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Abstract: Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward
network (SLFN), and has obtained considerable attention within the machine learning community and
achieved various real-world applications. It has advantages such as good generalization performance,
fast learning speed, and low computational cost. However, the ELM might have problems in the
classification of imbalanced data sets. In this paper, we present a novel weighted ELM scheme based
on neutrosophic set theory, denoted as neutrosophic weighted extreme learning machine (NWELM),
in which neutrosophic c-means (NCM) clustering algorithm is used for the approximation of the
output weights of the ELM. We also investigate and compare NWELM with several weighted
algorithms. The proposed method demonstrates advantages to compare with the previous studies
on benchmarks.

Keywords: extreme learning machine (ELM); weight; neutrosophic c-means (NCM); imbalanced data
set

1. Introduction

Extreme learning machine (ELM) was put forward in 2006 by Huang et al. [1] as a single-hidden
layer feedforward network (SLFN). The hidden layer parameters of ELM are arbitrarily initialized and
output weights are determined by utilizing the least squares algorithm. Due to this characteristic, ELM
has fast learning speed, better performance and efficient computation cost [1–4], and has, as a result,
been applied in different areas.

However, ELM suffers from the presence of irrelevant variables in the large and high dimensional
real data set [2,5]. The unbalanced data set problem occurs in real applications such as text
categorization, fault detection, fraud detection, oil-spills detection in satellite images, toxicology,
cultural modeling, and medical diagnosis [6]. Many challenging real problems are characterized by
imbalanced training data in which at least one class is under-represented relative to others.

The problem of imbalanced data is often associated with asymmetric costs of misclassifying
elements of different classes. In addition, the distribution of the test data set might differ from that of
the training samples. Class imbalance happens when the number of samples in one class is much more
than that of the other [7]. The methods aiming to tackle the problem of imbalance can be classified
into four groups such as algorithmic based methods, data based methods, cost-sensitive methods
and ensembles of classifiers based methods [8]. In algorithmic based approaches, the minority class
classification accuracy is improved by adjusting the weights for each class [9]. Re-sampling methods
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can be viewed in the data based approaches where these methods did not improve the classifiers [10].
The cost-sensitive approaches assign various cost values to training samples of the majority class
and the minority class, respectively [11]. Recently, ensembles based methods have been widely used
in classification of imbalanced data sets [12]. Bagging and boosting methods are the two popular
ensemble methods.

The problem of class imbalance has received much attention in the literature [13]. Synthetic
minority over–sampling technique (SMOTE) [9] is known as the most popular re-sampling method
that uses pre-processing for obtaining minority class instances artificially. For each minority class
sample, SMOTE creates a new sample on the line joining it to the nearest minority class neighbor.
Borderline SMOTE [14], SMOTE-Boost [15], and modified SMOTE [14] are some of the improved
variants of the SMOTE algorithm. In addition, an oversampling method was proposed that identifies
some minority class samples that are hard to classify [16]. Another oversampling method was presented
that uses bagging with oversampling [17]. In [18], authors opted to use double ensemble classifier
by combining bagging and boosting. In [19], authors combined sampling and ensemble techniques
to improve the classification performance for skewed data. Another method, namely random under
sampling (RUS), was proposed that removes the majority class samples randomly until the training
set becomes balanced [19]. In [20], authors proposed an ensemble of an support vector machine
(SVM) structure with boosting (Boosting-SVM), where the minority class classification accuracy was
increased compared to pure SVM. In [21], a cost sensitive approach was proposed where k-nearest
neighbors (k-NN) classifier was adopted. In addition, in [22], an SVM based cost sensitive approach
was proposed for class imbalanced data classification. Decision trees [23] and logistic regression [24]
based methods were also proposed in order to handle with the imbalanced data classification.

An ELM classifier trained with an imbalanced data set can be biased towards the majority class
and obtain a high accuracy on the majority class by compromising minority class accuracy. Weighted
ELM (WELM) was employed to alleviate the ELM’s classification deficiency on imbalanced data sets,
and which can be seen as one of the cost-proportionate weighted sampling methods [25]. ELM assigns
the same misclassification cost value to all data points such as positive and negative samples in
a two-class problem. When the number of negative samples is much larger than that of the number of
positive samples or vice versa, assigning the same misclassification cost value to all samples can be
seen one of the drawbacks of traditional ELM. A straightforward solution is to obtain misclassification
cost values adaptively according to the class distribution, in the form of a weight scheme inversely
proportional to the number of samples in the class.

