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Abstract. This work gains a sharp sufficient condition on the block restricted isometry
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1 Introduction

Compressed sensing is one of novel sampling theory, recently attracting more and more re-
searchers’ interest. It plays an critical role in a variety of fields such as signal processing, machine
learning, seismology, electrical engineering and statistics. In compressed sensing, we are interested
in recovering an unknown signal x ∈ RN that fulfils the undetermined system of linear equations,
that is,

b = Φx+ ξ (1.1)

where Φ ∈ M ×N is a known sensing matrix with M ≪ N , observed signal b ∈ RM and ξ ∈ RM

is an unknown bounded noise. In particular, when the noise vector ξ = 0, the linear measurement
(1.1) reduces to the noiseless situation, namely,

b = Φx. (1.2)

It is well known that there is not only unique solution to the linear measurement (1.1) or (1.2).
However, we assume that the signal x consists of a small number of nonzero coefficients that spread
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arbitrarily throughout the signal, that is, suppose that x is sparse. Under this assumption, the
problem has a unique sparse solution. Initially, the way that solves it is to study the l0-minimization,
i.e.,

min
x

∥x∥0, subject to b = Φx, (1.3)

where ∥x∥0 counts the number of nonzero elements of the vector x. However, it is nonconvex and
NP-hard and accordingly is infeasible. It is now well understood that the l1-minimization approach
offers an effective method for resolving this problem, i.e.,

min
x

∥x∥1, subject to b = Φx, (1.4)

where ∥x∥1 = ΣN
i=1|xi|. Of course, the l1-minimization (1.4) is convex and therefore is computa-

tionally tractable. The equivalency[1][2] between the problem (1.3) and the problem (1.4) have
been proved by making use of the restricted isometry property (RIP) with a restricted isometry
constant (RIC). Let s is a positive integer with 1 ≤ s ≤ N , the restricted isometry constant δs of
order s of a matrix Φ is defined as the smallest nonnegative constant such that

1− δs ≤ ∥Φx∥22/∥x∥22 ≤ 1 + δs (1.5)

holds for any s-sparse vectors x ∈ RN . Here, we say that x ∈ RN is s-sparse that ∥x∥0 ≤ s≪ N .

However, in a lot of practical applications, some real-world signals may exhibit some partic-
ular sparsity patterns, where the non-zero coefficients arise in some fixed blocks. These non-
conventional signals have a number of potential applications in the fields of science and technology,
like DNA microarrays[3], equalization of sparse communication channels[4], face recognition[5],
source localization[6], reconstruction of multi-band signals[7] and multiple measurement vector
model[8]. We think of these signals as block sparse signals. Literature[9] first introduced the con-
cept of block sparsity. Recently, block sparsity recovery has attracted considerable interests; for
more details, see [10], [11], [12] and [13].

We assume that a block sparse signal x ∈ RN over block index set I = {d1, · · · , dl} can be
represented as:

x = [x1, · · · , xd1︸ ︷︷ ︸
x[1]

, xd1+1, · · · , xd1+d2︸ ︷︷ ︸
x[2]

, · · · , xN−dl+1, · · · , xN︸ ︷︷ ︸
x[l]

]T , (1.6)

where x[i] stands for the ith block of x associated with the block length di and N = d1+d2+· · ·+dl.
We say that a vector x ∈ RN as block s-sparse over index set I = {d1, · · · , dl} when x[i] is non-
zero for no more than s indices i. In order to reconstruct a block sparse signal, analogous to the
l0-minimization, we search for the sparsest block sparse vector by employing the l2/l0-minimization
below proposed by [5]:

min ∥x∥2,0, subject to b = Φx, (1.7)

where ∥x∥2,0 =
∑l

i=1 I(∥x[i]∥2 > 0), and I(x) denotes an indicator function that I(x) = 1 or 0
according as x > 0 or otherwise. Accordingly, we could define a block s-sparse vector x as ∥x∥2,0 ≤ s.
However, the l2/l0-minimization problem remains NP-hard and computationally intractable. Let
∥x∥2,I =

∑l
i=1 ∥x[i]∥2. Similar to the case of l0-minimization, one natural ideal is to substitute the

l2/l0-minimization with the l2/l1-minimization below given by [14], [15]:

min ∥x∥2,I , subject to b = Φx. (1.8)
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In order to describe the performance of this approach, the block restricted isometry property (block
RIP) was defined by [9].

Definition 1.1. Given a sensing matrix Φ with size M × N , where M < N , one says that the
measurement matrix Φ obeys the block RIP over I = {d1, · · · , dl} with constants δs|I if for every

vector x ∈ RN with block s-sparse over I such that

1− δs|I ≤ ∥Φx∥22/∥x∥22 ≤ 1 + δs|I (1.9)

holds. We say the smallest constant δs|I that fulfils the above inequality (1.9) as the block RIC
corresponding with the matrix Φ.

