbf{M}_2\mu_2$:

$$\left[e^{-\mathbf{M}_{2}\mu_{2}/2}\right]\left[e^{-\mathbf{M}_{1}\mu_{1}/2}\right]\left[\mathbf{v}\right]\left[e^{\mathbf{M}_{1}\mu_{1}/2}\right]\left[e^{\mathbf{M}_{2}\mu_{2}/2}\right] = \mathbf{v}'' = \left[e^{-\mathbf{S}\sigma/2}\right]\left[\mathbf{v}\right]\left[e^{\mathbf{S}\sigma/2}\right].$$
(6.1)

We want Eq. (6.1) to be true for all vectors **v**. Therefore, $e^{\mathbf{S}\sigma/2}$ must be equal to $[e^{\mathbf{M}_1\mu_1/2}] [e^{\mathbf{M}_2\mu_2/2}]$, and $e^{-\mathbf{S}\sigma/2}$ must be equal to $[e^{-\mathbf{M}_1\mu_1/2}] [e^{\mathbf{M}_2\mu_2/2}]$. The second of those conditions is the same as saying that the representations of the $\mathbf{S}\sigma$ rotation and the composite rotation must be equal. We'll write that condition using the \mathcal{F}_o 's defined in Eq. (3.2), with \mathbf{S} expressed in terms of the unit bivectors $\hat{\mathbf{ab}}$, $\hat{\mathbf{bc}}$, and $\hat{\mathbf{ac}}$:

$$\cos\frac{\sigma}{2} - \underbrace{\left(\hat{\mathbf{a}}\hat{\mathbf{b}}S_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}S_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}S_{ac}\right)}_{\mathbf{S}}\sin\frac{\sigma}{2} = \mathcal{F}_o - \left(\hat{\mathbf{a}}\hat{\mathbf{b}}\mathcal{F}_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}\mathcal{F}_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\mathcal{F}_{ac}\right).$$

Now, we want to identify σ and the coefficients of $\hat{\mathbf{ab}}$, $\hat{\mathbf{bc}}$, and $\hat{\mathbf{ac}}$. First, we note that both sides of the previous equation are multivectors. According to the postulates of GA, two multivectors \mathcal{A}_1 and \mathcal{A}_2 are equal if and only if for every grade k, $\langle \mathcal{A}_1 \rangle_k = \langle \mathcal{A}_2 \rangle_k$. Equating the scalar parts, we see that $\cos \frac{\sigma}{2} = \mathcal{F}_o$. Equating the bivector parts gives $\left(\hat{\mathbf{ab}}S_{ab} + \hat{\mathbf{bc}}S_{bc} + \hat{\mathbf{ac}}S_{ac}\right) \sin \frac{\sigma}{2} = \hat{\mathbf{ab}}\mathcal{F}_{ab} +$

 $\hat{\mathbf{b}}\hat{\mathbf{c}}\mathcal{F}_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\mathcal{F}_{ac}$. Comparing like terms, $S_{ab} = \mathcal{F}_{ab}/\sin\frac{\sigma}{2}$, $S_{bc} = \mathcal{F}_{bc}/\sin\frac{\sigma}{2}$, and $S_{ac} = \mathcal{F}_{ac}/\sin\frac{\sigma}{2}$.

Next, we need to find $\sin \frac{\sigma}{2}$. Although we could do so via $\sin \frac{\sigma}{2} = \sqrt{1 - \cos^2 \frac{\sigma}{2}}$, for the purposes of this discussion we will use the fact that **S** is, by definition, a unit bivector. Therefore, $||\mathbf{S}|| = 1$, leading to

$$\begin{aligned} \|\sin\frac{\sigma}{2}\| &= \|\hat{\mathbf{a}}\hat{\mathbf{b}}\mathcal{F}_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}\mathcal{F}_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\mathcal{F}_{ac}\| \\ &= \sqrt{\mathcal{F}_{ab}^2 + \mathcal{F}_{bc}^2 + \mathcal{F}_{ac}^2} \;. \end{aligned}$$

Now, the question is whether we want to use $\sin \frac{\sigma}{2} = +\sqrt{\mathcal{F}_{ab}^2 + \mathcal{F}_{bc}^2 + \mathcal{F}_{ac}^2}$, or $\sin \frac{\sigma}{2} = -\sqrt{\mathcal{F}_{ab}^2 + \mathcal{F}_{bc}^2 + \mathcal{F}_{ac}^2}$. The truth is that we can use either: if we use $-\sqrt{\mathcal{F}_{ab}^2 + \mathcal{F}_{bc}^2 + \mathcal{F}_{ac}^2}$ instead of $+\sqrt{\mathcal{F}_{ab}^2 + \mathcal{F}_{bc}^2 + \mathcal{F}_{ac}^2}$, then the sign of **S** changes as well, leaving the product **S** $\sin \frac{\sigma}{2}$ unaltered.

The choice having been made, we can find the scalar angle σ from the values of $\sin \frac{\sigma}{2}$ and $\cos \frac{\sigma}{2}$, thereby determining the bivector angle $\mathbf{S}\sigma$.

References

- A. Macdonald, *Linear and Geometric Algebra* (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012).
- [2] J. A. Smith, 2017, "How to Effect a Desired Rotation of a Vector about a Given Axis via Geometric (Clifford) Algebra" http://vixra.org/abs/1708.0462.
- [3] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).
- [4] J. A. Smith, 2017, "Rotation of a Vector about an Axis" (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4TqxB32RRNHBHV2tpSUhRTUk/view?usp=sharing.
- [5] J. A. Smith, 2017, "Rotation by a given bivector angle" (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4TqxB32RRX2JfcDd5NjZiZ00/view?usp=sharing.
- [6] J. A. Smith, 2017, "Composite rotation in GA" (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4TqxB32RRaktDZktjcExPeUE/view?usp=sharing.

Why is it correct to identify the S's by comparing like terms? In simple terms, because the unit bivectors $\hat{a}\hat{b}$, $\hat{b}\hat{c}$ $\hat{a}\hat{b}$ are orthogonal. Two linear combinations of those bivectors are equal if and only if the coefficients match, term for term.