In [7], the authors proposed a weighted online sequential extreme learning machine (WOS-ELM)
algorithm for alleviating the imbalance problem in chunk-by-chunk and one-by-one learning. A weight
setting was selected in a computationally efficient way. Weighted Tanimoto extreme learning machine
(T-WELM) was used to predict chemical compound biological activity and other data with discrete,
binary representation [26]. In [27], the authors presented a weight learning machine for a SLFN to
recognize handwritten digits. Input and output weights were globally optimized with the batch
learning type of least squares. Features were assigned into the prescribed positions. Another weighted
ELM algorithm, namely ESOS-ELM, was proposed by Mirza et al. [28], which was inspired from
WOS-ELM. ESOS-ELM aims to handle class imbalance learning (CIL) from a concept-drifting data
stream. Another ensemble-based weighted ELM method was proposed by Zhang et al. [29], where the
weight of each base learner in the ensemble is optimized by differential evolution algorithm. In [30],
the authors further improved the re-sampling strategy inside Over-sampling based online bagging
(OOB) and Under-sampling based online bagging (UOB) in order to learn class imbalance.

Although much awareness of the imbalance has been raised, many of the key issues remain
unresolved and encountered more frequently in massive data sets. How to determine the weight values
is key to designing WELM. Different situations such as noises and outlier data should be considered.

The noises and outlier data in a data set can be treated as a kind of indeterminacy. Neutrosophic
set (NS) has been successfully applied for indeterminate information processing, and demonstrates
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advantages to deal with the indeterminacy information of data and is still a technique promoted
for data analysis and classification application. NS provides an efficient and accurate way to define
imbalance information according to the attributes of the data.

In this study, we present a new weighted ELM scheme using neutrosophic c-means (NCM)
clustering to overcome the ELM’s drawbacks in highly imbalanced data sets. A novel clustering
algorithm NCM was proposed for data clustering [31,32]. NCM is employed to determine a sample’s
belonging, noise, and indeterminacy memberships, and is then used to compute a weight value for that
sample [31–33]. A weighted ELM is designed using the weights from NCM and utilized for imbalanced
data set classification.

The rest of the paper is structured as follows. In Section 2, a brief history of the theory of ELM
and weighted ELM is introduced. In addition, Section 2 introduces the proposed method. Section 3
discusses the experiments and comparisons, and conclusions are drawn in Section 4.

2. Proposed Method

2.1. Extreme Learning Machine

Backpropagation, which is known as gradient-based learning method, suffers from slow
convergence speed. In addition, stuck in the local minimum can be seen as another disadvantage of a
gradient-based learning algorithm. ELM was proposed by Huang et al. [1] as an alternative method
that overcomes the shortcomings of gradient-based learning methods. The ELM was designed as
an SLFN, where the input weights and hidden biases are selected randomly. These weights do not
need to be adjusted during the training process. The output weights are determined analytically with
Moore–Penrose generalized inverse of the hidden-layer output matrix.

Mathematically speaking, the output of the ELM with L hidden nodes and activation function g(·)
can be written as:

oi =
L

∑
j=1

β jg(aj, bj, xj), i = 1, 2, . . . , N, (1)

where xj is the jth input data, aj = [aj1, aj2, . . . , ajn]
T is the weight vector, β j = [β j1, β j2, . . . , β jn]

T is the
output weight vector, bj is the bias of the jth hidden node and oi is the ith output node and N shows
the number of samples. If ELM learns these N samples with 0 error, then Equation (1) can be updated
as follows:

ti =
L

∑
j=1

β jg(aj, bj, xj), i = 1, 2, . . . , N, (2)

where ti shows the actual output vector. Equation (2) can be written compactly as shown in
Equation (3):

Hβ = T, (3)

where H = {hij} = g(aj, bj, xj) is the hidden-layer output matrix. Thus, the output weight vector can
be calculated analytically with Moore–Penrose generalized inverse of the hidden-layer output matrix
as shown in Equation (4):

β̂ = H+T, (4)

where H+ is the Moore–Penrose generalized inverse of matrix H.