It is easy to see that the block RIP is an generalization of the standard RIP, but it is a less
stringent requirement in comparison with the standard RIP[16]. Eldar et al. [9] proved that any
block s-sparse signal could be exactly recovered via the l2/l1-minimization as the sensing matrix
Φ meets the block RIP with δ2s|I <

√
2 − 1 ≈ 0.4142. One can improve the block RIP, for

example, Lin and Li [10] improved the bound to δ2s|I < (77 −
√
1337)/82 ≈ 0.4931, meanwhile

obtained another sufficient condition δs|I < 0.307. Recently, Gao and ma [13] improved that

bound to δ2s|I < 4/
√
41 ≈ 0.6246. Up to now, to the best of our knowledge, there is no work

that further concentrates on improvement of the block RIC. Improving the bound concerning block
RIC δs|I could bring several advantages. First of all, in compressed sensing, it permits more
sensing matrices to be utilized; Then, it permits for reconstructing a block sparse signal with more
non-zero coefficients under the condition of the identical matrix Φ; In the end, it provides better
error estimation in a general issue to reconstruct signals with noise and mismodeling error; for
more information, see [10], [9], [13], [18] and [17]. The purpose of this article is to discuss the
improvement for the block RIC, and we will investigate the following minimization for the noisy
and mismodeling measurement b = Φx+ ξ satisfying ∥ξ∥2 ≤ ρ:

min
x

∥x∥2,I , subject to ∥Φx− b∥2 ≤ ρ. (1.10)

First, the following theorem is our main result that gives a sufficient condition of recovery as signal
x is not block sparse and the measure is corrupted by the noise. For any x ∈ RN , we represent
xmax(s) as x with all but the largest s blocks in l2 norm set to zero and x−max(s) = x−xmax(s). Set

t̃ = max{
√
t, t}.

Theorem 1.1. We assume that the measurement matrix Φ with size M × N(M < N) fulfils for
0 < t < 4/3, ts ≥ 2

δts|I <
t

4− t
. (1.11)

If x∗ is a solution to problem (1.10), then we have

∥x∗ − x∥2 ≤
2
√
2ρ
√

1 + δts|I

t+ (t− 4)δts|I
t̃

+
1

2

√
2

s

(8δts|I + 4
√

(t+ (t− 4)δts|I)δts|I

t+ (t− 4)δts|I
+ 1

)
∥x−max(s)∥2,I . (1.12)

Remark 1.1. The non-equality (1.12) provides an error upper bound about the noisy recovery
utilizing the l2/l1-minimization (1.10). Especially, the sparsity degree of the signal s and the noise
amplitude ρ can control the recovery accuracy of the l2/l1-minimization.
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Remark 1.2. Theorem 1.1 shows that any signals of block pattern contaminated by noise, i.e.
(1.1) can be stably recovered via the l2/l1-minimization approach if the sensing matrix Φ satisfies
the block RIP with a appropriate block RIC. Beside, when signal x is block s-sparse, then Theorem
1.1 ensure the vector x can be robustly constructed in the noisy scenario.

Remark 1.3. It is known that Lin and Li [10] established sufficient condition δs|I < 0.307 for
stable recovery. Theorem 1.1 improves the bound on the block RIC to δs|I < 1/3 ≈ 0.3333.

Remark 1.4. When the block size di = 1(i = 1, · · · , l), the result of Theorem 1.1 degenerates to
the convention case consistent with the results [19].

Remark 1.5. In the proof process of Theorem 1.1, if beginning with (3.23), we make use of Lemma
5.3 [21], then we could another error estimation as follows:

∥x∗ − x∥2 ≤
2
√
2ρ
√

1 + δts|I

t+ (t− 4)δts|I
t̃

+

√
2

s

(4δts|I + 2
√

(t+ (t− 4)δts|I)δts|I

t+ (t− 4)δts|I
+
√
2

)
∥x−max(s)∥2,I (1.13)

for more details, see Appendix. Obviously observe that the upper bound of the error estimation
given by (1.13) is much poorer than that determined by (1.12). In addition, even though set di =
1(i = 1, · · · , l), we couldn’t derive the general result coincided with [19]. Consequently, the method
of the proof that we employ is preferable.

Corollary 1.1. Under the same condition as in Theorem 1.1, suppose that the noise term ξ = 0
and the signal x is block s-sparse, then x can be perfectly recovered through the l2/l1 minimization
(1.8).

Remark 1.6. The above result from the noise-free and block s-sparse situation follows directly from
Theorem 1.1.

The following result states that the bound of the block RIC δts|I < t/(4− t) with 0 < t < 4/3
is sharp for perfectly recovery in the noise-free situation.

Theorem 1.2. Suppose s ≥ 1 is an integer. If δts|I < t/(4 − t) + ε with 0 < t < 4/3 and ε > 0,
then the block s-sparse signal can not be exactly reconstructed via the l2/l1-minimization (1.8).
Concretely, there is a sensing matrix Φ with δts|I = t/(4 − t) and a block s-sparse x0 satisfying
x∗ ̸= x0, where x

∗ is the solution to (1.8).

