
Generalized Interval Valued Neutrosophic Graphs 
of First Type 

Said Broumi1,  Mohamed Talea3 
Laboratory of Information 
Processing, Faculty of Science Ben 
M’Sik, University Hassan II, B.P 
7955, Sidi Othman, Casablanca, 
Morocco 

broumisaid78@gmail.com, 
taleamohamed@yahoo.fr 

 Assia Bakali2 
Ecole Royale Navale, Boulevard 
Sour Jdid, B.P 16303 Casablanca, 

Morocco, 
assiabakali@yahoo.fr 

Ali	Hassan4	
Department	of	Mathematics,	
University	of	Punjab	(New	
campus),	Lahore,	Pakistan		

alihassan.iiui.math@gmail.com	

Florentin Smarandache5 
Department of Mathematics, University of New Mexico,705 Gurley Avenue, Gallup, NM 87301, USA 

fsmarandache@gmail.com 

Abstract— In this paper, motivated by the notion of 
generalized single valued neutrosophic graphs of first type, we 
defined a new neutrosophic graphs named generalized interval 
valued neutrosophic graphs of first type (GIVNG1) and 
presented a matrix representation for it and studied few 
properties of this new concept. The concept of GIVNG1 is an 
extension of generalized fuzzy graphs (GFG1) and generalized 
single valued neutrosophic of first type (GSVNG1).  
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I. Introduction 

Smarandache [7] grounded the concept of neutrosophic set 
theory (NS) from philosophical point of view by incorporating 
the degree of indeterminacy or neutrality as independent 
component to deal with problems involving imprecise, 
indeterminate and inconsistent information. The concept of 
neutrosophic set theory  is  a generalization of the theory of 
fuzzy set [17], intuitionistic fuzzy sets [14, 15], interval-
valued fuzzy sets [13] and interval-valued intuitionistic fuzzy 
sets [16]. In neutrosophic set every element has three 
membership degrees including a true membership degree T, 
an indeterminacy membership degree I and a falsity 
membership degree F independently, which are within the real 
standard or nonstandard unit interval ]−0, 1+[. Therefore, if 
their range is restrained within the real standard unit interval 
[0, 1], Nevertheless, NSs are hard to be apply in practical 
problems since the values of the functions of truth, 
indeterminacy and falsity lie in]−0, 1+[.The single valued 
neutrosophic set was introduced for the first time by 
Smarandache in his  book [7] . Later on, Wang et al.[10] 
studied some properties related to single valued neutrosophic 
sets. In fact sometimes the degree of truth-membership, 
indeterminacy-membership and falsity- membership about a 
certain statement cannot be defined exactly in the real 