2.2. Weighted Extreme Learning Machine

Let us consider a training data set [xi, ti], i = 1, . . . , N belonging to two classes, where xi ∈ Rnand
ti are the class labels. In binary classification, ti is either −1 or +1. Then, a N × N diagonal matrix Wii
is considered, where each of them is associated with a training sample xi. The weighting procedure
generally assigns larger Wii to xi, which comes from the minority class.
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An optimization problem is employed to maximize the marginal distance and to minimize the
weighted cumulative error as:

Minimize : ‖Hβ− T‖2 and ‖β‖. (5)

Furthermore:

Minimize : LELM =
1
2
‖β‖2 + CW

1
2

N

∑
i=1
‖ξi‖2, (6)

Subjected to : h(xi)β = tT
i − ξT

i , i = 1, 2, . . . , N, (7)

where T = [t1, . . . , tN ], ξi is the error vector and h(xi) is the feature mapping vector in the hidden layer
with respect to xi, and β. By using the Lagrage multiplier and Karush–Kuhn–Tucker theorem, the dual
optimization problem can be solved. Thus, hidden layer’s output weight vector β becomes can be
derived from Equation (7) regarding left pseudo-inverse or right pseudo-inverse. When presented
data with small size, right pseudo-inverse is recommended because it involves the inverse of an N× N
matrix. Otherwise, left pseudo-inverse is more suitable since it is much easier to compute matrix
inversion of size L× L when L is much smaller than N:

When N is small : β = HT(
I
C
+ WHHT)−1WT, (8)

When N is large : β = HT(
I
C
+ HTWT)−1HTWT. (9)

In the weighted ELM, the authors adopted two different weighting schemes. In the first one,
the weights for the minority and majority classes are calculated as:

Wminority =
1

#(t+i )
and Wmajority =

1
#(t−i )

, (10)

and, for the second one, the related weights are calculated as:

Wminority =
0.618
#(t+i )

and Wmajority =
1

#(t−i )
. (11)

The readers may refer to [25] for detail information about determination of the weights.

2.3. Neutrosophic Weighted Extreme Learning Machine

Weighted ELM assigns the same weight value to all samples in the minority class and another
same weight value to all samples in the majority class. Although this procedure works quite well in
some imbalanced data sets, assigning the same weight value to all samples in a class may not be a
good choice for data sets that have noise and outlier samples. In other words, to deal with noise and
outlier data samples in an imbalanced data set, different weight values are needed for each sample in
each class that reflects the data point’s significance in its class. Therefore, we present a novel method
to determine the significance of each sample in its class. NCM clustering can determine a sample’s
belonging, noise and indeterminacy memberships, which can then be used in order to compute a
weight value for that sample.

Guo and Sengur [31] proposed the NCM clustering algorithms based on the neutrosophic set
theorem [34–37]. In NCM, a new cost function was developed to overcome the weakness of the Fuzzy
c-Means (FCM) method on noise and outlier data points. In the NCM algorithm, two new types of
rejection were developed for both noise and outlier rejections. The objective function in NCM is given
as follows:
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JNCM(T, I, F, C) =
N

∑
i=1

C

∑
j=1

(w1Tij)
m‖xi − cj‖2 +

N

∑
i=1

(w2 Ii)
m‖xi − cimax‖2 + δ2

N

∑
i=1

(w3Fi)
m, (12)

where m is a constant. For each point i, the cimax is the mean of two centers. Tij, Ii and Fi are the
membership values belonging to the determinate clusters, boundary regions and noisy data set.
θ < Tij,Ii,Fi < 1:

c

∑
j=1

Tij + Ii + Fi = 1. (13)

Thus, the related membership functions are calculated as follows:

Tij =
w2w3(xi − cj)

−( 2
m−1 )

∑C
j=1(xi − cj)

−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

, (14)

Ii =
w1w3(xi − cimax)

−( 2
m−1 )

∑C
j=1(xi − cj)

−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

, (15)

Fi =
w1w2(δ)

−( 2
m−1 )

∑C
j=1(xi − cj)

−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

, (16)

Cj =
∑N

i=1(w1Tij)
mxi

∑N
i=1(w1Tij)m

, (17)

where cj shows the center of cluster j, w1, w2, and w3 are the weight factors and δ is a regularization
factor which is data dependent [31]. Under the above definitions, every input sample in each minority
and majority class is associated with a triple Tij, Ii, Fi. While the larger Tij means that the sample belongs
to the labeled class with a higher probability, the larger Ii means that the sample is indeterminate with
a higher probability. Finally, the larger Fi means that the sample is highly probable to be a noise or
outlier data.

