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Abstract  Investigations into the nature of the principle of least action have shown that there is an intrinsic 
relationship between geometrical and topological methods and the variational principle in classical mechanics. In 
this work, we follow and extend this kind of mathematical analysis into the domain of quantum mechanics. First, we 
show that the identification of the momentum of a quantum particle with the de Broglie wavelength in 2-dimensional 
space would lead to an interesting feature; namely the action principle 𝛿𝑆 = 0 would be satisfied not only by the 
stationary path, corresponding to the classical motion, but also by any path. Thereupon the Bohr quantum condition 
possesses a topological character in the sense that the principal quantum number 𝑛 is identified with the winding 
number, which is used to represent the fundamental group of paths. We extend our discussions into 3-dimensional 
space and show that the charge of a particle also possesses a topological character and is quantised and classified by 
the homotopy group of closed surfaces. We then discuss the possibility to extend our discussions into spaces with 
higher dimensions and show that there exist physical quantities that can be quantised by the higher homotopy groups. 
Finally we note that if Einstein’s field equations of general relativity are derived from Hilbert’s action through  
the principle of least action then for the case of 𝑛 = 2  the field equations are satisfied by any metric if the  
energy-momentum tensor is identified with the metric tensor, similar to the case when the momentum of a particle is 
identified with the curvature of the particle’s path. 
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1. Introduction 

In classical physics, the principle of least action is a 
variational principle that can be used to determine 
uniquely the equations of motion for various physical 
systems. However, recently the principle of least action 
that is associated with new concepts of Lagrangian 
symmetry has been proposed and studied by many authors. 
It has also been shown that different formulations of the 
principle of least action can be constructed for a physical 
system that is described by a particular system of 
differential equations [1-5]. Furthermore, new approach to 
the theories of gravitation using the principle of least 
action has also been considered [6]. To extend these 
investigations, in this work we will consider the case in 
which the principle of least action can be applied to both 
classical physics and quantum physics.  

In the old quantum theory, the Bohr quantum condition 
∮𝑝𝑑𝑠 = 𝑛ℎ, where 𝑝 is the momentum of a particle, ℎ is 
Planck constant and 𝑛  is a positive integer, played a 
crucial role in the quantum description of a physical 
system, although it had been introduced into the quantum 
theory in an ad hoc manner [7]. However, except for the 
quantum condition imposed on the orbital angular 
momentum, the Bohr model was based entirely on the 
classical dynamics of Newtonian physics. In this case, it 
seems natural to raise the question as to whether the Bohr 

quantum condition can also be described in a classical 
way. In classical mechanics, the actual path of a particle is 
found by extremising the action integral of the particle [8]. 
On the other hand, in quantum mechanics, the wave 
equation of a particle can be found by applying the 
Feynman path integral formulation which assumes the 
particle can take any trajectory [9]. The question then 
arises as to whether it is possible for the action integral to 
be extremised by any path at the quantum level. In this 
work we show that this problem may be investigated in 
terms of geometry and topology, and it transpires that 
topology may play an important role in the determination 
of the nature of a quantum observable [10,11]. 

2. Principle of Least Action in Classical 
Mechanics 
The investigation of the relationship between physics 

and geometry had been carried out and culminated with 
the development of the principle of least action. In 1744, 
Euler developed and published his work on this 
variational principle for the dynamics of a particle moving 
in a plane curve [12]. On the one hand, the dynamics of a 
particle can be studied by using the principle of least 
action. On the other hand, the path of a particle can also be 
determined by using geometrical methods, since a path 
can be constructed if the curvature is known at all points 
on the path. Euler showed the equivalence between these 
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two methods by calculating the radius of curvature of the 
path directly and by means of the variational principle. 
Consider a particle moving in a plane under the influence 
of a force. Let 𝐹𝑥 and 𝐹𝑦 be the forces per unit mass in the 
x-direction and the y-direction, respectively. The normal 
acceleration 𝑎𝑛 of the particle is given by 
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If 𝜌  is the radius of curvature, then 𝑎𝑛 = −𝑣2 𝜌⁄ , 
where 𝑣 is the speed of the particle. This result can also be 
obtained by using the variational principle 𝛿𝑆 = 0, where 
𝑆 is defined by 
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The condition 𝛿𝑆 = 0 leads to the stationary condition 

 
2 2

1 1 0.d dy dyv v
dydx dx y dx
dx

     ∂ ∂      + − + =       ∂    ∂     

 (3) 

Employing the relations 𝜕𝑣2 𝜕𝑥⁄ = 2𝐹𝑥 and 𝜕𝑣2 𝜕𝑦⁄ =
2𝐹𝑦 , the stationary condition given by Equation (3)  
then leads to 𝑎𝑛 = −𝑣2 𝜌⁄ . This result reveals an intrinsic 
relationship between geometrical methods and the 
variational principle in classical mechanics. 