The remainder of this article is organized as follows. In Section 2, we will provide some lemmas.
In Section 3, we will offer the proofs of main results. In Section 4, we draw a conclusion for this
paper.

2 Auxiliary lemmas

All over this article, we utilize the notations below. xΠ indicates that it holds these blocks
indexed by Π of x and otherwise zero. For any block s-sparse vector, ∥x∥2,∞ = max1≤i≤s ∥x[i]∥2.
supp(x) = {i : ∥x[i]∥2 ̸= 0} denotes the block support of x.

The following two lemmas are necessary to the proof of the main result whose proofs are similar
to that of Lemmas 1, 2[19]. Denote Cm

s = (sm).
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Lemma 2.1. Given vectors {xi : i ∈ Π} in a vector space X with inner product < · >, where Π is
an index set satisfying |Π| = s. Suppose that we select all subsets Πi ∈ Π meeting |Πi| = m, i ∈ J
with |J | = Cm

s , then ∑
i∈J

∑
j∈Πi

xj = Cm−1
s−1

∑
j∈Π

vj(m ≥ 1), (2.1)

and ∑
i∈J

∑
j ̸=k∈Πi

< xj , xk >= Cm−2
s−2

∑
j ̸=k∈Π

< xj , xk > (m ≥ 2). (2.2)

Lemma 2.2. Given a matrix Φ ∈ RM×N , we decompose Φ as a concatenation of column-blocks
Φ[i] with size M × di, say,

Φ = [ϕ1, · · · , ϕd1︸ ︷︷ ︸
ϕ[1]

, ϕd1+1, · · · , ϕd1+d2︸ ︷︷ ︸
ϕ[2]

, · · · , ϕN−dl+1, · · · , ϕN︸ ︷︷ ︸
ϕ[l]

],

and a block sparse vector x ∈ RN (l ≥ 2) determined by (1.6) and put Ω = {1, 2, · · · , l}. Suppose
that we select all subsets Πi ⊂ Ω meeting |Πi| = m, i ∈ J with |J | = Cm

l , and all subsets Λj ⊂ Ω
satisfying |Λj | = n, j ∈ K with K = Cn

l . Then∑
i∈J

(l − n)∥ΦxΠi∥22
m|J |

−
∑
j∈K

(l −m)∥ΦxΛj∥22
n|K|

=
(m− n)∥Φx∥22

l
, (2.3)

and as l ≥ m+ n,∑
Πi

∩
Λj=∅

l −m− n

mnl|J |Cn
l−m

(
mnl

l −m− n
∥Φ(xΠi + xΛj )∥22 − ∥Φ(nxΠi −mxΛj )∥22

)
=

(m+ n)2∥Φx∥22
l2

.

(2.4)

The following lemma offers a crucial technical tool to the proof of our main theorem which is
from [20]. For any block sparse vector x defined by (1.6), ∥x∥2,2 = (

∑l
i=1 ∥xi∥22)

1
2 .

Lemma 2.3. For a positive number α and a positive integer s, the block polytope τ(α, s) ∈ RN is
defined by

τ(α, s) = {x ∈ RN : ∥x∥2,∞ ≤ α, ∥x∥2,I ≤ sα}.
For any x ∈ RN , the set of block sparse vectors U(α, s, x) ∈ RN is defined by

U(α, s, x) = {u ∈ RN : supp(u) ⊆ supp(x), ∥u∥2,0 ≤ s, ∥u∥2,I = ∥x∥2,I , ∥u∥2,∞ ≤ α}.

Then we can represent any x ∈ τ(α, s) as

x =
∑
i

λiui,

where ui ∈ U(α, s, x), 0 ≤ λi ≤ 1,
∑

i λi = 1,and
∑

i λi∥ui∥22,2 ≤ sα2.

The following lemma is important to the proof of the main result, whose proof is similar to that
of Lemma 4.1 [21]. We omit the detailed proof.

Lemma 2.4. Let κ ≥ 2, s ≥ 2. For all measurement matrixes Φ ∈ RM×N , we obtain δκs|I ≥
(2κ− 1)δs|I .
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3 Proofs of main result

Proof of Theorem 1.1. First, suppose that ts is an integer. Let x∗ = x+ h. Similar to the proof
of Lemma 3.1 [10] , we have

∥h−max(s)∥2,I ≤ ∥hmax(s)∥2,I + 2∥x−max(s)∥2,I . (3.1)

Select positive integersm and n satisfying n ≤ m ≤ s andm+n = st. Subsets Πi,Λj ⊂ {1, 2, · · · , s}
stand for all the possible index set that |Πi| = m, |Λj | = n with i ∈ J and j ∈ K that |J | = Cm

s

and |K| = Cn
s .

Denote

r =
∥hmax(s)∥2,I + 2∥x−max(s)∥2,I

s
.

