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Abstract: k-nearest neighbors (k-NN), which is known to be a simple and efficient approach,
is a non-parametric supervised classifier. It aims to determine the class label of an unknown sample
by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are determined
based on some distance functions. Although k-NN produces successful results, there have been some
extensions for improving its precision. The neutrosophic set (NS) defines three memberships namely
T, I and F. T, I, and F shows the truth membership degree, the false membership degree, and the
indeterminacy membership degree, respectively. In this paper, the NS memberships are adopted to
improve the classification performance of the k-NN classifier. A new straightforward k-NN approach
is proposed based on NS theory. It calculates the NS memberships based on a supervised neutrosophic
c-means (NCM) algorithm. A final belonging membership U is calculated from the NS triples as
U = T + I − F. A similar final voting scheme as given in fuzzy k-NN is considered for class label
determination. Extensive experiments are conducted to evaluate the proposed method’s performance.
To this end, several toy and real-world datasets are used. We further compare the proposed method
with k-NN, fuzzy k-NN, and two weighted k-NN schemes. The results are encouraging and the
improvement is obvious.

Keywords: k-NN; Fuzzy k-NN; neutrosophic sets; data classification

1. Introduction

The k-nearest neighbors (k-NN), which is known to be the oldest and simplest approach,
is a non-parametric supervised classifier [1,2]. It aims to determine the class label of an unknown
sample by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are
determined based on some distance functions. As it is simplest and oldest approach, there have
been so many data mining and pattern recognition applications, such as ventricular arrhythmia
detection [3], bankruptcy prediction [4], diagnosis of diabetes diseases [5], human action recognition [6],
text categorization [7], and many other successful ones.

Although k-NN produces successful results, there have been some extensions for improving its
precision. Fuzzy theory-based k-NN (Fuzzy k-NN) has been among the most successful ones. As k-NN
produces crisp memberships for training data samples, fuzzy k-NN replaces the crisp memberships
with a continuous range of memberships which enhances the class label determination. Keller et al. [8]
was the one who incorporated the fuzzy theory in the k-NN approach. Authors proposed three
different methods for assigning fuzzy memberships to the labeled samples. After determination
of the fuzzy memberships, some distance function was used to weight the fuzzy memberships for
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final class label determination of the test sample. The membership assignment by the conventional
fuzzy k-NN algorithm has a disadvantage in that it depends on the choice of some distance function.
To alleviate this drawback, Pham et al. [9] proposed an optimally-weighted fuzzy k-NN approach.
Author introduced a computational scheme for determining optimal weights which were used to
improve the efficiency of the fuzzy k-NN approach. Denœux et al. [10] proposed a k-NN method
where Dempster-Shafer theory was used to calculate the memberships of the training data samples.
Author assumed that each neighbor of a sample to be classified was considered as an item of
evidence and the degree of support was defined as a function of the distance. The final class label
assignment was handled by Dempster’s rule of combination. Another evidential theory-based k-NN
approach, denoted by Ek-NN, has been proposed by Zouhal et al. [11]. In addition to the belonging
degree, the authors introduced the ignorant class to model the uncertainty. Then, Zouhal et al. [12]
proposed the generalized Ek-NN approach, denoted by FEk-NN. Authors adopted fuzzy theory for
improving the Ek-NN classification performance. The motivation for the FEk-NN was arisen from
the fact that each training sample was considered having some degree of membership to each class.
In addition, Liu et al. [13] proposed an evidential reasoning based fuzzy-belief k-nearest neighbor
(FBK-NN) classifier. In FBK-NN, each labeled sample was assigned with a fuzzy membership to
each class according to its neighborhood and the test sample’s class label was determined by the
K basic belief assignments which were determined from the distances between the object and its K
nearest neighbors. A belief theory based k-NN, denoted by the BK-NN classifier was introduced
by Liu et al. [14]. The author aimed to deal with uncertain data using the meta-class. Although,
the proposed method produced successful results, the computation complexity and the sensitivity to k
makes the approach inconvenient for many classification application. Derrac et al. [15] proposed an
evolutionary fuzzy k-NN approach where interval-valued fuzzy sets were used. The authors not only
defined a new membership function, but also a new voting scheme was proposed. Dudani et al. [16]
proposed a weighted voting method for k-NN which was called the distance-weighted k-NN (WKNN).
Authors presumed that the closer neighbors were weighted more heavily than the farther ones,
using the distance-weighted function. Gou et al. [17] proposed a distance-weighted k-NN (DWKNN)
method where a dual distance-weighted function was introduced. The proposed method has improved
the traditional k-NN’s performance by using a new method for selection of the k value.