After clustering procedure is applied in NCM, the weights for each sample of minority and
majority classes are obtained as follows:

Wminority
ii =

Cr

Tij + Ii − Fi
and Wmajority

ii =
1

Tij + Ii − Fi
, (18)

Cr =
#(t−i )
#(t+i )

, (19)

where Cr is the ratio of the number of samples in the majority class to the number of the samples in the
minority class.

The algorithm of the neutrosophic weighted extreme learning machine (NWELM) is composed of
four steps. The first step necessitates applying the NCM algorithm based on the pre-calculated cluster
centers, according to the class labels of the input samples. Thus, the T, I and F membership values
are determined for the next step. The related weights are calculated from the determined T, I and F
membership values in the second step of the algorithm.

In Step 3, the ELM parameters are tuned and samples and weights are fed into the ELM in order
to calculate the H matrix. The hidden layer weight vector β is calculated according to the H, W and
class labels. Finally, the determination of the labels of the test data set is accomplished in the final step
of the algorithm (Step 4).

The neutrosophic weighted extreme learning machine (NWELM) algorithm is given as following:

Input: Labelled training data set.
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Output: Predicted class labels.
Step 1: Initialize the cluster centers according to the labelled data set and run NCM algorithm in

order to obtain the T, I and F value for each data point.
Step 2: Compute Wminority

ii and Wmajority
ii according to Equations (18) and (19).

Step 3: Adapt the ELM parameters and run NWELM. Compute H matrix and obtain β according to
Equation (8) or Equation (9).

Step 4: Calculate the labels of test data set based on β.

3. Experimental Results

The geometric mean (Gmean) is used to evaluate the performance of the proposed NWELM method.
The Gmean is computed as follows:

Gmean =

√
R

TN
TN + FP

, (20)

R =
TP

TP + FN
, (21)

where R denotes the recall rate and TN, FP denotes true-negative and false-positive detections,
respectively. Gmean values are in the range of [0–1] and it represents the square root of positive class
accuracy and negative class accuracy. The performance evaluation of NWELM classifier is tested on
both toy data sets and real data sets, respectively. The five-fold cross-validation method is adopted
in the experiments. In the hidden node of the NWELM, the radial basis function (RBF) kernel is
considered. A grid search of the trade-off constant C on

{
2−18, 2−16, . . . , 248, 250} and the number of

hidden nodes L on
{

10, 20, . . . , 990, 2000
}

was conducted in seeking the optimal result using five-fold
cross-validation. For real data sets, a normalization of the input attributes into [−1, 1] is considered.
In addition, for NCM, the following parameters are chosen such as ε = 10−5, w1 = 0.75, w2 = 0.125,
w3 = 0.125 respectively, which were obtained by means of trial and error. The δ parameter of NCM
method is also searched on

{
2−10, 2−8, . . . , 28, 210}.

3.1. Experiments on Artificial Data Sets

Four two-class artificial imbalance data sets were used to evaluate the classification performance of
the proposed NWELM scheme. The illustration of the data sets is shown in Figure 1 [38]. The decision
boundary between classes is complicated. In Figure 1a, we illustrate the first artificial data set that
follows a uniform distribution. As can be seen, the red circles of Figure 1a belong to the minority class,
with the rest of the data samples shown by blue crosses as the majority class. The second imbalance
data set, namely Gaussian-1, is obtained using two Gaussian distributions with a 1:9 ratio of samples
as shown in Figure 1b. While the red circles illustrate the minority class, the blue cross samples show
the majority class.

Another Gaussian distribution-based imbalance data set, namely Gaussian-2, is given in Figure 1c.
This data set consists of nine Gaussian distributions with the same number of samples arranged in
a 3× 3 grid. The red circle samples located in the middle belong to the minority class while the blue cross
samples belong to the majority class. Finally, Figure 1d shows the last artificial imbalance data set. It is
known as a complex data set because it has a 1:9 ratio of samples for the minority and majority classes.

