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Abstract. This paper describes about complexity of NP problems by using

“Effective circuit” independency, and apply SAT problem.

Inputs of circuit family that compute P problem have some explicit sym-

metry that indicated circuit structure. To clarify this explict symmetry, we

define “Effective circuit” as partial circuit which are necessary to compute

target inputs. Effective circuit set divide problem to some symmetric partial

problems.

The other hand, inputs of NTM that compute NP problem have extra

implicit symmetry that indicated nondeterministic transition functions. To

clarify this implicit symmetry, we define special DTM “Concrete DTM”which

index i correspond to selection of nondeterministic transition functions. That

is, NTM split many different asymmetry DTM and compute all DTM in same

time.

Consider concrete DTM and effective circuit set, circuit family [SAT] that

solve SAT problem have to include all effective circuit set [CVPi] that corre-

spond to concrete DTM as Circuit Value Problem. [CVPi] have unique gate

and [SAT] must include all [CVPi]. Number of [CVPi] is over polynomial size

of input. Therefore, [SAT] is over polynomial size.

1. Effective circuit set

Inputs of circuit family that compute P problem have some explicit symmetry

that indicated circuit structure. To clarify this explict symmetry, we define “Effec-

tive circuit” as partial circuit which are necessary to compute target inputs. Set of

effective circuit divide problem to some symmetric partial problems.

Definition 1.1. �
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We use term as following;

|x| : Size of Input x

F (x) : Circuit or TM value when input is x.

SAT : boolean SATisfiability problem.

CVP : Circuit Value Problem.

TM : Set of Turing Machine.

DTM : Set of Deterministic TM.

NTM : Set of Nondeterministic TM.

N : Natural Number.

O (nc) : Big O notation of polynomial size.

In this paper, we will use words and theorems of References [Sipser].

Definition 1.2. �

We will use the term “Effective circuit c in circuit C with input x” or “c = [C (x)]”

as one of possible partial circuit of unform circuit family which remove all ineffective

gate one by one. “Ineffective gate” is gate that circuit keep value even if the

gate invert output value. Unlike circuit family, effective circuit probably become

(p 6= q) ∧ (|p| = |q|) → [C (p)] 6= [C (q)].

We also use the term “Effective circuit set” or [C] = {[C (x)] | C (x) = 1} as set

of effective circuit [C (x)] that correspond to C (x) = 1.

For simplicity, we suppose all circuit family as PTIME DTM emulater like

[Sipser] theorem 9.30. That is; a) Each gates simulate each tape cell and state

of TM at each step. b) Each gate connecte that simurate TM transition functions

with monotone circuit. c) NOT gate only connect input gate, and split each input

{0, 1} to {01, 10}.

2. NP extra symmetry

The other hand, inputs of NTM which compute NP problem have extra implicit

symmetry that indicated nondeterministic transition functions. NTM compute

many configuration nondeterministicly. Each configuration means different DTM
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because these transition functions set are different and compute different results.

That is, NTM split many different asymmetry indexed DTM and compute all DTM

in same time. To clarify this implicit symmetry, we define special DTM “Concrete

DTM”which correspond to actual DTM in NTM.

Definition 2.1. �

We will use the term “Concrete DTM” or Di ∈ DTM of N ∈ NTM as the DTM

that fixed NTM nondeterministic transition functions selection to i. That is, i is list

of nondeterministic transition functions, and Di compute N that nondeterministic

transition functions select i order. “Concrete DTM set” or DI =
∨
i∈I

Di that I ⊂

N, |I| < k ∈ N as disjunction of Concrete DTM.

For simplicity, i is Binary number N 3 i = {0, 1}|i|. If Di does not use all of i to

compute x, or i is not enough to compute x, then Di (x) = 0.

3. Computing NP Problem with Circuit Family

Consider to solve SAT with circuit family. SAT have extra implicit symmetry

CVPi (that mention following). Because this extra implicit symmetry decide SAT

result, circuit family necesary to compute this symmetry to solve SAT. Especially,

CVPi have some input x that CVPp (x) = 1 and CVPq 6=p (x) = 0, and some input

y that CVPp (y) = CVPq (y) = 0. This means that all CVPi are independ each

other.

Definition 3.1. �

We will use the term following;

CVPi : Concrete DTM of SAT that value assignment is N 3 i = {0, 1}|i|. If

input x arity is not equal |i|, then CVPi (x) = 0.

CVPI : Disjunction of CVPi

∨
i∈I

CVPi.