situations, but expressed by several possible interval values. 
So the interval valued neutrosophic set (IVNS) was required. 
For this purpose, Wang et al.[11] introduced the concept of 
interval valued neutrosophic set (IVNS for short), which is 
more precise and more flexible than the single valued 
neutrosophic set. The interval valued neutrosophic sets 
(IVNS) is a generalization of the concept of single valued 
neutrosophic set, in which three membership (T, I, F) 
functions are independent, and their values belong to the unite 
interval [0 , 1]. Some more literature about neutrosophic sets, 
interval valued neutrosophic sets and their applications in 
various fields can be found in [32, 34, 46]. 
Graphs are the most powerful and handful tool used in 
representing information involving relationship between 
objects and concepts. In a crisp graphs two vertices are either 
related or not related to each other, mathematically, the degree 
of relationship is either 0 or 1. While in fuzzy graphs, the 
degree of relationship takes values from [0, 1].The concept 
fuzzy graphs, intuitionistic fuzzy graphs and their extensions 
such interval valued fuzzy graphs [2, 3, 12, 20],  interval 
valued intuitionitic fuzzy graphs [41], and so on, have been 
studied deeply  in over hundred  papers. All these types of 
graphs have a common property that each edge must have a 
membership value less than or equal to the minimum 
membership of the nodes it connects. 
  In 2016, Samanta et al [37] proposed a new concept called 
the generalized fuzzy graphs (GFG) and studied some major 
properties such as completeness and regularity with proved 
results. The authors classified the GFG into two type. The first 
type is called generalized fuzzy graphs of first type (GFG1). 
The second is called generalized fuzzy graphs of second type 
2 (GFG2).  Each type of GFG are represented by matrices 
similar to fuzzy graphs. The authors have claimed that fuzzy 
graphs defined by several researches are limited to represent 
for some systems such as social network. 
When description of the object or their relations or both is 
indeterminate and inconsistent, it cannot be handled by fuzzy, 
intuitionistic fuzzy, interval valued fuzzy and interval valued 
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intuitionstic fuzzy graphs . So, for this purpose, Smaranadache 
[9] proposed the concept of neutrosophic graphs based on 
literal indeterminacy (I) to deal with such situations. Many 
book on neutrosophic graphs based on literal indeterminacy (I) 
was completed by Smarandache and Vandasamy  [45]. Later 
on, Smarandache [5, 6] gave another definition for neutrosphic 
graph theory using the neutrosophic truth-values (T, I, F) 
without and constructed three structures of neutrosophic 
graphs: neutrosophic edge graphs, neutrosophic vertex graphs 
and neutrosophic vertex-edge graphs. Later on Smarandache 
[8] proposed new version of neutrosophic graphs such as  
neutrosophic offgraph, neutrosophic bipolar/tripola/ 
multipolar graph. In a short period of time, few  authors have 
focused deeply on the study of neutrosophic vertex-edge 
graphs and explored diverse types of different neutrosophic 
graphs. 
In 2016, using the concepts of single valued neutrosophic sets, 
Broumi et al.[27] introduced  the concept of single valued 
neutrosophic graphs, and introduced certain types of single 
valued neutrosophic graphs (SVNG) such as strong single 
valued neutrosophic graph, constant single valued 
neutrosophic graph, complete single valued neutrosophic 
graph and investigate some of their properties with proofs and 
examples. Later on, Broumi et al.[28] also introduced 
neighborhood degree of a vertex and closed neighborhood 
degree of vertex in single valued neutrosophic graph as a 
generalization of neighborhood degree of a vertex and closed 
neighborhood degree of vertex in fuzzy graph and 
intuitionistic fuzzy graph. In addition, Broumi et al.[29] 
proved a necessary and sufficient condition for a single valued 
neutrosophic graph to be an isolated single valued 
neutrosophic graph. The same authors [35] defined the 
concept of bipolar single neutrosophic graphs as the 
generalization of bipolar fuzzy graphs, N-graphs, intuitionistic 
fuzzy graph, single valued neutrosophic graphs and bipolar 
intuitionistic fuzzy graphs. In addition, the same authors [36] 
proposed different types of bipolar single valued neutrosophic 
graphs such as bipolar single valued neutrosophic graphs, 
complete bipolar single valued neutrosophic graphs, regular 
bipolar single valued neutrosophic graphs and investigate 
some of their related properties. In [30, 31, 47], the authors 
initiated the idea of interval valued neutrosophic graphs and 
the concept of strong interval valued neutrosophic graph, 
where different operations such as union, join, intersection and 
complement have been investigated. 
Nasir et al. [22, 23] proposed a new type of graph called 
neutrosophic soft graphs and have established a link between  
graphs and neutrosophic soft sets. The authors also, defined 
some basic operations of neutrosophic soft graphs  such as 
union, intersection and complement.  
Akram et al.[18] proposed a new type of single valued 
neutrosophic graphs different that the concepts proposed in [ 
22,27] and presented some  fundamental operations on single-
valued neutrosophic graphs. Also, the authors presented some 
interesting properties of single-valued neutrosophic graphs by 
level graphs.  