3. Principle of Least Action in Quantum 
Mechanics 

We will now extend this geometrical analysis into  
the domain of quantum mechanics. We show that the 
identification of the momentum of a quantum particle with 
the de Broglie wavelength leads to an interesting feature; 
namely the action principle 𝛿𝑆 = 0 is satisfied not only by 
the stationary path corresponding to the classical motion, 
but also by any path. In this case the Bohr quantum 
condition possesses a topological character in the  
sense that the principal quantum number 𝑛  is identified  
with the winding number, which is used to represent the 
fundamental group of paths [13]. Consider a curve in the 
three-dimensional spatial continuum R3  which is a 
topological image of an open segment of a straight line. 
The curve can be represented by a real vector function 
𝐫(𝑠) . For the Bohr planar model, we utilise the 
fundamental homotopy group and it is convenient to 
consider curves that may have points that correspond to 
more than one value of the parameter 𝑠 . However, 
whenever the single-valuedness of the representation 𝐫(𝑠) 
is required for differential analysis of the motion, the 
uncertainty principle in quantum mechanics may be 
invoked to shift the self-intersecting points into the third 
dimension to make the curve single-valued for the whole 
domain of definition. This is a consequence of quantum 
mechanics which does not allow both the momentum and 
coordinate associated with the third dimension to vanish 
simultaneously [10]. In differential geometry, the position 

vector 𝐫(𝑠), the unit tangent vector 𝐭(𝑠), the unit principal 
normal vector 𝐩(𝑠)  and the unit binormal vector 𝐛(𝑠) , 
defined by the relation 𝐛(𝑠) = 𝐭(𝑠) × 𝐩(𝑠) , satisfy the 
Frenet equations [14,15] 
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where 𝜅(𝑠)  and 𝜚(𝑠)  are the curvature and the torsion 
respectively, and 𝑑𝑠 = √𝑑𝐫.𝑑𝐫 is the linear element. If we 
consider the motion of a particle in a plane, as in the case 
of Bohr’s model of a hydrogen-like atom, the Frenet 
equations reduce to  
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By differentiation, we obtain the following system of 
differential equations 
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If the curvature 𝜅(𝑠) is assumed to vary slowly along 
the curve 𝐫(𝑠), so that the condition 𝑑(ln𝜅) 𝑑𝑠⁄ = 0 can 
be imposed, then 𝐭(𝑠) and 𝐩(𝑠) may be regarded as being 
oscillating with a spatial period, or wavelength, λ, whose 
relationship to the curvature 𝜅 is found as 

 2 .πκ
λ

=  (8) 

In the case of the Bohr’s planar model of a hydrogen-
like atom with circular orbits, the condition 𝑑(ln𝜅) 𝑑𝑠⁄ =
0 is always satisfied, since the curvature remains constant 
for each of the orbits. In order to incorporate this 
elementary differential geometry into quantum mechanics, 
we identify the wavelength defined in Equation (8) with 
the de Broglie’s wavelength of a particle. This seems to be 
a natural identification since the spatial period 𝜆  is the 
wavelength of the unit tangent vector 𝐭(𝑠) . With this 
assumption, the momentum 𝑝  of the particle and the 
curvature 𝜅 are related through the relation  
 .p κ=  (9) 