Table 1 shows the Gmean achieved by the two methods on these four data sets in ten independent
runs. For Gaussian-1, Gaussian-2 and the Uniform artificial data sets, the proposed NWELM method
yields better results when compared to the weighted ELM scheme; however, for the Complex artificial
data sets, the weighted ELM method achieves better results. The better resulting cases are shown in
bold text. It is worth mentioning that, for the Gaussian-2 data set, NWELM achieves a higher Gmean

across all trials.
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(a) (b)

(c) (d)

Figure 1. Four 2-dimensional artificial imbalance data sets (X1, X2): (a) uniform; (b) gaussian-1;
(c) gaussian-2; and (d) complex.

Table 1. Comparison of weighted extreme learning machine (ELM) vs. NWELM on artificial data sets.

Data Sets
Weighted ELM NWELM

Data Sets
Weighted ELM NWELM

Gmean Gmean Gmean Gmean

Gaussian-1-1 0.9811 0.9822 Gaussian-2-1 0.9629 0.9734
Gaussian-1-2 0.9843 0.9855 Gaussian-2-2 0.9551 0.9734
Gaussian-1-3 0.9944 0.9955 Gaussian-2-3 0.9670 0.9747
Gaussian-1-4 0.9866 0.9967 Gaussian-2-4 0.9494 0.9649
Gaussian-1-5 0.9866 0.9833 Gaussian-2-5 0.9467 0.9724
Gaussian-1-6 0.9899 0.9685 Gaussian-2-6 0.9563 0.9720
Gaussian-1-7 0.9833 0.9685 Gaussian-2-7 0.9512 0.9629
Gaussian-1-8 0.9967 0.9978 Gaussian-2-8 0.9644 0.9785
Gaussian-1-9 0.9944 0.9798 Gaussian-2-9 0.9441 0.9559
Gaussian-1-10 0.9846 0.9898 Gaussian-2-10 0.9402 0.9623

Uniform-1 0.9836 0.9874 Complex-1 0.9587 0.9481
Uniform-2 0.9798 0.9750 Complex-2 0.9529 0.9466
Uniform-3 0.9760 0.9823 Complex-3 0.9587 0.9608
Uniform-4 0.9811 0.9836 Complex-4 0.9482 0.9061
Uniform-5 0.9811 0.9823 Complex-5 0.9587 0.9297
Uniform-6 0.9772 0.9772 Complex-6 0.9409 0.9599
Uniform-7 0.9734 0.9403 Complex-7 0.9644 0.9563
Uniform-8 0.9785 0.9812 Complex-8 0.9575 0.9553
Uniform-9 0.9836 0.9762 Complex-9 0.9551 0.9446
Uniform-10 0.9695 0.9734 Complex-10 0.9351 0.9470
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3.2. Experiments on Real Data Set

In this section, we test the achievement of the proposed NWELM method on real data sets [39].
A total of 21 data sets with different numbers of features, training and test samples, and imbalance
ratios are shown in Table 2. The selected data sets can be categorized into two classes according to their
imbalance ratios. The first class has the imbalance ratio range of 0 to 0.2 and contains yeast-1-2-8-9_vs_7,
abalone9_18, glass-0-1-6_vs_2, vowel0, yeast-0-5-6-7-9_vs_4, page-blocks0, yeast3, ecoli2, new-thyroid1
and the new-thyroid2 data sets.

Table 2. Real data sets and their attributes.

Data Sets Features (#) Training Data (#) Test Data (#) Imbalance Ratio

yeast-1-2-8-9_vs_7 8 757 188 0.0327
abalone9_18 8 584 147 0.0600
glass-0-1-6_vs_2 9 153 39 0.0929
vowel0 13 790 198 0.1002
yeast-0-5-6-7-9_vs_4 8 422 106 0.1047
page-blocks0 10 4377 1095 0.1137
yeast3 8 1187 297 0.1230
ecoli2 7 268 68 0.1806
new-thyroid1 5 172 43 0.1944
new-thyroid2 5 172 43 0.1944
ecoli1 7 268 68 0.2947
glass-0-1-2-3_vs_4-5-6 9 171 43 0.3053
vehicle0 18 676 170 0.3075
vehicle1 18 676 170 0.3439
haberman 3 244 62 0.3556
yeast1 8 1187 297 0.4064
glass0 9 173 43 0.4786
iris0 4 120 30 0.5000
pima 8 614 154 0.5350
wisconsin 9 546 137 0.5380
glass1 9 173 43 0.5405

On the other hand, second class contains the data sets, such as ecoli1, glass-0-1-2-3_vs_4-5-6,
vehicle0, vehicle1, haberman, yeast, glass0, iris0, pima, wisconsin and glass1, that have imbalance ratio
rates between 0.2 and 1.