Due to

∥h−max(s)∥2,I ≤ sr = n
s

n
r,

and

∥h−max(s)∥2,∞ ≤
∥hmax(s)∥2,I

s

≤
∥hmax(s)∥2,I + 2∥x−max(s)∥2,I

s

≤ r ≤ s

n
r. (3.2)

Making use of (3.2) and Lemma 2.3, we have h−max(s) =
∑

i λiui, where ui is block n-sparse, 0 ≤
λi ≤ 1 with

∑
i λi = 1, and supp(ui) ⊂ supp

(
h−max(s)

)
, ∥ui∥2,I = ∥h−max(s)∥2,I , ∥ui∥2,∞ ≤ sr/n,

and ∑
i

λi∥ui∥22,2 ≤ n
( s
n
r
)2

=
s2r2

n
. (3.3)

Analogously, we can decompose h−max(s) as

h−max(s) =
∑
i

γivi,

h−max(s) =
∑
i

νiwi,

where vi is block m-sparse, wi is block (t− 1)s-sparse with∑
i

γi∥vi∥22,2 ≤
s2r2

m
(3.4)

∑
i

νi∥wi∥22,2 ≤
sr2

t− 1
. (3.5)

Notice that h−max(s) is block s-sparse, and utilizing Cauchy-Schwarz inequality to any block s-
sparse vector x, ∥x∥22,I = (

∑
i ∥x[i]∥2 · 1)2 ≤ s

∑
i ∥x[i]∥22 = s∥x∥22,2, we have

r2 = s−2
(
∥hmax(s)∥2,I + 2∥x−max(s)∥2,I

)2
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= s−2
(
∥hmax(s)∥22,I + 4∥hmax(s)∥2,I∥x−max(s)∥2,I + 4∥x−max(s)∥22,I

)
≤ s−2

(
s∥hmax(s)∥22,2 + 4

√
s∥hmax(s)∥2,2∥x−max(s)∥2,I + 4∥x−max(s)∥22,I

)
= s−1∥hmax(s)∥22,2 + 4s−

3
2 ∥hmax(s)∥2,2∥x−max(s)∥2,I + 4s−2∥x−max(s)∥22,I . (3.6)

For 1 ≤ t < 4/3, exploiting the notion and monotonicity (Page 1404 [10]) of δs|I , we have⟨
Φhmax(s),Φh

⟩
≤ ∥Φhmax(s)∥2∥Φh∥2

≤
√

1 + δs|I∥hmax(s)∥2∥Φh∥2

≤
√

1 + δts|I∥hmax(s)∥2∥Φh∥2. (3.7)

Since x∗ is the feasible solve to (1.10), we have

∥Φh∥2 ≤ ∥Φ(x− x∗)∥2 ≤ ∥Φx− b∥2 + ∥Φx∗ − b∥2 ≤ 2ρ. (3.8)

Putting (3.8) into (3.7), we have⟨
Φhmax(s),Φh

⟩
≤ 2ρ

√
1 + δts|I∥hmax(s)∥2. (3.9)

For simplicity, we use Gm,n for

Gm,n :=
s− n

mCm
s

∑
i∈J ,k

λk

(
m2∥Φ(hΠi +

n

s
uk)∥22 − n2∥Φ(hΠi −

m

s
uk)∥22

)
+
s−m

nCn
s

∑
j∈K,k

γk

(
n2∥Φ(hΛj +

m

s
vk)∥22 −m2∥Φ(hΛj −

n

s
vk)∥22

)
. (3.10)

Let θ(m,n, t) = 2mn(t − 2) + (m − n)2. The following two equalities both hold, whose proof that
may use Lemma 2.2 are similar to that of identity (14) and (15) [19]. The detail process is omitted.
The equality

θ(m,n, t)(t− 1)

mnCm
s C

n
s−m

∑
Πi

∩
Λj=ϕ

(
mn

t− 1
∥Φ(hΠi + hΛj )∥22 + ∥Φ(nhΠi −mhΛj )∥22

)
= tGm,n + 2mn(t− 2)t2

⟨
Φhmax(s),Φh

⟩
(3.11)

holds for 0 < t < 1. The equality

θ(m,n, t)
∑
k

νk
(
∥Φ(hmax(s) + (t− 1)wk)∥22 − ∥(t− 1)Φ(hmax(s) − wk)∥22

)
= −(3t− 4)Gm,n + 2((t− 1)s2 −mn)t3

⟨
Φhmax(s),Φh

⟩
(3.12)

holds for 1 ≤ t < 4/3. As to θ(m,n, t), as ts is even, we can set m = n = ts/2; as ts is odd, we can
put m = n+ 1 = (ts+ 1)/2. It is no difficult to check that θ(m,n, t) < 0 for the both situation.

By exploiting the definition of tk order block RIC and observing that hΠi , vi are block m-sparse
and hΛj , ui are block n-sparse obeying m+ n = ts, we have

Gm,n ≥ s− n

mCm
s

∑
i∈J ,k

λk

(
m2(1− δts|I)∥hΠi +

n

s
uk∥22 − n2(1 + δts|I)∥hΠi −

m

s
uk∥22

)
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+
s−m

nCn
s

∑
j∈K,k

γk

(
n2(1− δts|I)∥hΛj +

m

s
vk∥22 −m2(1 + δts|I)∥hΛj −

n

s
vk∥22

)
.