In [19] Malik and Hassan introduced the concept of single 
valued neutrosophic trees and studied some of their properties.  
Also, Hassan et Malik [1] proposed some classes of bipolar 
single valued neutrosophic graphs and investigated some of 
their properties. 
Dhavaseelan et al. [26] introduced the   concept of strong 
neutrosophic graph and studied some interesting properties of 
strong neutrosophic graphs. P. K. Singh [24] has discussed 
adequate analysis of uncertainty and vagueness in medical 
data set using the properties of three-way fuzzy concept lattice 
and neutrosophic graph introduced by Broumi et al. [27]. 
Fathhi et al.[43] computed the dissimilarity between two 
neutrosophic graphs based on the concept of Haussdorff 
distance. 
Ashraf et al.[40], proposed some novels concepts of edge 
regular, partially edge regular and full edge regular single 
valued neutrosophic graphs and investigated some of their 
properties. Also the authors, introduced the notion of single 
valued neutrosophic digraphs (SVNDGs) and presented an 
application of  SVNDG in multi-attribute decision making. 
Mehra and Singh [39] introduced the concept of single valued 
neutrosophic signed graphs and examined the properties of 
this concept with examples. Ulucay et al.[44] introduced the 
concept of neutrosophic soft expert graph and have established 
a link between graphs and neutrosophic soft expert sets [21]  
and studies some basic operations of neutrosophic soft experts 
graphs such as union, intersection and complement.  
Recently,  Naz et al. [42] defined  basic operations on SVNGs 
such as direct product, Cartesian product, semi-strong product, 
strong product, lexicographic product, union, ring sum and 
join and provided an application of single valued neutrosophic 
digraph (SVNDG) in travel time. 
Similar to the interval valued fuzzy graphs and interval valued 
intuitionistic fuzzy graphs, which have a common property 
that each edge must have  a membership value  less than or 
equal to the minimum membership of the nodes it connects. 
Also, the interval valued neutrosophic graphs presented in the 
literature [30, 31] have a common property, that edge 
membership value is less than the minimum of it’s end vertex 
values.  Whereas the edge indeterminacy-membership value is 
less  than the maximum of it’s end vertex values or is greater 
than the maximum of its’s end vertex values. And the  edge 
non-membership value is less  than the minimum of it’s end 
vertex values  or is greater than the maximum of its’s end 
vertex values.  
Broumi et al [38] have discussed the removal of the edge 
degree restriction of single valued neutrosophic graphs and 
presented a new class of single valued neutrosophic graph 
called generalized single valued neutrosophic graph type1, 
which is a is an extension of generalized fuzzy graph type1 
[37]. with the following  
Based on generalized single valued neutrosophic graph of  
type1(GSVNG1) introduced in [38]. The main objective of 
this paper is to extend the concept of generalized single valued 
neutrosophic graph of first type to interval valued 
neutrosophic graphs first type (GIVNG1) to model systems 
having an indeterminate information and introduced a matrix 
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 A= {(்ߩሺݔሻ,	்ߩሺݕሻ) |	்߱(x, y)  0}, 
 B= {(ߩூሺݔሻ,	ߩூሺݕሻ) |	߱ூ(x, y)  0}, 
 C= {(ߩிሺݔሻ,	ߩிሺݕሻ) |	߱ி(x, y)  0}, 
 We have considered 	்߱, 	߱ூ and 	߱ி  0 for all set A,B, C , 
since its is possible to have edge degree = 0 (for T, or I, or F). 
The triad (V,	ߩ, ߱) is defined to be generalized single valued 
neutrosophic graph of first type (GSVNG1) if there are 
functions 
→A:ߙ ሾ	0, 1ሿ , ߚ:B→ ሾ	0, 1ሿ and ߜ:C→ ሾ	0, 1ሿ such that  
்߱ሺݔ,  ((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ
߱ூሺݔ,   ((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ
߱ிሺݔ,  ((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ
Where x, y∈ V.   
Here ߩሺݔሻ=(	்ߩሺݔሻ, ߩூሺݔሻ, ߩிሺݔሻ), x∈ V are the membership, 
indeterminacy and non-membership of the vertex x and 
߱ሺݔ, )=ሻݕ 	்߱ሺݔ, ሻݕ , ߱ூሺݔ, ሻݕ , ߱ிሺݔ, ሻݕ ), x, y∈  V are the 
membership, indeterminacy and non-membership values of 
the edge (x, y).  

III. Generalized Interval Valued Neutrosophic
Graph of First Type 

In this section, based on the generalized single valued 
neutrosophic  graphs  of first type proposed by Broumi et 
al.[38], the definition of generalized interval valued 
neutrosophic graphs first type  is defined as follow: 
Definition 3.1. Let V be a non-void set. Two function are 
considered as follows: 
்ߩሾ)=ߩ  ்ߩ	,