The comparison results of the proposed NWELM with the weighted ELM, unweighted ELM and
SVM are given in Table 3. As the weighted ELM method used a different weighting scheme (W1, W2),
in our comparisons, we used the higher Gmean value. As can be seen in Table 3, the NWELM method
yields higher Gmean values for 17 of the imbalanced data sets. For three of the data sets, both methods
yield the same Gmean. Just for the page-blocks0 data set, the weighted ELM method yielded better
results. It is worth mentioning that the NWELM method achieves 100% Gmean values for four data sets
(vowel0, new-thyroid1, new-thyroid2, iris0). In addition, NWELM produced higher Gmean values than
SVM for all data sets.

The obtained results were further evaluated by area under curve (AUC) values [40]. In addition,
we compared the proposed method with unweighted ELM, weighted ELM and SVM based on the
achieved AUC values as tabulated in Table 4. As seen in Table 4, for all examined data sets, our
proposal’s AUC values were higher than the compared other methods. For further comparisons of the
proposed method with unweighted ELM, weighted ELM and SVM methods appropriately, statistical
tests on AUC results were considered. The paired t-test was chosen [41]. The paired t-test results
between each compared method and the proposed method for AUC was tabulated in Table 5 in terms
of p-value. In Table 5, the results showing a significant advantage to the proposed method were shown
in bold–face where p-values are equal or smaller than 0.05. Therefore, the proposed method performed
better than the other methods in 39 tests out of 63 tests when each data set and pairs of methods are
considered separately.
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Table 3. Experimental results of binary data sets in terms of the Gmean. The best results on each data set
are emphasized in bold-face.

Data (Imbalance Ratio)

Gaussian Kernel Radial Base Kernel

Gmean Unweighted Weighted ELM Neutrosophic
ELM max (W1,W2) SVM Weighted ELM

C Gmean(%) C Gmean(%) Gmean(%) C Gmean(%)

im
ba

la
nc

e
ra

ti
o:

0,
0.

2

yeast-1-2-8-9_vs_7 (0.0327) 248 60.97 24 71.41 47.88 2−7 77.57
abalone9_18 (0.0600) 218 72.71 228 89.76 51.50 223 94.53
glass-0-1-6_vs_2 (0.0929) 250 63.20 232 83.59 51.26 27 91.86
vowel0 (0.1002) 2−18 100.00 2−18 100.00 99.44 27 100.00
yeast-0-5-6-7-9_vs_4 (0.1047) 2−6 68.68 24 82.21 62.32 2−10 85.29
page-blocks0 (0.1137) 24 89.62 216 93.61 87.72 220 93.25
yeast3 (0.1230) 244 84.13 248 93.11 84.71 23 93.20
ecoli2 (0.1806) 2−18 94.31 28 94.43 92.27 210 95.16
new-thyroid1 (0.1944) 20 99.16 214 99.72 96.75 27 100.00
new-thyroid2 (0.1944) 22 99.44 212 99.72 98.24 27 100.00

im
ba

la
nc

e
ra

ti
o:

0.
2,

1

ecoli1 (0.2947) 20 88.75 210 91.04 87.73 220 92.10
glass-0-1-2-3_vs_4-5-6 (0.3053) 210 93.26 2−18 95.41 91.84 27 95.68
vehicle0 (0.3075) 28 99.36 220 99.36 96.03 210 99.36
vehicle1 (0.3439) 218 80.60 224 86.74 66.04 210 88.06
haberman (0.3556) 242 57.23 214 66.26 37.35 27 67.34
yeast1 (0.4064) 20 65.45 210 73.17 61.05 210 73.19
glass0 (0.4786) 20 85.35 20 85.65 79.10 213 85.92
iris0 (0.5000) 2−18 100.00 2−18 100.00 98.97 210 100.00
pima (0.5350) 20 71.16 28 75.58 70.17 210 76.35
wisconsin (0.5380) 2−2 97.18 28 97.70 95.67 27 98.22
glass1 (0.5405) 2−18 77.48 22 80.35 69.64 217 81.77

Table 4. Experimental result of binary data sets in terms of the average area under curve (AUC).
The best results on each data set are emphasized in bold-face.