Note that < hΠi , uk >=< hΛj , vk >= 0, because of the support of hΠi(hΛj ) does not intersect with
the support of uk(vk). Therefore,

Gm,n ≥ s− n

mCm
s

∑
i∈J ,k

λk

(
m2(1− δts|I)∥hΠi∥22 +

m2n2

s2
(1− δts|I)∥uk∥22

− n2(1 + δts|I)∥hΠi∥22 −
m2n2

s2
(1 + δts|I)∥uk∥22

)
+
s−m

nCn
s

∑
j∈K,k

γk

(
n2(1− δts|I)∥hΛj∥22 +

m2n2

s2
(1− δts|I)∥vk∥22

−m2(1 + δts|I)∥hΛj∥22 −
m2n2

s2
(1 + δts|I)∥vk∥22

)
=
s− n

mCm
s

((m2 − n2)− (m2 + n2)δts|I)
∑
i∈J

∥hΠi∥22 −
s− n

mCm
s

2
m2n2

s2
Cm
s δts|I

∑
k

λk∥uk∥22

+
s−m

nCn
s

(−(m2 − n2)− (m2 + n2)δts|I)
∑
j∈K

∥hγj∥22 −
s−m

nCn
s

2
m2n2

s2
Cn
s δts|I

∑
k

γk∥vk∥22.

By making use of (2.1), we have

Gm,n ≥((m2 − n2)− (m2 + n2)δts|I)
s− n

mCm
s

Cm−1
s−1 ∥hmax(s)∥22 −

2(s− n)mn2

s2
δts|I

∑
k

λk∥uk∥22

+ (−(m2 − n2)− (m2 + n2)δts|I)
s−m

nCn
s

Cn−1
s−1 ∥hmax(s)∥22 −

2(s−m)m2n

s2
δts|I

∑
k

γk∥vk∥22.

Obviously, for any vector x ∈ RN determined by (1.6), we could rewrite l2-norm ∥x∥2 as

∥x∥2 =

(
l∑

i=1

∥x[i]∥22

) 1
2

= ∥x∥2,2.

Due to (3.3) and (3.4), we have

Gm,n ≥((m2 − n2)− (m2 + n2)δts|I)
s− n

s
∥hmax(s)∥22 −

2(s− n)mn2

s2
δts|I

s2r2

n

+ (−(m2 − n2)− (m2 + n2)δts|I)
s−m

s
∥hmax(s)∥22 −

2(s−m)m2n

s2
s2δts|I

s2r2

m

=

(
(m2 − n2)(m− n)

s
−

(m2 + n2)(2s− (m+ n))δts|I

s

)
∥hmax(s)∥22

− 2mnδts|Ir
2(2s− (m+ n))

=
(
t(m− n)2 + (m2 + n2)(t− 2)δts|I

)
∥hmax(s)∥22 + 2mnδts|Ir

2s(t− 2). (3.13)

First, we consider the case of 1 ≤ t < 4/3.
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Since θ(m,n, t) is not lager than 0, hmax(s) is block s-sparse and wk is block (t − 1)s-sparse
combining with the definition of ts order block RIC δts|I , then

the left side hand (LSH) of Eq.(3.12)

≤ θ(m,n, t)
∑
k

νk

(
(1− δts|I)∥hmax(s) + (t− 1)wk∥22 − (1 + δts|I)∥(t− 1)(hmax(s) − wk)∥22

)
.

Observe that the support of hmax(s) does not intersect with the support of wk, thus

LSH of Eq.(3.12) ≤ θ(m,n, t)
∑
k

νk

(
(1− δts|I)∥hmax(s)∥22 + (1− δts|I)(t− 1)2∥wk)∥22

− (t− 1)2(1 + δts|I)∥hmax(s)∥22 − (t− 1)2(1 + δts|I)∥wk∥22
)

= θ(m,n, t)
∑
k

νk

(
((1− (t− 1)2)− (1 + (t− 1)2)δts|I)∥hmax(s)∥22

− 2(t− 1)2δts|I∥wk∥22
)
.

By applying (3.5) to the above inequality, we have

LSH of Eq.(3.12) ≤ θ(m,n, t)

(
((1− (t− 1)2)− (1 + (t− 1)2)δts|I)∥hmax(s)∥22

− 2δts|Isr
2(t− 1)

)
. (3.14)

It follows from the assumption of Theorem 1.1 that s ≥ 3/2, so it is no hard to see that

mn ≥ t2s2 − 1

4
=

(2− t)2s2 − 1

4
+ (t− 1)s2 > (t− 1)s2, (3.15)

for 1 ≤ t < 4/3. Combining with (3.9), (3.13) and (3.15), we have

the right side hand (RSH) of Eq. (3.12)

≥ −(3t− 4)