ሿ, ሾߩூ,	ߩூ
ሿ, ሾߩி,	ߩி

ሿ):V → ሾ	0, 1ሿଷand 
 ߱=(	ሾ்߱

 ,	்߱
ሿ, ሾ߱ூ

,	߱ூ
ሿ, ሾ߱ி

 ,	߱ி
ሿ):VxV → ሾ	0, 1ሿଷ . We 

suppose 
 A= {(ሾ்ߩሺݔሻ,	்ߩ

ሺݔሻሿ,	ሾ்ߩሺݕሻ,	்ߩ
ሺݕሻሿ) |்߱

 (x, y)  0 and 
்߱
(x, y) 	0 }, 

 B= {(ሾߩூሺݔሻ,	ߩூ
ሺݔሻሿ,	ሾߩூሺݕሻ,	ߩூ

ሺݕሻሿ) |߱ூ
(x, y)  0 and 

߱ூ
(x, y) 	0}, 

 C= {(ሾߩிሺݔሻ,	ߩி
ሺݔሻሿ,	ሾߩிሺݕሻ,	ߩி

ሺݕሻሿ) |߱ி
(x, y)  0 and 

߱ி
(x, y) 	0}, 

 We have considered ்߱
 , ்߱

,	߱ூ
, ߱ூ

, ߱ி
, ߱ி

  0 for all set 
A, B, C , since its is possible to have edge degree = 0 (for T, 
or I, or F). 
The triad (V,	ߩ, ߱) is defined to be generalized interval valued 
neutrosophic graph of first type (GIVNG1) if there are 
functions 
→A:ߙ ሾ	0, 1ሿ , ߚ:B→ ሾ	0, 1ሿ and ߜ:C→ ሾ	0, 1ሿ such that  
்߱
ሺݔ, ்߱ ,((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ

ሺݔ, ்ߩ))ߙ	= ሻݕ
ሺݔሻ,	்ߩ

ሺݕሻ)),  
߱ூ
ሺݔ, ூ߱  ,((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ

ሺݔ, ூߩ))ߚ	= ሻݕ
ሺݔሻ,	ߩூ

ሺݕሻ)),  
߱ி
ሺݔ, ி߱ ,((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ

ሺݔ, ிߩ))ߜ	= ሻݕ
ሺݔሻ,	ߩி

ሺݕሻ))  
Where x, y∈ V.   
Here ߩሺݔሻ=( ሻݔሺ்ߩ	 ሻݔூሺߩ , ሻݔிሺߩ , ), x∈  V are the  interval 
membership, interval indeterminacy and  interval non-
membership of the vertex x and ߱ሺݔ, ,ݔ்߱ሺ	ሻ=(ݕ ,ݔሻ, ߱ூሺݕ  ,ሻݕ
߱ிሺݔ, ሻݕ ), x, y∈  V are the interval membership, interval 
indeterminacy membership and interval non-membership 
values of the edge (x, y).  
Example 3.2  : Let the vertex set be V={x, y, z, t} and edge 
set be E={(x, y),(x, z),(x, t),(y, t)} 

 x y z t 
ሾ்ߩ

 , ்ߩ
ሿ [0.5, 0.6] [0.9 , 1] [0.3, 0.4] [0.8, 0.9] 

ሾߩூ
, ூߩ

ሿ [0.3, 0.4] [0.2, 0.3] [0.1, 0.2] [0.5, 0.6] 
ሾߩி

, ிߩ
ሿ [0.1, 0.2] [0.6, 0.7] [0.8, 0.9] [0.4, 0.5] 

     Table 1:  interval membership, interval indeterminacy and 
interval non-membership  of the vertex set. 
Let us consider functions ߙሺ݉, ݊ሻ= m ∨ m=	ߚሺ݉, ݊ሻ=	ߜሺ݉, ݊ሻ 
Here, A={([0.5, 0.6], [0.9, 1]), ([0.5, 0.6], [0.3, 0.4]), ([0.5, 
0.6], [0.8, 0.9]), ([0.9, 1.0], [0.8, 0.9])} 
   B = {([0.3, 0.4], [0.2, 0.3]), ([0.3, 0.4], [0.1, 0.2]), ([0.3, 
0.4], [0.5, 0.6]), ([0.2, 0.3], [0.5, 0.6])} 
   C = {([0.1, 0.2], [0.6, 0.7]), ([0.1, 0.2], [0.8, 0.9]), ([0.1, 
0.2], [0.4, 0.5]), ([0.6, 0.7], [0.4, 0.5])}.Then 

߱ ሺݔ, ,ݔሻ ሺݕ ,ݔሻ ሺݖ ,ݕሻ ሺݐ  ሻݐ
ሾ்߱

 , ்߱
ሿ [0.9, 1] [0.5, 0.6] [0.8,0.9] [0.9,1 ] 