[SAT] : Circuit family that compute SAT.

[CVPi] : Effective circuit set of [SAT] that CVPi (x) = 1 → [CVPi] (x) = 1.

[CVPI ] : Effective circuit set that all of [CVPi] | i ∈ I included.
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Theorem 3.2. �

∀I, i ∃x ((|x| < O (|i|c)) ∧ ((I 63 i) → (CVPI (x) = 0) ∧ (CVPi (x) = 1)))

Proof. It is trivial because some formula x become x (i) = 1, x (j) = 0 | j ∈ I and

|x| < O (|i|c) (like x (t) ≡ (t = i)). �

Theorem 3.3. �

∀I, x (CVPI (x) = 1 → [CVPI ] (x) = 1)

∀I, x ([CVPI ] (x) = 0 → CVPI (x) = 0)

Proof. It is trivial from definition 3.1. �

Theorem 3.4. �

∀I, i, x ([CVPI ] ⊇ [CVPi (x)] → ([CVPi] (x) = 1 → [CVPI ] (x) = 1))

Proof. It is trivial from definition 3.1.

[CVPi] have all gates which decide [CVPi (x)] (x) = [CVPi] (x) = 1 and any

[CVPI ]\[CVPi] gates cannot change [CVPi] (x) output values. Therefore [CVPi] (x) =

1 imply [CVPI ] (x) = 1 if [CVPI ] ⊇ [CVPi (x)]. �

Corollary 3.5. �

∀I, i, x ([CVPI ] ⊇ [CVPi (x)] → ([CVPI ] (x) = 0 → [CVPi] (x) = 0))

Theorem 3.6. �

∀I, i, x ((CVPI (x) = 0) ∧ (CVPi (x) = 1) → [CVPI ] + [CVPi (x)])

Proof. (Proof by contradiction.) Assume to the contrary that

∃I, i, x ((CVPI (x) = 0) ∧ (CVPi (x) = 1) ∧ ([CVPI ] ⊇ [CVPi (x)]))

Mentioned above 3.5

∀I, i, x ([CVPI ] ⊇ [CVPi (x)] → ([CVPI ] (x) = 0 → [CVPi] (x) = 0))

Therefore

∃I, i, x ((CVPI (x) = 0) ∧ (CVPi (x) = 1) ∧ ([CVPI ] ⊇ [CVPi (x)]))

→ ∃I, i, x ((CVPI (x) = 0) ∧ (CVPi (x) = 1) ∧ ([CVPI ] (x) = 0 → [CVPi] (x) = 0))

However mentioned above 3.3
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∀i, x (CVPi (x) = 1 → [CVPi] (x) = 1)

∀I, x ([CVPI ] (x) = 0 → CVPI (x) = 0)

Therefore

∃I, i, x ((CVPI (x) = 0) ∧ (CVPi (x) = 1) ∧ ([CVPI ] (x) = 0 → [CVPi] (x) = 0))

→ ∃I, i, x ((CVPI (x) = 0) ∧ ([CVPi] (x) = 1) ∧ (CVPI (x) = 0 → [CVPi] (x) = 0))

→ ∃I, i, x ((CVPI (x) = 0) ∧ ([CVPi] (x) = 1) ∧ ([CVPi] (x) = 0))

and contradict assumption. �

Theorem 3.7. �

∀I, i, x (I 3 i → [CVPI ] ⊇ [CVPi (x)])

Proof. It is trivial from definition 1.2. �

Theorem 3.8. �

|[SAT]| /∈ O (nc)

Proof. Mentioned above 3.6 3.7 ,

∀I, j, x ((CVPI (x) = 0) ∧ (CVPj (x) = 1) → [CVPI ] + [CVPj (x)])

∀I, i, x (I 3 i → [CVPI ] ⊇ [CVPi (x)])

That is, each [CVPj ] have unique gate in [CVPj (x)], x is some input that

CVPj (x) = 1 and CVPi 6=j (x) = 0.

Mentioned above 3.2,

∀I, i ∃x ((|x| < O (|i|c)) ∧ ((I 63 i) → (CVPI (x) = 0) ∧ (CVPi (x) = 1)))

such x exist atmost |x| < O (|i|c) size.

So number of unique gates that correspond to [CVPj (x)] is over polynomial size

of |x|, because number of [CVPj ] is exponential size of |i|.

Therefore, [SAT] have gates that is over polynomial size, and |[SAT]| /∈ O (nc).

�
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