In [18–21], Smarandache proposed neutrosophic theories. Neutrosophy was introduced as
a new branch of philosophy which deals with the origin, nature, and scope of neutralities, and their
interactions with different ideational spectra [19]. Neutrosophy is the base for the neutrosophic set
(NS), neutrosophic logic, neutrosophic probability, neutrosophic statistics, and so on. In NS theory,
every event has not only a certain degree of truth, but also a falsity degree and an indeterminacy
degree that have to be considered independently from each other [20]. Thus, an event, or entity, {A} is
considered with its opposite {Anti-A} and the neutrality {Neut-A}. NS provides a powerful tool to deal
with the indeterminacy. In this paper, a new straightforward k-NN approach was developed which is
based on NS theory. We adopted the NS memberships to improve the classification performance of the
k-NN classifier. To do so, the neutrosophic c-means (NCM) algorithm was considered in a supervised
manner, where labeled training data was used to obtain the centers of clusters. A final belonging
membership degree U was calculated from the NS triples as U = T + I − F. A similar final voting
scheme as given in fuzzy k-NN was employed for class label determination.

The paper is organized as follows: In the next section, we briefly reviewed the theories of k-NN
and fuzzy k-NN. In Section 3, the proposed method was introduced and the algorithm of the proposed
method was tabulated in Table 1. The experimental results and related comparisons were given
in Section 4. The paper was concluded in Section 5.
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2. Related works

2.1. k-Nearest Neighbor (k-NN) Classifier

As it was mentioned earlier, k-NN is the simplest, popular, supervised, and non-parametric
classification method which was proposed in 1951 [1]. It is a distance based classifier which needs to
measure the similarity of the test data to the data samples stored in the training set. Then, the test data
is labelled by a majority vote of its k-nearest neighbors in the training set.

Let X = {x1, x2, . . . , xN} denote the training set where xi ∈ Rn is a training data point in the
n-dimensional feature space and let Y = {y1, y2, . . . , yN} denotes the corresponding class labels.
Given a test data point x́ whose class label is unknown, it can be determined as follows:

• Calculate the similarity measures between test sample and training samples by using a distance
function (e.g., Euclidean distance)

• Find the test sample’s k nearest neighbors in training data samples according to the similarity
measure and determine the class label by the majority voting of its nearest neighbors.

2.2. Fuzzy k-Nearest Neighbor (k-NN) Classifier

In k-NN, a training data sample x is assumed to belong to one of the given classes so the
membership U of that training sample to each class of C is given by an array of values in {0, 1}.
If training data sample x belongs to class c1 then Uc1(x) = 1 and Uc2(x) = 0 where C = {c1, c2}.

However, in fuzzy k-NN, instead of using crisp memberships, continuous range of memberships
is used due to the nature of fuzzy theory [8]. So, the membership of training data sample can be
calculated as:

Uc1(x) =

{
0.51 + 0.49

kc1
K i f c = c1

0.49
kc1
K otherwise

(1)

where kc1 shows the number of instances belonging to class c1 found among the k neighbors of x́ and k
is an integer value between [3,9].