ሾ߱ூ
, ߱ூ

ሿ [0.3,0.4] [0.3,0.4] [0.5,0.6] [0.5, 0.6] 
ሾ߱ி

 , ߱ி
ሿ [0.6, 0.7] [0.8,0.9] [0.4,0.5] [0.6,0.7] 

Table 2: membership, indeterminacy and non-membership     
of the edge set. 
The corresponding generalized single valued neutrosophic 
graph is shown in Fig.2 

Fig 2.GIVNG of first type. 
 The easier way to represent any graph is to use the matrix 
representation. The adjacency matrices, incident matrices are 
the widely matrices used.  In the following section GIVNG1 is 
represented by adjacency matrix. 

IV. Matrix Representation of Generalized
Interval Valued Neutrosophic Graph of First 

Type 
Because Interval membership, interval indeterminacy 
membership and interval non-membership of the vertices are 
considered independents. In this section, we extended the 
representation matrix of generalized single valued 
neutrosophic  graphs first type  proposed  in [38] to the case of 
generalized interval valued neutrosophic graphs of first type. 
The generalized interval valued neutrosophic graph 
(GIVNG1) has one property that edge membership values (T, 
I, F) depends on the membership values (T, I, F)  of adjacent 

<[0.9,1], [0.3,0.4], [0.6,0.7]> 

z<[0.3,0.4], [0.1,0.2], [0.8,0.9]> 

<[0.5,0.6], [0.3,0.4], [0.8,0.9]>

<[0.9,0.1], [0.5,0.6], [0.6,0.7]>

x<[0.5,0.6], [0.3,0.4], [0.1,0.2]> t<[0.8,0.9], [0.5,0.6], [0.4,0.6]> 

y<[0.9,1], [0.2,0.3], [0.6,0.7]> 
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vertices . Suppose ߦ=(V, ߩ,	߱) is a GIVNG1 where vertex set 
V={ݒଵ,	ݒଶ,…,	ݒ}. The functions 
→A:	ߙ  ሺ	0, 1ሿ is taken such that  
்߱
ሺݔ, ்ߩ))ߙ	= ሻݕ

ሺݔሻ,	்ߩ
ሺݕሻ)), ்߱

ሺݔ, ்ߩ))ߙ	= ሻݕ
ሺݔሻ,	்ߩ

ሺݕሻ)),   
 Where x, y∈ V and A= {(ሾ்ߩሺݔሻ,	்ߩ

ሺݔሻሿ,	ሾ்ߩሺݕሻ,	்ߩ
ሺݕሻሿ) 

|்߱
 (x, y)  0 and ்߱

(x, y) 	0 } 
,  
→B:	ߚ ሺ	0, 1ሿ is taken such that 
߱ூ
ሺݔ, ூߩ))ߚ	= ሻݕ

ሺݔሻ,	ߩூ
ሺݕሻ)), ߱ூ

ሺݔ, ூߩ))ߚ	= ሻݕ
ሺݔሻ,	ߩூ

ሺݕሻ)),   
 Where x, y∈ V and B= {(ሾߩூሺݔሻ,	ߩூ

ሺݔሻሿ,	ሾߩூሺݕሻ,	ߩூ
ሺݕሻሿ) 

|߱ூ
(x, y)  0 and ߱ூ

(x, y) 	0 } 
and 
→C:	ߜ ሺ	0, 1ሿ is taken such that 
߱ி
ሺݔ, ிߩ))ߜ	= ሻݕ

ሺݔሻ,	ߩி
ሺݕሻ)), ߱ி

ሺݔ, ிߩ))ߜ	= ሻݕ
ሺݔሻ,	ߩி

ሺݕሻ)),   
 Where x, y∈ V and C= {(ሾߩிሺݔሻ,	ߩி

ሺݔሻሿ,	ሾߩிሺݕሻ,	ߩி
ሺݕሻሿ) 