We now want to show how this result leads to Bohr’s 
postulate of the quantisation of angular momentum. It 
should be mentioned here that this can only be discussed 
in terms of Bohr’s quantum theory, or Feynman’s path 
integral methods, since these formulations do require 
concepts employed in classical physics, especially the 
concept of classical paths of a particle [9]. According to 
the canonical formulation of classical physics, the particle 
dynamics is governed by the action principle 𝛿𝑆 =
𝛿 ∫𝑝𝑑𝑠 = 0 . Using the relationship 𝑝 = ℏ𝜅  given in 
Equation (9) and the expression for the curvature 𝜅 of the 
path 𝑓(𝑥) of a particle in a plane, 𝜅 = 𝑓 ′′ (1 + 𝑓 ′2)3 2⁄⁄ , 
where 𝑓′ = 𝑑𝑓 𝑑𝑥⁄  and 𝑓′′ = 𝑑2𝑓 𝑑𝑥2⁄ , the action 
integral 𝑆 takes the form  
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It is shown in the calculus of variations that to 
extremise the integral 𝑆 = ∫ 𝐿(𝑓, 𝑓′, 𝑓′′, 𝑥)𝑑𝑥 , the 
function 𝑓(𝑥) must satisfy the differential equation [16] 
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However, with the functional of the form given in 
Equation (10), 𝐿 = ℏ𝑓′′ (1 + 𝑓′2)⁄ , it is straightforward 
to verify that the differential equation given in Equation 
(11) is satisfied by any function 𝑓(𝑥). This result may be 
considered as a foundation for the Feynman’s path integral 
formulation of quantum mechanics, which uses all 
classical trajectories of a particle in order to calculate the 
transition amplitude of a quantum mechanical system 
[9,12]. Since any path can be taken by a particle moving 
in a plane, if the orbits of the particle are closed, it is 
possible to represent each class of paths of the 
fundamental homotopy group of the particle by a circular 
path, since topologically, any path in the same equivalence 
class can be deformed continuously into a circular path 
[13]. This validates Bohr’s assumption of circular motion 
for the electron in a hydrogen-like atom. This assumption 
then leads immediately to the Bohr quantum condition 
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The Bohr quantum condition possesses a topological 
character in the sense that the principal quantum number 𝑛 
is identified with the winding number which is used to 
represent the fundamental homotopy group of paths of the 
electron in the hydrogen atom. 

It is interesting to note that our discussions for the 
dynamics of a particle in a three-dimensional spatial 
continuum can be extended to a three-dimensional 
temporal manifold. Mathematically, a temporal manifold 
can be considered as a three-dimensional Euclidean 
continuum whose radial time can be identified with the 
one-dimensional time in physics [17]. In this case we can 
also define the temporal position, or moment, vector 𝐭(𝜏), 
the unit temporal tangent vector 𝐭𝑇(𝜏), the unit temporal 
principal normal vector 𝐩(𝜏)  and the unit temporal 
binormal vector 𝐛(𝜏) , defined by the relation 𝐛(𝜏) =
𝐭𝑇(𝜏) × 𝐩(𝜏) . These mathematical objects satisfy the 
temporal Frenet equations 
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where 𝜅(𝜏) and 𝜚(𝜏) are the temporal curvature and the 
temporal torsion, respectively, and 𝑑𝜏 = √𝑑𝐭.𝑑𝐭  is the 
linear element of a temporal curve. If we only consider the 
motion of a particle in a plane, the equations given in 
Equation (13) reduce to  
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By differentiation we obtain the following system of 
differential equations 
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If the temporal curvature 𝜅(𝜏)  is assumed to vary 
slowly along the curve 𝐭(𝜏) , so that the condition 
𝑑(ln𝜅) 𝑑𝜏⁄ = 0 can be imposed, then 𝐭𝑇(𝜏) and 𝐩(𝜏) may 
be regarded as being oscillating with a temporal period 𝑇, 
whose relationship with the temporal curvature 𝜅 is found 
from the differential equations given in Equation (15) or 
(16) as  

 2 .
T
πκ =  (17) 

This result shows that the temporal curvature 𝜅  is 
actually the angular frequency 𝜔 . In principle, the 
structure of the three-dimensional spatial manifold and the 
three-dimensional temporal manifold are identical, because, 
without matter, both of them are just a three-dimensional 
Euclidean continuum. In order to incorporate this elementary 
differential geometry into quantum mechanics, we identify 
the angular frequency defined in Equation (17) with the 
angular frequency in Planck’s quantum of energy 𝐸 = ℏ𝜔 
of a particle. With this assumption, the energy of the 
particle and the curvature 𝜅  are related through the 
relation  

 .E κ=  (18) 
As in the case of Bohr’s quantisation of angular 

momentum, the quantisation of energy can be obtained 
from the relation given by Equation (18) using the principle 
of least action for the temporal manifold and it can be said 
that the quantisation of energy is a manifestation of 
rotation, or oscillation, in the two-dimensional temporal 
manifold.  