After fuzzy membership calculation, a test sample’s class label can be determined as following.
Determine the k nearest neighbors of the test sample via Euclidean distance and produce a final vote
for each class and neighbor using the Euclidean norm and the memberships:

V
(
k j, c

)
=

Uc(kj)

(‖x́ −kj‖)
2

m−1

∑k
i=1

1

(‖x́ −ki‖)
2

m−1

(2)

where k j is the jth nearest neighbor and m = 2 is a parameter. The votes of each neighbor are then
added to obtain the final classification.

3. Proposed Neutrosophic-k-NN Classifier

As traditional k-NN suffers from assigning equal weights to class labels in the training dataset,
neutrosophic memberships are adopted in this work to overcome this limitation. Neutrosophic
memberships reflect the data point’s significance in its class and these memberships can be used as
a new procedure for k-NN approach.

Neutrosophic set can determine a sample’s memberships belonging to truth, false,
and indeterminacy. An unsupervised neutrosophic clustering algorithm (NCM) is used in a supervised
manner [22,23]. Crisp clustering methods assumed that every data points should belong to a cluster
according to their nearness to the center of clusters. Fuzzy clustering methods assigned fuzzy
memberships to each data point according to their nearness to the center of cluster. Neutrosophic
clustering assigned memberships (T, I, and F) to each data point not only according to its nearness to a
cluster center, but also according to the nearness to the center mean of the two clusters. Readers may



Symmetry 2017, 9, 179 4 of 10

refer to [22] for detailed information about the NCM clustering. As the labels of a training dataset
samples are known in a supervised learning, the centers of the clusters can be calculated accordingly.
Then, the related memberships of true (T), false (F), and indeterminacy (I) can be calculated as follows:

Tij =
(xi − cj)

−( 2
m−1 )

∑C
j=1
(

xi − cj
)−( 2

m−1 ) + (xi − cimax)
−( 2

m−1 ) + δ−(
2

m−1 )
(3)

Fi =
(δ)−(

2
m−1 )

∑C
j=1
(

xi − cj
)−( 2

m−1 ) + (xi − cimax)
−( 2

m−1 ) + δ−(
2

m−1 )
(4)

Ii =
(xi − cimax)

−( 2
m−1 )

∑C
j=1
(

xi − cj
)−( 2

m−1 ) + (xi − cimax)
−( 2

m−1 ) + δ−(
2

m−1 )
(5)

where m is a constant, δ is a regularization parameter and cj shows the center of cluster j. For each
point i, the cimax is the mean of two cluster centers where the true membership values are greater than
the others. Tij shows the true membership value of point i for class j. Fi shows the falsity membership
of point i and Ii determines the indeterminacy membership value for point i. Larger Tij means that the
point i is near a cluster and less likely to be a noise. Larger Ii means that the point i is between any
two clusters and larger Fi indicates that point i is likely to be a noise. A final membership value for
point i can be calculated by adding indeterminacy membership value to true membership value and
subtracting the falsity membership value as shown in Equation (6).

After determining the neutrosophic membership triples, the membership for an unknown sample
xu to class label j, can be calculated as [9]:

µju =
∑k

i=1 di
(
Tij + Ii − Fi

)
∑k

i=1 di
(6)

di =
1

‖xu − xi‖
2

q−1
(7)

where di is the distance function to measure the distance between xi and xu, k shows the number of
k-nearest neighbors and q is an integer. After the assignment of the neutrosophic membership grades
of an unknown sample xu to all class labels, the neutrosophic k-NN assigns xu to the class whose
neutrosophic membership is maximum. The following steps are used for construction of the proposed
NS-k-NN method:

Step 1: Initialize the cluster centers according to the labelled dataset and employ Equations (3)–(5)
to calculate the T, I, and F values for each data training data point.

Step 2: Compute membership grades of test data samples according to the Equations (6) and (7).
Step 3: Assign class labels of the unknown test data points to the class whose neutrosophic

membership is maximum.

4. Experimental Works

The efficiency of the proposed method was evaluated with several toy and real datasets. Two toy
datasets were used to test the proposed method and investigate the effect of the parameters change on
classification accuracy. On the other hand, several real datasets were used to compare the proposed
method with traditional k-NN and fuzzy k-NN methods. We further compare the proposed method
with several weighted k-NN methods such as weighted k-NN (WKNN) and distance-weighted
k-nearest neighbor (DWKNN).