Data (Imbalance Ratio)

Gaussian Kernel Radial Base Kernel

AUC Unweighted Weighted ELM Neutrosophic
ELM max (W1,W2) SVM Weighted ELM

C AUC (%) C AUC (%) AUC (%) C AUC (%)

im
ba

la
nc

e
ra

ti
o:

0,
0.

2

yeast-1-2-8-9_vs_7 (0.0327) 248 61.48 24 65.53 56.67 2−7 74.48
abalone9_18 (0.0600) 218 73.05 228 89.28 56.60 223 95.25
glass-0-1-6_vs_2 (0.0929) 250 67.50 232 61.14 53.05 27 93.43
vowel0 (0.1002) 2−18 93.43 2−18 99.22 99.44 27 99.94
yeast-0-5-6-7-9_vs_4 (0.1047) 2−6 66.35 24 80.09 69.88 2−10 82.11
page-blocks0 (0.1137) 24 67.42 216 71.55 88.38 220 91.49
yeast3 (0.1230) 244 69.28 248 90.92 83.92 23 93.15
ecoli2 (0.1806) 2−18 71.15 28 94.34 92.49 210 94.98
new-thyroid1 (0.1944) 20 90.87 214 98.02 96.87 27 100.00
new-thyroid2 (0.1944) 22 84.29 212 96.63 98.29 27 100.00

im
ba

la
nc

e
ra

ti
o:

0.
2,

1

ecoli1 (0.2947) 20 66.65 210 90.28 88.16 220 92.18
glass-0-1-2-3_vs_4-5-6 (0.3053) 210 88.36 2−18 93.94 92.02 27 95.86
vehicle0 (0.3075) 28 71.44 220 62.41 96.11 210 98.69
vehicle1 (0.3439) 218 58.43 224 51.80 69.10 210 88.63
haberman (0.3556) 242 68.11 214 55.44 54.05 27 72.19
yeast1 (0.4064) 20 56.06 210 70.03 66.01 210 73.66
glass0 (0.4786) 20 74.22 20 75.99 79.81 213 81.41
iris0 (0.5000) 2−18 100.00 2−18 100.00 99.00 210 100.00
pima (0.5350) 20 59.65 28 50.01 71.81 210 75.21
wisconsin (0.5380) 2−2 83.87 28 80.94 95.68 27 98.01
glass1 (0.5405) 2−18 75.25 22 80.46 72.32 217 81.09
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Table 5. Paired t-test results between each method and the proposed method for AUC results.

Data Sets Unweighted ELM Weighted ELM SVM

im
ba

la
nc

e
ra

ti
o:

0,
0.

2
yeast-1-2-8-9_vs_7 (0.0327) 0.0254 0.0561 0.0018
abalone9_18 (0.0600) 0.0225 0.0832 0.0014
glass-0-1-6_vs_2 (0.0929) 0.0119 0.0103 0.0006
vowel0 (0.1002) 0.0010 0.2450 0.4318
yeast-0-5-6-7-9_vs_4 (0.1047) 0.0218 0.5834 0.0568
page-blocks0 (0.1137) 0.0000 0.0000 0.0195
yeast3 (0.1230) 0.0008 0.0333 0.0001
ecoli2 (0.1806) 0.0006 0.0839 0.0806
new-thyroid1 (0.1944) 0.0326 0.2089 0.1312
new-thyroid2 (0.1944) 0.0029 0.0962 0.2855

im
ba

la
nc

e
ra

ti
o:

0.
2,

1

ecoli1 (0.2947) 0.0021 0.1962 0.0744
glass-0-1-2-3_vs_4-5-6 (0.3053) 0.0702 0.4319 0.0424
vehicle0 (0.3075) 0.0000 0.0001 0.0875
vehicle1 (0.3439) 0.0000 0.0000 0.0001
haberman (0.3556) 0.1567 0.0165 0.0007
yeast1 (0.4064) 0.0001 0.0621 0.0003
glass0 (0.4786) 0.0127 0.1688 0.7072
iris0 (0.5000) NaN NaN 0.3739
pima (0.5350) 0.0058 0.0000 0.0320
wisconsin (0.5380) 0.0000 0.0002 0.0071
glass1 (0.5405) 0.0485 0.8608 0.0293

Another statistical test, namely the Friedman aligned ranks test, has been applied to compare the
obtained results based on AUC values [42]. This test is a non-parametric test and the Holm method
was chosen as the post hoc control method. The significance level was assigned 0.05. The statistics
were obtained with the STAC tool [43] and recorded in Table 6. According to these results, the highest
rank value was obtained by the proposed NWELM method and SVM and WELM rank values were
greater than the ELM. In addition, the comparison’s statistics, adjusted p-values and hypothesis results
were given in Table 6.