In fact, the Feynman’s method of sum over random 
paths can be extended to higher-dimensional spaces to 
formulate physical theories in which the transition amplitude 
between states of a quantum mechanical system is the sum 
over random hypersurfaces. This generalisation of the path 
integral method in quantum mechanics has been developed 
and applied to other areas of physics, such as condensed 
matter physics, quantum field theories and quantum gravity 
theories, mainly for the purpose of field quantisation. For 
example, although there are conceptual difficulties, the 
path integral approach to quantum gravity is carried  
out by considering a sum over all field configurations, 
determined by a metric 𝑔𝜇𝜈 and matter field 𝜙𝜇, which are 
consistent with  the three-geometries at the boundaries of 
the space-time [18]. On the other hand, string theories can 
be formulated in terms of a sum over random surfaces [19]. 
In this case the surface integral method can be used in the 
quantisation procedure, where the surface action of the form 

( ) 21/ 2S d hh X Xµν α α
µ νπ σ=− ∂ ∂∫  is used for bosonic strings, 

and ( ) 21/ 2 ( )S d hh X X iµν α α µ α
µ ν α µπ σ ψ γ ψ=− ∂ ∂ − ∂∫  for 

fermionic strings. In these action integrals, the spatial 
coordinates 𝜎𝑖 (𝑖 = 1,2)  describe a two-dimensional 
world sheet, the quantities 𝛾𝜇  represent 2-dimensional 
Dirac matrices, the quantities 𝑋𝜇(𝜎) are mappings from 
the world manifold into the physical space-time, and ℎ𝜇𝜈 
represents the geometry of the 2-dimensional manifold.  
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These surface actions are a generalisation of the familiar 
action integral for a point particle, 𝑆 = −𝑚∫𝑑𝑠, where 
the invariant interval is defined by the relation 𝑑𝑠2 =
𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈  [20]. In the following, however, we focus 
attention on the general idea of a sum over random 
surfaces. This formulation is based on surface integral 
methods by generalising the differential formulation as 
discussed for the Bohr’s model of a hydrogen-like atom. 
Consider a surface in R3  defined by the relation 𝑥3 =
𝑓(𝑥1,𝑥2) . The Gaussian curvature 𝐾  is given by the 
relation 𝐾 = (𝑓11𝑓22 − (𝑓12)2) (1 + 𝑓12 + 𝑓22)2⁄ , where 
𝑓𝜇 = 𝜕𝑓 𝜕𝑥𝜇⁄  and 𝑓𝜇𝜈 = 𝜕2𝑓 𝜕𝑥𝜇𝜕𝑥𝜈⁄  [14]. Let 𝑃  be a 
three-dimensional physical quantity which plays the role 
of the momentum 𝑝 in the two-dimensional space action 
integral. The quantity 𝑃 can be identified with the surface 
density of a physical quantity, such as charge. Since the 
momentum 𝑝  is proportional to the curvature 𝜅 , which 
determines the planar path of a particle, it is seen that in 
the three-dimensional space the quantity 𝑃  should be 
proportional to the Gaussian curvature 𝐾, which is used to 
characterise a surface. If we consider a surface action 
integral of the form 𝑆 = ∫𝑃𝑑𝐴 = ∫(𝑞 2𝜋⁄ )𝐾𝑑𝐴, where 𝑞 
is a universal constant, which plays the role of Planck’s 
constant, then we have 
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According to the calculus of variations, similar  
to the case of path integral, to extremise the action  
integral 𝑆 = ∫ 𝐿(𝑓,𝑓𝜇 , 𝑓𝜇𝜈, 𝑥𝜇)𝑑𝑥1𝑑𝑥2 , the functional 
𝐿(𝑓, 𝑓𝜇 ,𝑓𝜇𝜈, 𝑥𝜇) must satisfy the differential equations [16] 
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Also as in the case of path integral, it is straightforward 
to verify that with the functional of the form 