The toy dataset that were used in the experiments were shown in Figure 1a,b respectively. Both toy
datasets contain two dimensional data with four classes. Randomly selected half of the toy datasets were



Symmetry 2017, 9, 179 5 of 10

used for training and the other half were used for testing. The k value was chosen to be 5, 10, and 15 and
the δ parameter was chosen to be 0.01, 0.1, and 1, respectively. The obtained results were shown in Figure 2,
respectively. As seen in the first row of Figure 2, the proposed method obtained 100% classification
accuracy with k = 10 and δ = 0.01 values for both toy datasets. However, 100% correct classification did not
obtained for the other parameters as shown in the second and the third rows of Figure 2. This situation
shows that the proposed method needs a parameter tuning mechanism in the k vs. δ space. So, k was set to
an integer value between [2, 15] and δ parameter was also searched on

{
2−10, 2−8, . . . , 28, 210}.
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We conducted further experiments on 39 real-world datasets which were downloaded from
KEEL dataset repository [24]. Each dataset was already partitioned according to the cross validation
procedure (five-folds or 10-folds). Table 1 shows several characteristics of the each dataset such as
number of samples, number of features, and number of classes. All feature values were normalized to
[−1, 1] and a five-folds cross validation procedure was adopted in all experiments. The accuracies were
calculated as the ratio of the number of correctly classified samples to the total number of samples.

Table 1. Data sets and their properties.

Data Sets Instance
(#)

Attribute
(#)

Class
(#) Data Sets Instance

(#)
Attribute

(#)
Class

(#)

Appendicitis 106 7 2 Penbased 10,992 16 10
Balance 625 4 3 Phoneme 5404 5 2
Banana 5300 2 2 Pima 768 8 2
Bands 365 19 2 Ring 7400 20 2
Bupa 345 6 2 Satimage 6435 36 7

Cleveland 297 13 5 Segment 2310 19 7
Dermatology 358 34 6 Sonar 208 60 2

Ecoli 336 7 8 Spectfheart 267 44 2
Glass 214 9 7 Tae 151 5 3

Haberman 306 3 2 Texture 5500 40 11
Hayes-roth 160 4 3 Thyroid 7200 21 3

Heart 270 13 2 Twonorm 7400 20 2
Hepatitis 80 19 2 Vehicle 846 18 4

Ionosphere 351 33 2 Vowel 990 13 11
Iris 150 4 3 Wdbc 569 30 2

Mammographic 830 5 2 Wine 178 13 3
Monk-2 432 6 2 Winequality-red 1599 11 11

Movement 360 90 15 Winequality-white 4898 11 11
New thyroid 215 5 3 Yeast 1484 8 10
Page-blocks 5472 10 5 - - - -
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Figure 2. Some classification results for various k and δ parameters. (a) classification result 1 of
corner data with various parameters; (b) classification result 1 of line data with various parameters
(c) classification result 2 of corner data with various parameters (d) classification result 2 of line
data with various parameters (e) classification result 3 of corner data with various parameters;
(f) classification result 3 of line data with various parameters.

In addition to our results, we also compared our results with k-NN and fuzzy k-NN results on the
same datasets. The obtained results were tabulated in Table 2 where the best results were indicated
with bold-face. As seen in Table 2, the proposed method performed better than the other methods
in 27 of 39 datasets. In addition, k-NN and fuzzy k-NN performed better on six and seven datasets
out of 39 datasets, respectively. Our proposal obtained 100% accuracy for two datasets (new thyroid
and wine). Moreover, for 13 datasets, the proposed method obtained accuracy values higher than
90%. On the other hand, the worse result was recorded for “Wine quality-white” dataset where the
accuracy was 33.33%. Moreover, there were a total of three datasets where the accuracy was lower than
50%. We further conducted experiments on several datasets from UCI-data repository [25]. Totally,
11 datasets were considered in these experiments and compared results with two weighted k-NN
approaches, namely WKNN and DWKNN. The characteristics of the each dataset from UCI-data
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repository were shown in Table 3, and the obtained all results were tabulated in Table 4. The boldface
in Table 4 shows the higher accuracy values for each dataset.