((
t(m− n)2 + (m2 + n2)(t− 2)δts|I

)
∥hmax(s)∥22 + 2mnδts|Ir

2s(t− 2)

)
+ 4ρ

√
1 + δts|I((t− 1)s2 −mn)t3∥hmax(s)∥2. (3.16)

Let the LSH minus the RSH of the eq. (3.12), then

0 ≤θ(m,n, t)
(
((1− (t− 1)2)− (1 + (t− 1)2)δts|I)∥hmax(s)∥22 − 2δts|Isr

2(t− 1)

)
+ (3t− 4)

((
t(m− n)2 + (m2 + n2)(t− 2)δts|I

)
∥h−max(s)∥22 + 2mnδts|Ir

2s(t− 2)

)
− 4ρ

√
1 + δts|I((t− 1)s2 −mn)t3∥hmax(s)∥2.

By using (3.6) to the above inequality, the fact that for any vector x, ∥x∥2,2 = (
∑l

i=1 ∥x[i]∥22)
1
2 =

∥x∥2 and some elementary calculations, then

0 ≤2((t− 1)s2 −mn)t2
(
(t+ (t− 4)δts|I)∥hmax(s)∥22

9



−
(
4δts|I∥x−max(s)∥2,I√

s
+ 2ρt

√
1 + δts|I

)
∥hmax(s)∥2 −

4δts|I∥x−max(s)∥22,I
s

)
. (3.17)

Next, we take into account the case of 0 < t < 1.

Utilizing Lemma 2.4, we have

∥Φhmax(s)∥22 ≤ (1 + δs|I)∥hmax(s)∥22
=
(
1 + δ 1

t
ts|I

)
∥hmax(s)∥22

≤
(
1 +

(
2

t
− 1

)
δts|I

)
∥hmax(s)∥22

≤
(1 + δts|I)∥hmax(s)∥22

t
. (3.18)

By (3.8) and (3.18), we have⟨
Φhmax(s),Φh

⟩
≤ ∥Φhmax(s)∥2∥Φh∥2

≤ 2ρ

√
(1 + δts|I)t

t
∥hmax(s)∥2. (3.19)

By taking advantage of the concept of ts order block RIC and (2.1), we have

the LSH of the Eq. 3.11

=
θ(m,n, t)(t− 1)

mnCm
s C

n
s−m

∑
Πi

∩
Λj=ϕ

(
mn

t− 1
∥Φ(hΠi + hΛj )∥22 + ∥Φ(nhΠi −mhΛj )∥22

)

≤ θ(m,n, t)(t− 1)

mnCm
s C

n
s−m

∑
Πi

∩
Λj=ϕ

(
mn

t− 1
(1− δts|I)∥(hΠi + hΛj )∥22 + (1 + δts|I)∥(nhΠi −mhΛj )∥22

)

=
θ(m,n, t)(t− 1)

mnCm
s C

n
s−m

(
mn

t− 1
(1− δts|I)

(
Cn
s−m

∑
i∈J

∥hΠi∥22 + Cm
s−n

∑
j∈K

∥hΛj∥22
)

+ (1 + δts|I)

(
n2Cn

s−m

∑
i∈J

∥hΠi∥22 +m2Cm
s−n

∑
j∈K

∥hΛj∥22
))

=
θ(m,n, t)(t− 1)

mnCm
s C

n
s−m

(
mn

t− 1
(1− δts|I)

(
Cn
s−mC

m−1
s−1 ∥hmax(s)∥22 + Cm

s−nC
n−1
s−1 ∥hmax(s)∥22

)
+ (1 + δts|I)

(
n2Cn

s−mC
m−1
s−1 ∥hmax(s)∥22 +m2Cm

s−nC
n−1
s−1 ∥hmax(s)∥22

))
=
θ(m,n, t)(t− 1)

mnCm
s C

n
s−m

(
mn

t− 1
(1− δts|I)

(
Cn
s−mC

m−1
s−1 + Cm

s−nC
n−1
s−1

)
∥hmax(s)∥22

+ (1 + δts|I)
(
n2Cn

s−mC
m−1
s−1 +m2Cm

s−nC
n−1
s−1

)
∥hmax(s)∥22

)
= θ(m,n, t)(t+ (t− 2)δts|I)∥hmax(s)∥22. (3.20)

By combining (3.13) with (3.19), we have

the RSH of the Eq. (3.11)

10



≥ t

((
t(m− n)2 + (m2 + n2)(t− 2)δts|I

)
∥hmax(s)∥22 + 2mnδts|Ir

2s(t− 2)

)
+ 4mnρ

√
1 + δts|I(t− 2)t

√
t∥hmax(s)∥2.