|߱ி
 (x, y)   0 and ߱ி

 (x, y) 	0 }. The GIVNG1 can be 
represented by (n+1) x (n+1) matrix ீܯభ

்,ூ,ி=[்ܽ,ூ,ி (i, j)] as 
follows: 
The interval membership (T), interval indeterminacy-
membership (I) and the interval non-membership (F) values of 
the vertices are provided in the first row and first column. The 
(i+1, j+1)- th-entry are the membership (T), indeterminacy-
membership (I) and the non-membership (F) values of the 
edge (ݔ,	ݔ), i, j=1,…,n if i്j. 
The (i, i)-th entry is ߩሺݔሻ=(	்ߩሺݔሻ, ߩூሺݔሻ, ߩிሺݔ )), where 
i=1,2,…,n. The interval membership (T), interval 
indeterminacy-membership (I) and the interval non-
membership (F) values of the edge can be computed easily 
using the functions ߚ ,ߙ and	ߜ which are in (1,1)-position of 
the matrix. The matrix representation of GIVNG1, denoted by  
భீܯ
்,ூ,ி, can be written as three matrix representation ீܯభ

் భீܯ ,
ூ  

and ீܯభ
ி . For convenience representation ݒ(்ߩሺݒሻሻ =[்ߩሺݒሻ, 

்ߩ
ሺݒሻ],  for i=1, …., n 

The  ீܯభ
்  can be represented as follows 

 
 ሻሻݒሺ்ߩ)ݒ ଶሻሻݒሺ்ߩ)ଶݒ ଵሻሻݒሺ்ߩ)ଵݒ ߙ

்ߩ] ଵሻሻݒሺ்ߩ)ଵݒ
ሺݒଵሻ, ்ߩ

ሺݒଵሻ] ߙ(்ߩሺݒଵሻ,	்ߩሺݒଶሻ) ்ߩ)ߙሺݒଵሻ,  (ሻݒሺ்ߩ
	(ଵሻݒሺ்ߩ	,ଶሻݒሺ்ߩ)ߙ ଶሻሻݒሺ்ߩ)ଶݒ

 
்ߩ]

ሺݒଶሻ, ்ߩ
ሺݒଶሻ] ்ߩ)ߙሺݒଶሻ,  (ଶሻݒሺ்ߩ

… …. … … 

்ߩ] (ଶሻݒሺ்ߩ	,ሻݒሺ்ߩ)ߙ (ଵሻݒሺ்ߩ	,ሻݒሺ்ߩ)ߙ ሻሻݒሺ்ߩ)ݒ
ሺݒሻ, ்ߩ

ሺݒሻ] 

                         
                 Table3.    Matrix representation of T-GIVNG1 
 
The  ீܯభ

ூ  can be represented as follows 
 

 ሻሻݒூሺߩ)ݒ ଶሻሻݒூሺߩ)ଶݒ ଵሻሻݒூሺߩ)ଵݒ ߚ

ூߩ] ଵሻሻݒூሺߩ)ଵݒ
ሺݒଵሻ, ߩூ

ሺݒଵሻ] ߚ(ߩூሺݒଵሻ,	ߩூሺݒଶሻ) ߩ)ߚூሺݒଵሻ,  (ሻݒூሺߩ

	(ଵሻݒூሺߩ	,ଶሻݒூሺߩ)ߚ ଶሻሻݒூሺߩ)ଶݒ
 

ூߩ]
ሺݒଶሻ, ߩூ

ሺݒଶሻ] ߩ)ߚூሺݒଶሻ,  (ଶሻݒூሺߩ

… …. … … 

ூߩ] (ଶሻݒூሺߩ	,ሻݒሺ்ߩ)ߚ (ଵሻݒூሺߩ	,ሻݒூሺߩ)ߚ ሻሻݒூሺߩ)ݒ
ሺݒሻ, ߩூ

ሺݒሻ] 

                         
               Table4.   Matrix representation of I-GIVNG1 
 

The  ீܯభ
ூ  can be represented as follows 

 
 ሻሻݒிሺߩ)ݒ ଶሻሻݒிሺߩ)ଶݒ ଵሻሻݒிሺߩ)ଵݒ ߜ

ிߩ] ଵሻሻݒிሺߩ)ଵݒ
ሺݒଵሻ, ߩி

ሺݒଵሻ] ߜ(ߩிሺݒଵሻ,	ߩிሺݒଶሻ) ߩ)ߜிሺݒଵሻ,  (ሻݒிሺߩ
,ଶሻݒிሺߩ)ߜ ଶሻሻݒிሺߩ)ଶݒ (ଵሻݒிሺߩ

 
ிߩ ,ଶሻݒிሺߩ]