Table 2. Experimental results of k-NN and fuzzy k-NN vs. the proposed method.

Data Sets k-NN Fuzzy
k-NN

Proposed
Method Data Sets k-NN Fuzzy

k-NN
Proposed
Method

Appendicitis 87.91 97.91 90.00 Penbased 99.32 99.34 86.90
Balance 89.44 88.96 93.55 Phoneme 88.49 89.64 79.44
Banana 89.89 89.42 60.57 Pima 73.19 73.45 81.58
Bands 71.46 70.99 75.00 Ring 71.82 63.07 72.03
Bupa 62.53 66.06 70.59 Satimage 90.94 90.61 92.53

Cleveland 56.92 56.95 72.41 Segment 95.41 96.36 97.40
Dermatology 96.90 96.62 97.14 Sonar 83.10 83.55 85.00

Ecoli 82.45 83.34 84.85 Spectfheart 77.58 78.69 80.77
Glass 70.11 72.83 76.19 Tae 45.79 67.67 86.67

Haberman 71.55 68.97 80.00 Texture 98.75 98.75 80.73
Hayes-roth 30.00 65.63 68.75 Thyroid 94.00 93.92 74.86

Heart 80.74 80.74 88.89 Twonorm 97.11 97.14 98.11
Hepatitis 89.19 85.08 87.50 Vehicle 72.34 71.40 54.76

Ionosphere 96.00 96.00 97.14 Vowel 97.78 98.38 49.49
Iris 85.18 84.61 93.33 Wdbc 97.18 97.01 98.21

Mammographic 81.71 80.37 86.75 Wine 96.63 97.19 100.00
Monk-2 96.29 89.69 97.67 Winequality-red 55.60 68.10 46.84

Movement 78.61 36.11 50.00 Winequality-white 51.04 68.27 33.33
New thyroid 95.37 96.32 100.00 Yeast 57.62 59.98 60.81
Page-blocks 95.91 95.96 96.34 - - - -

Table 3. Several datasets and their properties from UCI dataset.

Data set Features Samples Classes Training Samples Testing Samples

Glass 10 214 7 140 74
Wine 13 178 3 100 78
Sonar 60 208 2 120 88

Parkinson 22 195 2 120 75
Iono 34 351 2 200 151

Musk 166 476 2 276 200
Vehicle 18 846 4 500 346
Image 19 2310 7 1310 1000
Cardio 21 2126 10 1126 1000

Landsat 36 6435 7 3435 3000
Letter 16 20,000 26 10,000 10,000

Table 4. The accuracy values for DWKNN vs. NSKNN.

Data set WKNN (%) DWKNN (%) Proposed Method (%)

Glass 69.86 70.14 60.81
Wine 71.47 71.99 79.49
Sonar 81.59 82.05 85.23

Parkinson 83.53 83.93 90.67
Iono 84.27 84.44 85.14

Musk 84.77 85.10 86.50
Vehicle 63.96 64.34 71.43
Image 95.19 95.21 95.60
Cardio 70.12 70.30 66.90

Landsat 90.63 90.65 91.67
Letter 94.89 94.93 63.50

As seen in Table 4, the proposed method performed better than the other methods in eight
of 11 datasets and DWKNN performed better in the rest datasets. For three datasets (Parkinson,
Image and Landsat), the proposed method yielded accuracy value higher than 90% and the worse
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result was found for the ‘Glass’ dataset where the accuracy was 60.81%. DWKNN and the WKNN
produced almost same accuracy values and performed significantly better than the proposed method
on ‘Letter and Glass’ datasets. We further compared the running times of each method on each
KEEL dataset and the obtained running times were tabulated in Table 5. We used MATLAB 2014b
(The MathWorks Inc., Natick, MA, USA) on a computer having an Intel Core i7-4810 CPU and 32 GB
memory. As seen in Table 5, for some datasets, the k-NN and fuzzy k-NN methods achieved lower
running times than our proposal’s achievement. However, when the average running times took into
consideration, the proposed method achieved the lowest running time with 0.69 s. The k-NN method
also obtained the second lowest running time with 1.41 s. The fuzzy k-NN approach obtained the
average slowest running time when compared with the other methods. The fuzzy k-NN method’s
achievement was 3.17 s.