( ) ( ) ( )3/22 2 2
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equations given by Equation (20) are satisfied by any 
surface. Hence, we can generalise Feynman’s postulate to 
formulate a quantum theory in which  the transition 
amplitude between states of a quantum mechanical system 
is a sum over random surfaces, provided the functional  
𝑃  in the action integral 𝑆 = ∫𝑃𝑑𝐴  is taken to be 
proportional to the Gaussian curvature 𝐾  of a surface. 
Consider a closed surface and assume that we have many 
such different surfaces which are described by the higher 
dimensional homotopy groups. As in the case of the 
fundamental homotopy group of paths, we choose from 
among the homotopy class a representative spherical 
surface, in which case we can write 

 Ω,
4
qPdA d
π
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where 𝑑Ω  is an element of solid angle. Since ∮𝑑Ω 
depends on the homotopy class of the sphere that it 
represents, we have ∮𝑑Ω = 4𝜋𝑛 , where 𝑛  is the 
topological winding number of the higher dimensional 
homotopy group. From this result we obtain a generalised 
Bohr quantum condition 

 .PdA nq=∮  (22) 

From the result obtained in Equation (22), as in the case 
of Bohr’s theory of quantum mechanics, we may consider 
a quantum process in which a physical entity transits from 
one surface to another with some radiation-like quantum 
created in the process. Since this kind of physical process 
can be considered as a transition from one homotopy class 
to another, the radiation-like quantum may be the result of 
a change of the topological structure of the physical 
system, and so it can be regarded as a topological effect. 
Furthermore, it is interesting to note that the action 
integral (𝑞 4𝜋⁄ )∮𝐾𝑑𝐴  is identical to Gauss’s law in 
electrodynamics [21]. In this case the constant 𝑞 can be 
identified with the charge of a particle, which represents 
the topological structure of a physical system and the 
charge of a physical system must exist in multiples of 𝑞. 
Hence, the charge of a physical system may depend on the 
topological structure of the system and is classified by the 
homotopy group of closed surfaces. This result may shed 
some light on why charge is quantised even in classical 
physics. As a further remark, we want to mention here that 
in differential geometry, the Gaussian 𝐾 is related to the 
Ricci scalar curvature R by the relation R = 2𝐾 . And it 
has been shown that the Ricci scalar curvature can be 
identified with the potential of a physical system, 
therefore our assumption of the existence of a relationship 
between the Gaussian curvature and the surface density of 
a physical quantity can be justified [11]. Our discussions 
for random surfaces can also be generalised to a sum over 
random hypersurfaces of the form 𝑥𝑛+1 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 
in an (n+1)-dimensional Euclidean space.  A generalised 
action integral is assumed to take the form 

 ,n n nS q K dA= ∫  (23) 

where 𝑞𝑛 is a universal constant, which may be identified 
with some physical quantity, depending on the dimension 
of space, and 𝐾𝑛  is the generalised Gaussian curvature 
defined as the product of the principal curvatures 𝐾𝑛 =
𝑘1𝑘2 …𝑘𝑛. In terms of the Riemannian curvature tensor, 
the generalised Gaussian curvature can be written as 
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where 𝜇𝑖 , 𝜈𝑖 = 1,2, …𝑛  and 𝑔𝜇𝜈  and 𝑅𝜇𝑖𝜇𝑖+1𝜈𝑖𝜈𝑖+1  are the 
metric tensor and the curvature tensor, respectively, of the 
hyper-surface. From the theory of differential geometry in 
higher dimensions, we have the generalised Gauss-Bonnet 
theorem for the case when 𝑛 is even [22] 

 1 ,
2

n
n nK dA S χ=∫  (25) 

where 𝑆𝑛 is the volume of an n-sphere and 𝜒 is the Euler 
characteristic. Hence, to be consistent with this result the 
variational differential equation obtained from the action 
integral given by Equation (23) must be satisfied by any 
hypersurface, since the Euler characteristic is a topological 
invariant whose value depends only on the homotopy 
class, and not on the choice of an individual hypersurface. 
In this case we have the generalised Bohr quantum condition 
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 n n nP dA nq=∮  (26) 

where the universal constant 𝑞𝑛 connects the physical quantity 
𝑃𝑛 with the geometrical object 𝐾𝑛. In higher-dimensional 
spaces, however, we do not have a guiding relation, such 
as de Broglie’s relation and Gauss’s law to identify the 
quantity 𝑞𝑛. Nonetheless, this result also suggests that it 
may be possible to discuss a formalisation of the physics 
that involves manifolds of arbitrary dimension. 