Let the LSH minus the RSH of Eq. (3.11), then

0 ≤ θ(m,n, t)(t+ (t− 2)δts|I)∥hmax(s)∥22

− t

((
t(m− n)2 + (m2 + n2)(t− 2)δts|I

)
∥hmax(s)∥22 + 2mnδts|Ir

2s(t− 2)

)
− 4mnρ

√
1 + δts|I(t− 2)t

√
t∥hmax(s)∥2

≤ 2t(t− 2)mn

(
(t+ (t− 4)δts|I)∥hmax(s)∥22

−
(
4δts|I∥x−max(s)∥2,I√

s
+ 2ρ

√
(1 + δts|I)t

)
∥hmax(s)∥2 −

4δts|I∥x−max(s)∥22,I
s

)
. (3.21)

By (3.15) and the assumption of δts|I <
t

4−t , it is easy to see that the above two inequalities given
by (3.17) and (3.21) are second-order inequalities about ∥hmax(s)∥2, where the quadratic coefficients
are negative.

Consequently, through a straightforward calculation, we have

∥hmax(s)∥2 ≤
4δts|I∥x−max(s)∥2,I√

s
+ 2ρ

√
1 + δts|I t̃

2(t+ (t− 4)δts|I)

+ (2(t+ (t− 4)δts|I))
−1

((
4δts|I∥x−max(s)∥2,I√

s
+ 2ρ

√
1 + δts|I t̃

)2

+ 16(t+ (t− 4)δts|I)
δts|I

s
∥x−max(s)∥2,I

) 1
2

,

where t̃ = max{t,
√
t}. Note the fact that for fixed 0 < q ≤ 1, any non-negative x, y, (x + y)q ≤

xq + yq. Hence,

∥hmax(s)∥2 ≤
2ρ
√

1 + δts|I t̃+ 2
(
δts|I +

√
(t+ (t− 4)δts|I)δts|I

)
∥x−max(s)∥2,I/

√
s

t+ (t− 4)δts|I
. (3.22)

Easily verify that for any block s-sparse vector x, ∥x∥2,2 =
(∑

i ∥x[i]∥22
)1/2 ≤

√
∥x∥2,∞

√
∥x∥2,I .

And employing Cauchy-Schwarz to any block s-sparse vector x, ∥x∥2,I =
∑

i ∥x[i]∥2·1 ≤ s
1
2 (
∑

i ∥x[i]∥22)
1
2 =

s
1
2 ∥x∥2,2 and combining with (3.1), we have

∥h−max(s)∥2,2 ≤
√
s−1∥hmax(s)∥2,I

√
∥hmax(s)∥2,I + 2∥x−max(s)∥2,I

≤
√
s−1∥hmax(s)∥22,I + 2s−1∥hmax(s)∥2,I∥x−max(s)∥2,I

≤
√

∥hmax(s)∥22,2 + 2s−
1
2 ∥hmax(s)∥2,2∥x−max(s)∥2,I . (3.23)

By utilizing (3.22) and (3.23), we obtain

∥h∥2 = (∥hmax(s)∥22 + ∥h−max(s)∥22)
1
2

11



≤
(
∥hmax(s)∥22 + ∥hmax(s)∥22,2 + 2s−

1
2 ∥hmax(s)∥2,2∥x−max(s)∥2,I

) 1
2

=
(
2∥hmax(s)∥22 + 2s−

1
2 ∥hmax(s)∥2,2∥x−max(s)∥2,I

) 1
2

≤
(
(
√
2∥hmax(s)∥2)2 + 2

√
2∥hmax(s)∥2,2(2s)−

1
2 ∥x−max(s)∥2,I +

(
(2s)−

1
2 ∥x−max(s)∥2,I

)2) 1
2

=
√
2∥hmax(s)∥2 + (2s)−

1
2 ∥x−max(s)∥2,I

≤
2
√
2ρ
√
1 + δts|I t̃+ 2

√
2(δts|I +

√
(t+ (t− 4)δts|I)δts|I)∥x−max(s)∥2,I/

√
s

t+ (t− 4)δts|I

+ ∥x−max(s)∥2,I/
√
2s

≤
2
√
2ρ
√
1 + δts|I t̃

t+ (t− 4)δts|I

+
1

2

√
2

s

(4
(
2δts|I +

√
(t+ (t− 4)δts|I)δts|I

)
t+ (t− 4)δts|I

+ 1

)
∥x−max(s)∥2,I .

If ts is not an integer, we set t′s = [ts], then t′s is an integer with t′ > t. For t′ < 4/3, we have
δt′s|I = δts|I < t/(4− t) < t′/(4− t′). Analogous to the proof above, we can prove the result under
the condition of δts|I < t/(4− t) with ts /∈ Z.

Proof of Theorem 1.2.

Denote

x1 = (2sd)−
1
2 (

d︷ ︸︸ ︷
1, · · · , 1, · · · ,

d︷ ︸︸ ︷
1, · · · , 1︸ ︷︷ ︸

2s blocks

, 0, · · · , 0) ∈ RN ,

where 2s < l, I = {d1 = d, d2 = d, · · · , d2s = d, d2s+1, · · · , dl} and ∥x1∥2 = 1. The linear transfor-
mation Φ : RN → RN is defined as follows:

Φx =
1√
1− t

4

(x− < x1, x > x1),

for any x ∈ RN . For block [ts]-sparse signal x ∈ RN , then

∥Φx∥22 =
1

1− t
4

(
∥x∥22 − 2 < x1, x >

2 + < x1, x >
2 ∥x1∥22

)
=

1

1− t
4

(
∥x∥22− < x1, x >

2
)
.