Table 5. Comparison of running times for each method.

Data Sets k-NN Fuzzy
k-NN

Proposed
Method Data Sets k-NN Fuzzy

k-NN
Proposed
Method

Appendicitis 0.11 0.16 0.15 Penbased 10.21 18.20 3.58
Balance 0.15 0.19 0.18 Phoneme 0.95 1.88 0.71
Banana 1.03 1.42 0.57 Pima 0.45 0.58 0.20
Bands 0.42 0.47 0.19 Ring 6.18 10.30 2.55
Bupa 0.14 0.28 0.16 Satimage 8.29 15.25 1.96

Cleveland 0.14 0.18 0.19 Segment 1.09 1.76 0.63
Dermatology 0.33 0.31 0.22 Sonar 0.15 0.21 0.23

Ecoli 0.12 0.26 0.17 Spectfheart 0.14 0.25 0.22
Glass 0.10 0.18 0.18 Tae 0.13 0.12 0.16

Haberman 0.13 0.24 0.16 Texture 6.72 12.78 4.30
Hayes-roth 0.07 0.11 0.16 Thyroid 5.86 9.71 2.14

Heart 0.22 0.33 0.17 Twonorm 5.89 10.27 2.69
Hepatitis 0.06 0.06 0.16 Vehicle 0.17 0.31 0.27

Ionosphere 0.13 030 0.25 Vowel 0.47 0.62 0.31
Iris 0.23 0.13 0.16 Wdbc 0.39 0.46 0.26

Mammographic 0.21 0.22 0.20 Wine 0.08 0.14 0.17
Monk-2 0.27 0.33 0.17 Winequality-red 0.28 0.46 0.34

Movement 0.16 0.34 0.35 Winequality-white 1.38 1.95 0.91
New thyroid 0.14 0.18 0.17 Yeast 0.44 0.78 0.30
Page-blocks 1.75 2.20 0.93 Average 1.41 3.17 0.69

Generally speaking, the proposed NS-k-NN method can be announced successful when the
accuracy values which were tabulated in Tables 3–5, were considered. The NS-k-NN method obtained
these high accuracies because it incorporated the NS theory with the distance learning for constructing
an efficient supervised classifier. The running time evaluation was also proved that the NS-k-NN was
quite an efficient classifier than the compared other related classifiers.

5. Conclusions

In this paper, we propose a novel supervised classification method based on NS theory called
neutrosophic k-NN. The proposed method assigns the memberships to training samples based on
the supervised NCM clustering algorithm, and classifies the samples based on their neutrosophic
memberships. This approach can be seen as an extension of the previously-proposed fuzzy k-NN
method by incorporating the falsity and indeterminacy sets. The efficiency of the proposed method
was demonstrated with extensive experimental results. The results were also compared with other
improved k-NN methods. According to the obtained results, the proposed method can be used in
various classification applications. In the future works, we plan to apply the proposed NS-k-NN
on imbalanced dataset problems. We would like to analyze the experimental results with some
non-parametric statistical methods, such as the Freidman test and Wilcoxon signed-ranks test.
In addition, some other evaluation metrics such as AUC will be used for comparison purposes.
We will also explore the k-NN method where Dezert-Smarandache theory will be used to calculate the
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data samples’ memberships, replacing Dempster’s rule by Proportional Conflict Redistribution Rule
#5 (PCR5), which is more performative in order to handle the assignments of the final class.
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