ሺݒଶሻ] ߩ)ߜிሺݒଶሻ,  (ଶሻݒிሺߩ

… …. … … 
,ሻݒிሺߩ)ߜ ሻሻݒிሺߩ)ݒ ிߩ] (ଶሻݒிሺߩ	,ሻݒிሺߩ)ߜ (ଵሻݒிሺߩ

ሺݒሻ, ߩி
ሺݒሻ] 

                      
                  Table5.  Matrix representation of F-GIVNG1 
 
Remark1 : if ߩூ

ሺݔሻ=	ߩூ
ሺݔሻ=0  and ߩி

ሺݔሻ=	ߩி
ሺݔሻ ൌ 0  the 

generalized interval valued neutrosophic graphs type 1 is 
reduced to generalized fuzzy graphs type 1 (GFG1). 
Remark 2: if ்ߩ

ሺݔሻ = ்ߩ	
ሺݔሻ ூߩ , 

ሺݔሻ = ூߩ	
ሺݔሻ   and 

=ሻݔிሺߩ ிߩ	
ሺݔሻ,  the generalized interval valued neutrosophic 

graphs type 1 is reduced to generalized single valued graphs 
type 1 (GSVNG1). 
 
Here the generalized Interval valued neutrosophic graph of 
first type (GIVNG1) can be represented by the matrix 
representation depicted in table 9. The matrix representation 
can be written as three interval matrices one containing the 
entries as T, I, F (see table 6, 7 and 8).  
 

ߙ = max(x, y) x([0.5,0.6]) y([0.9,1]) z(0.3,0.4]) t([0.8,0.9]) 

x([0.5,0.6]) [0.5,0.6] [0.9, 1.0] [0.5, 0.6] [0.8,0.9]

y([0.9,1]) [0.9, 1.0] [0.9,1] [0, 0] [0.9,1.0]

z([0.3,0.4]) [0.5, 0.6] [0, 0] [0.3,0.4] [0, 0]

t([0.8,0.9]) [0.8, 0.9] [0.9, 1.0] [0, 0] [0.8,0.9]

 
            Table 6:Lower and upper Truth- matrix representation 
     of GIVNG1 
 

ߚ = max(x, y) x([0.3,0.4]) y([0.2,0.3]) z([0.1,0.2]) t([0.5,0.6]) 

x([0.3,0.4]) [0.3,0.4] [0.3,0.4] [0.3,0.4] [0.5,0.6]

y([0.2,0.3]) [0.3,0.4] [0.2,0.3] [0, 0] [0.5,0.6]

z([0.1,0.2]) [0.3,0.4] [0, 0] [0.1,0.2] [0, 0]

t([0.5,0.6]) [0.5,0.6] [0.5,0.6] [0, 0] [0.5,0.6]

 
  Table 7: lower and upper Indeterminacy- matrix 
representation of GIVNG1 
 

 max(x, y) x([0.1,0.2]) y([0.6,0.7]) z([0.8,0.9]) t([0.4,0.6]) =ߜ

x([0.1,0.2]) [0.1,0.2] [0.6,0.7] [0.8,0.9] [0.4,0.6]

y([0.6,0.7]) [0.6,0.7] [0.6,0.7] [0, 0] [0.6,0.7]

z([0.8,0.9]) [0.8,0.9] [0, 0] [0.8,0.9] [0, 0]

t([0.4,0.6]) [0.4,0.6] [0.6,0.7] [0, 0] [0.4,0.6]

 
             Table 8:  Lower and upper Falsity- matrix 
representation of GIVNG1 
The matrix representation of GIVNG1 can be represented as 
follows: 
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 x(0.5,0.3,0.1) y(0.9,0.2,0.6) z(0.3,0.1,0.8) t(0.8,0.5,0.4) (ߜ	,ߚ	,ߙ)

x([0.5,0.6], 
[0.3,0.4], 
[0.1,0.2]) 

<[0.5,0.6], 
[0.3,0.4], 
[0.1,0.2]> 
 

<[0.9,1.0], 
[0.3,0.4], 
[0.6,0.7]> 
 

<[0.5,0.6], 
[0.3,0.4], 
[0.8,0.9]> 
 

<[0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]> 
 

y( [0.9, 1.0], 
[0.2, 0.3], 
[0.6, 0.7]) 