4. Principle of Least Action in General 
Relativity 

As a further examination, we will show in this section 
that Feynman’s postulate of path integral formulation of 
quantum mechanics, which can be verified by the 
principle of least action as discussed above, may also be 
applied to the field equations of Einstein’s theory of 
general relativity. The field equations of general relativity 
are written in the form 

 1 Λ
2

R g R g Tµν µν µν µνκ− + =  (27) 

where 𝑇𝜇𝜈  is the energy-momentum tensor, 𝑔𝜇𝜈  is the 
metric tensor, 𝑅𝜇𝜈  is the Ricci curvature tensor, 𝑅 is the 
scalar curvature and Λ is the cosmological constant [23]. It 
is shown that Equation (27) can be derived through the 
principle of least action 𝛿𝑆 = 0 , where the action 𝑆  is 
defined as  

 ( ) 41 2Λ
2 MS R gd x
κ

 = − + − 
 ∫   (28) 

where ℒ𝑀  characterises matter fields [24]. In 1917, 
Einstein introduced the cosmological constant Λ  as an 
addition to his original field equations of general relativity 
to retain the accepted view at the time that the universe is 
static. The reason for the addition is that if all matter 
attracts each other than a static universe would not be able 
to remain static. The attractive gravity would cause the 
universe to collapse. Because the original field equations 
of general relativity contain only attractive forms of 
gravity, a repulsive term is required. Einstein started his 
cosmological considerations by modifying Poisson’s 
equation ∇2𝜙 = 4𝜋𝐾𝜌 with a repulsive term 𝜆𝜙 to form 
the required equation ∇2𝜙 − 𝜆𝜙 = 4𝜋𝜅𝜌, where 𝜆 denotes 
a universal constant [23]. The modification of Poisson’s 
equation results in the solution 𝜙 = −(4𝜋𝜅 𝜆⁄ )𝜌0  if 
matter was distributed uniformly through space with the 
density 𝜌0. With these considerations, Einstein also noted 
that in order to maintain the general covariance of the field 
equations, the repulsive term that would be added to his 
field equations must be of the form Λ𝑔𝜇𝜈. However, it is 
observed that the requirements of repulsion and 
covariance can be acquired by the energy-momentum 
tensor because if Λ  is considered to be some form of 
matter then it should be able to produce some form of 
energy, in particular, a potential energy. The fact that the 
term Λ𝑔𝜇𝜈  can be replaced by an energy-momentum 
tensor can be demonstrated for the case when 𝑛 = 2 as 
follows. It is shown that when 𝑛 = 2 we have the identity 

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 ≡ 0 , and in this case the field equations 

given by Equation (27) reduces to  

 Λ .T gµν µνκ
 = 
 

 (29) 

It is indicated from Equation (29) that a physical entity 
can be directly identified with a mathematical object. This 
interesting feature can be seen as an underlying principle 
for quantum physics. As long as the energy-momentum 
tensor 𝑇𝜇𝜈 is directly identified with the metric tensor 𝑔𝜇𝜈 
through the relationship given by Equation (29) then for 

the case when 𝑛 = 2 we have 1 0,
2

R g Rµν µν− ≡  therefore 

the resulting equations from the principle of least action 
1 Λ
2

R g R g Tµν µν µν µνκ− + =  are satisfied by any metric 

tensor 𝑔𝜇𝜈.  

5. Conclusion 

In this work we have analysed the principle of least 
action that can be applied to various domains of physics, 
namely the classical mechanics, the quantum mechanics 
and the general relativity. We showed that the principle of 
least action in the traditional formulation not only can be 
applied to determine a unique path of a particle in classical 
mechanics but also can be applied to determine the 
quantum dynamics of a quantum particle with the 
Feynman assumption that the quantum particle can take 
any path to move in the spacetime continuum. These 
results lead to the possibility to speculate that the 
mathematical formulation of physical laws is not only a 
convenient mathematical method but there may be 
intrinsic relationships between physical entities and the 
mathematical objects. And the ultimate question that 
arises from such speculation is whether it is possible to 
formulate physics purely in terms mathematical objects by 
identifying them with physical entities.  
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