Table 6. Friedman Aligned Ranks test (significance level of 0.05).

Statistic p-Value Result

29.6052 0.0000 H0 is rejected

Ranking

Algorithm Rank

ELM 21.7619
WELM 38.9047
SVM 41.5238

NWELM 67.8095

Comparison Statistic Adjusted p-Value Result

NWELM vs. ELM 6.1171 0.0000 H0 is rejected
NWELM vs. WELM 3.8398 0.0003 H0 is rejected
NWELM vs. SVM 3.4919 0.0005 H0 is rejected

We further compared the proposed NWELM method with two ensemble-based weighted ELM
methods on 12 data sets [29]. The obtained results and the average classification Gmean values are
recorded in Table 7. The best classification result for each data set is shown in bold text. A global view
on the average classification performance shows that the NWELM yielded the highest average Gmean

value against both the ensemble-based weighted ELM methods. In addition, the proposed NWELM
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method evidently outperforms the other two compared algorithms in terms of Gmean in 10 out of 12
data sets, with the only exceptions being the yeast3 and glass2 data sets.

As can be seen through careful observation, the NWELM method has not significantly improved
the performance in terms of the glass1, haberman, yeast1_7 and abalone9_18 data sets, but slightly
outperforms both ensemble-based weighted ELM methods.

Table 7. Comparison of the proposed method with two ensemble-based weighted ELM methods.

Vote-Based Ensemble DE-Based Ensemble NWELM

C Gmean(%) C Gmean(%) C Gmean(%)

glass1 230 74.32 218 77.72 217 81.77
haberman 212 63.10 228 62.68 27 67.34
ecoli1 240 89.72 20 91.39 220 92.10
new-thyroid2 210 99.47 232 99.24 27 100.00
yeast3 24 94.25 22 94.57 23 93.20
ecoli3 210 88.68 218 89.50 217 92.16
glass2 28 86.45 216 87.51 27 85.58
yeast1_7 220 78.95 238 78.94 2−6 84.66
ecoli4 28 96.33 214 96.77 210 98.85
abalone9_18 24 89.24 216 90.13 223 94.53
glass5 218 94.55 212 94.55 27 95.02
yeast5 212 94.51 228 94.59 217 98.13
Average 87.46 88.13 90.53

A box plots illustration of the compared methods is shown in Figure 2. The box generated by the
NWELM is shorter than the boxes generated by the compared vote-based ensemble and differential
evolution (DE)- based ensemble methods. The dispersion degree of NWELM method is relatively low.
It is worth noting that the box plots of all methods consider the Gmean of the haberman data set as an
exception. Finally, the box plot determines the proposed NWELM method to be more robust when
compared to the ensemble-based weighted ELM methods.

Figure 2. Box plots illustration of the compared methods.

4. Conclusions

In this paper, we propose a new weighted ELM model based on neutrosophic clustering. This new
weighting scheme introduces true, indeterminacy and falsity memberships of each data point into
ELM. Thus, we can remove the effect of noises and outliers in the classification stage and yield
better classification results. Moreover, the proposed NWELM scheme can handle the problem of
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class imbalance more effectively. In the evaluation experiments, we compare the performance of the
NWELM method with weighted ELM, unweighted ELM, and two ensemble-based weighted ELM
methods. The experimental results demonstrate the NEWLM to be more effective than the compared
methods for both artificial and real binary imbalance data sets. In the future, we are planning to extend
our study to multiclass imbalance learning.

Author Contributions: Abdulkadir Sengur provided the idea of the proposed method. Yanhui Guo and Florentin
Smarandache proved the theorems. Yaman Akbulut analyzed the model’s application. Abdulkadir Sengur,
Yanhui Guo, Yaman Akbulut, and Florentin Smarandache wrote the paper.
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