<[0.9,1.0], 
[0.3,0.4], 
[0.6,0.7]> 
 

<[0.9, 1.0], 
[0.2, 0.3], 
[0.6, 0.7]> 
 

<[0, 0], 
[0, 0], 
[0, 0]> 
 

<[0.9,  1.0], 
[0.5, 0.6], 
[0.6, 0.7]> 
 

z([0.3,0.4], 
[0.1,0.2], 
[0.8,0.9]) 

<[0.5,0.6], 
[0.3,0.4], 
[0.8,0.9]> 
 

<[0, 0], 
[0, 0], 
[0, 0]> 
 

<[0.3,0.4], 
[0.1,0.2], 
[0.8,0.9]> 
 

<[0, 0], 
[0, 0], 
[0, 0]> 
 

t([0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]) 

<[0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]> 
 

<[0.9,1.0], 
[0.5,0.6], 
[0.6,0.7]> 
 

<[0, 0], 
[0, 0], 
[0, 0]> 
 

<[0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]> 
 

 
      Table 9: Matrix representation of GIVNG1. 
 
Theorem 1. Let ீܯభ

்  be  matrix representation of T-GIVNG1, 
then the degree of vertex  ்ܦሺݔሻ  =[∑ ்ܽሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻ,	∑ ்ܽ
ሺ݇  1, ݆  1ሻ

ୀଵ,ஷ ሿ,	ݔ ∈ V or 
ሻݔሺ்ܦ   = ሾ∑ ்ܽ ሺ݅  1,   1ሻ

ୀଵ,ஷ , ∑ ்ܽ
ሺ݅  1,  

ୀଵ,ஷ

1ሻ	ݔ ∈ V. 
 
Proof :is similar as in theorem 1  of [37]. 
 
Theorem 2. Let ீܯభ

ூ  be  matrix representation of I-GIVNG1, 
then the degree of vertex  ܦூሺݔሻ  =[∑ ܽூሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻ,	∑ ܽூ
ሺ݇  1, ݆  1ሻ

ୀଵ,ஷ ሿ,	ݔ ∈ V  
or  ܦூሺݔሻ =ሾ∑ ܽூ

ሺ݅  1,   1ሻ
ୀଵ,ஷ ,∑ ܽூ

ሺ݅  1,  
ୀଵ,ஷ

1ሻ	ݔ ∈ V. 
Proof :is similar as in theorem 1  of [37]. 
 
Theorem 3. Let ீܯభ

ி  be matrix representation of F-GIVNG1, 
then the degree of vertex  
ሻݔிሺܦ   =[∑ ܽிሺ݇  1, ݆  1ሻ

ୀଵ,ஷ , 	∑ ܽி
ሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻሿ,	ݔ ∈ V or  
ሻݔிሺܦ   = ሾ∑ ܽிሺ݅  1,   1ሻ

ୀଵ,ஷ , ∑ ܽி
ሺ݅  1,  

ୀଵ,ஷ

1ሻ	ݔ ∈ V. 
 
Proof :is similar as in theorem 1  of [37]. 
 
Theorem4. Let ீܯభ

்,ூ,ி  be matrix representation of GIVNG1, 
then the degree of vertex  D(ݔ) =(்ܦሺݔሻ,	ܦூሺݔሻ,	ܦிሺݔሻ)  
where 
ሻݔሺ்ܦ  =[ ∑ ்ܽሺ݇  1, ݆  1ሻ

ୀଵ,ஷ , ∑ ்ܽ
ሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻ	ሿ	ݔ ∈ V. 
ሻݔூሺܦ  ==[∑ ܽூ

ሺ݇  1, ݆  1ሻ
ୀଵ,ஷ , ∑ ܽூ

ሺ݇  1, ݆ 
ୀଵ,ஷ

1ሻ	ሿ	ݔ ∈ V. 
ሻݔிሺܦ  ==[∑ ܽிሺ݇  1, ݆  1ሻ

ୀଵ,ஷ , ∑ ܽி
ሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻ	ሿ	ݔ ∈ V. 
Proof: the proof is obvious. 
 

V. CONCLUSION 

In this article, we have extended the concept of generalized 
single valued neutrosophic graph type 1 (GSVNG1) to 
generalized  interval valued neutrosophic graph type 1 
(GIVNG1) and presented a matrix representation of it. In the 
future works, we plan to study the concept of completeness, 
the concept of regularity and to define the concept of 
generalized interval valued neutrosophic graphs type 2. 
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