Applying the Cauchy-Schwarz’s inequality, we have

0 ≤ | < x1, x > | = | ⟨x1[supp(x)], x⟩ |
≤ ∥x1[supp(x)]∥2∥x∥2 ≤ ∥x1max([ts])∥2∥x∥2

=

√
[ts]

2s
∥x∥2.
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For εs > 1, then

∥Φx∥22 ≥
1

1− t
4

(
1− [ts]

2s

)
∥x∥22

≥ 1

1− t
4

(
1− ts+ 1

2s

)
∥x∥22

≥ 1

1− t
4

(
1− ts+ εs

2s

)
∥x∥22

=
1

1− t
4

(
1− t

2
− ε

2

)
∥x∥22

=

(
1− 1

4
t − 1

− 2ε

4− t

)
∥x∥22

>

(
1− t

4− t
− ε

)
∥x∥22.

In the other direction, it is easy to see that

∥Φx∥22 ≤
t

4− t
∥x∥22 =

(
1 +

t

4− t

)
∥x∥22

≤
(
1 +

t

4− t
+ ε

)
∥x∥22.

Hence, we obtain δts|I = δ[ts]|I < t/(4− t) + ε.

At last, denote

x0 = (

d︷ ︸︸ ︷
1, · · · , 1, · · · ,

d︷ ︸︸ ︷
1, · · · , 1︸ ︷︷ ︸

s blocks

,

d︷ ︸︸ ︷
0, · · · , 0, · · · ,

d︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸

s blocks

, 0, · · · , 0) ∈ RN ,

x̂ = (

d︷ ︸︸ ︷
0, · · · , 0, · · · ,

d︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸

s blocks

,

d︷ ︸︸ ︷
−1, · · · ,−1, · · · ,

d︷ ︸︸ ︷
−1, · · · ,−1︸ ︷︷ ︸

s blocks

, 0, · · · , 0) ∈ RN ,

Easily check that ∥x0∥2,I = ∥x̂∥2,I = s
√
d, and x0, x̂ are block s-sparse, x1 = 1√

2sd
(x0 − x̂). Since

Φx1 = 0, then Φx0 = Φx̂ = b. It is no possible to recover vectors x0, x̂ only based on the known
measurement matrix Φ and the observation vector b.

4 Conclusions

In the article, we investigate the block sparse signal recovery drawn from incomplete undeter-
mined system of linear equations, whose non-zero coefficients are aligned into blocks, that is to
say, they appear in blocks rather than arbitrarily disperse over all the vector. Based on block RIP,
we derive a sufficient condition. Under the condition, we can assuredly recover all block sparse
signals in the noise-free situation and robustly reconstruct signals that aren’t exactly block sparse
in the noisy situation by l2/l1-minimization method. Furthermore, we provide a special example
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to indicate that the sufficient condition we obtained is sharp. Byproduct, when t = 1, the result
enhances the bound of the block RIC δs|I in [10].

Appendix
Lemma A.1(Lemma 5.3 [21]) Assume that s ≤ l, a1 ≥ a2 ≥ · · · ≥ al meets with

∑s
i=1 ai ≥∑l

i=s+1 ai, then we have
l∑

i=s+1

aαi ≤
s∑

i=1

aαi (4.1)

for all α ≥ 1. Generally, assume that a1 ≥ a2 ≥ · · · ≥ al, ψ ≥ 0 such that
∑s

i=1 ai ≥
∑l

i=s+1 ai
holds, then we have

l∑
i=s+1

aαi ≤ s

(
α

√∑s
i=1 a

α
i

s
+
ψ

s

)α

(4.2)

for all α ≥ 1.

Proof of Remark 1.5. Applying Lemma A.1 to (3.1), we have

l∑
i=s+1

∥h[i]∥22 ≤ s

(
2

√∑s
i=1 ∥h[i]∥22

s
+

2∥x−max(s)∥2,I
s

)2

,

i.e.,

∥h−max(s)∥2,2 ≤ ∥hmax(s)∥2,2 +
2∥x−max(s)∥2,I√

s
.

Accordingly,

∥h∥2 = (∥hmax(s)∥22 + ∥h−max(s)∥22)
1
2

≤

(
∥hmax(s)∥22 +

(
∥hmax(s)∥2,2 +

2∥x−max(s)∥2,I√
s

)2
) 1

2

≤
√
2∥hmax(s)∥2 +

2∥x−max(s)∥2,I√
s

≤
2
√
2ρ
√

1 + δts|I

t+ (t− 4)δts|I
t̃

+

√
2

s

(4δts|I + 2
√
(t+ (t− 4)δts|I)δts|I

t+ (t− 4)δts|I
+

√
2

)
∥x−max(s)∥2,I .
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