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Abstract: In this work we discuss the possibility of combining the Coulomb potential with the 

Yukawa’s potential to form a mixed potential and then investigate whether this combination 

can be used to explain why the electron does not radiate when it manifests in the form of 

circular motions around the nucleus. We show that the mixed Coulomb-Yukawa potential can 

yield stationary orbits with zero net force, therefore if the electron moves around the nucleus 

in these orbits it will not radiate according to classical electrodynamics. We also show that in 

these stationary orbits, the kinetic energy of the electron is converted into potential energy, 

therefore the radiation process of a hydrogen-like atom does not related to the transition of 

the electron as a classical particle between the energy levels. The radial distribution functions 

of the wave equation determine the energy density rather than the electron density at a 

distance   along a given direction from the nucleus. It is shown in the appendix that the 

mixed potential used in this work can be derived from Einstein’s general theory of relativity 

by choosing a suitable energy-momentum tensor. Even though such derivation is not essential 

in our discussions, it shows that there is a possible connection between general relativity and 

quantum physics at the quantum level.  

 

In quantum mechanics, especially Bohr’s model, the Coulomb force is used to deal with a 

hydrogen-like atom. This proposition leads to the postulate that the electron does not radiate 

when it is orbiting the nucleus, because according to classical electrodynamics when the 

electron of a hydrogen-like atom moves in a circular path it must radiate. In this situation a 

question arises as to whether the Coulomb force is the correct force to use in the description 

of the dynamics of the electron. Can we assume a different form of force, such as a 

combination of known forces, in order to resolve this problem? In classical physics, in order 

to describe an interaction at a distance between objects we normally use a potential. These are 

the Newtonian potential of gravity, the Coulomb’s potential of electrostatic field, the Hooke’s 

potential and a linear potential. In 1935, Yukawa introduced a short-range potential of an 

exponential form to describe the force between nucleons [1]. However, in quantum field 

theories, there are other interactions that need to be described by using a potential that is a 

combination of those elementary potentials. For example, the interaction between quarks in 

chromodynamics can be represented by a potential, which is the sum of the Coulomb’s 

potential and a linear potential, of the form             , where the first term 

dominates at short distances and the second term is used to describe confinement at large 

distances [2]. Following this type of description, in this work we will discuss the possibility 

of combining the Coulomb potential with the Yukawa’s potential to form a mixed potential 
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and investigate whether this combination can be used to explain why the electron does not 

radiate when it manifests in the form of circular motions around the nucleus. For references, a 

summary of the postulates of Bohr’s model of a hydrogen-like atom may be summarised as 

follows [3]: 

 The centripetal force required for the electron to orbit the nucleus in a stable circle is 

the Coulomb force         . Using Newton’s second law,     , we obtain 

   

 
 
   

  
                                                                                                                                    

 The permissible orbits are those that satisfy the condition that the angular momentum 

of the electron equals   , that is 

                                                                                                                                             

where the number n denotes the nth orbit.  

 When the electron moves in one of the stable orbits it does not radiate. However, it 

will radiate when it makes a transition between them. 

In order to describe the interaction between the electron and the nucleus of a hydrogen-like 

atom, instead of Bohr’s postulate given in Equation (1), we assume a mixed potential of the 

form [4] 

       
    

 
 
 

 
                                                                                                                                

where           are constants that will be determined. This type of potential can be derived 

from Einstein’s general relativity by choosing a suitable energy-momentum tensor, as given 

in the appendix. From Equation (3), we obtain the following equations by differentiation 

  

  
       

 

 
 
 

  
  

 

  
                                                                                                                     

   

   
        

  

 
 
  

  
 
 

  
  

  

  
                                                                                                 

From Equation (4), the corresponding force of interaction             is obtained as  

            
 

 
 
 

  
  

 

  
                                                                                                              

In order to comply with classical electrodynamics, the net force acting on the electron must 

be zero when it is circulating in stable orbits. If we assume the net force acting on the 

electron to vanish when it moves in a stationary orbit of finite radius      , i.e.,        

at        , then from Equation (6) we obtain the relation 

     
  

 
                                                                                                                                          

Since    , we have       . The mixed potential given by Equation (3) now takes the 

form 



      
  

 

  
 
 

 
 
 

 
                                                                                                                              

And the corresponding force of interaction             is  

      
  

 
  

 
  
 

  
 
 

  
  

 

  
                                                                                                          

The constant       can be assumed to be the radius of a Bohr’s stationary orbit. In order 

to investigate further we need to know the nature of the stationary point at    . From 

Equation (5), the second derivative of       at     is found as 

   

   
  

 

   
                                                                                                                                            

Depending on the signs of Q we have two different cases. 

The case    :  In this case          , therefore V(r) has a local maximum at    . 

Since            , the force is attractive for     and repulsive for    . This 

situation can be applied to the process of interaction of two protons. We know that at short 

distances two protons attract each other according to the strong force, but at long distances 

they repel each other according to the electrostatic law. Therefore at large distances,    , 

we expect           , where q is the charge and k is the Coulomb constant, the mixed 

potential takes the form 

      
    

 

  
 
 

 
 
   

 
                                                                                                                    

The corresponding force is 

                    

      
    

 
  

 
  
 

  
 
 

  
  

   

  
                                                                                                 

The value of the potential at     is  

     
 

 

   

 
                                                                                                                                           

The equilibrium of this system at     is unstable therefore the system is easily broken into 

separate states that can be described adequately either by the Yukawa potential or the 

Coulomb potential alone. 

The case    :  In this case          , therefore V(r) has a minimum at    . Since 

           , the force is repulsive for     and attractive for    . This physical 

process can be used to describe the interaction of the electron and the nucleus of a hydrogen-

like atom. We know that at long distances they attract each other according to the 

electrostatic force, however, at short distances in this case they repel each other. At large 



distances,    , we expect            , where q is the charge and k is the Coulomb 

constant, the mixed potential now takes the form 

     
 

 

     
 
 

 
 
   

 
                                                                                                                        

The corresponding force is 

                    

     
    

 
  

 
  
 

  
 
 

  
  

   

  
                                                                                                     

The value of the potential energy at     is  

      
 

 

   

 
                                                                                                                                       

The values of the potential given by Equation (16) are the levels of the total energy of Bohr’s 

model from which the electron is assumed to absorb or emit electromagnetic radiations when 

it transits from one level to the other, if   is taken to be the Bohr’s radius. In our model, 

however, since the potential alone is equal to the total energy of the Bohr’s model, therefore 

in order to interpret this result we need to assume that there is no kinetic energy associated 

with the electron when it is in stationary orbits. It seems as though the whole kinetic energy 

of the electron has been converted into its potential energy when the electron is in there. So 

what is the state of the electron when it is in a stationary orbit? Is it still a particle? Or has it 

turned into a wave? Or is it just floating along with some kind of wave that forms the 

stationary orbits? It should be mentioned here that, as discussed in our other works [5], the 

state of the electron in a stationary orbit should be a wavelike state. We will show later that 

this result is also consistent with wave mechanics when Schrödinger wave equation is applied 

with the mixed potential given by Equation (14). At distances near the stationary orbits, 

   , Schrödinger wave equation with the mixed potential reduces to that of a free particle. 

In order to obtain Bohr’s results, the amount of kinetic energy that has been converted into 

potential energy should be as follows 

   

 
 
 

 

   

 
                                                                                                                                             

As in Bohr’s model, we also need to use the quantisation of angular momentum. It has been 

shown in our work on the principle of least action [6], the quantisation of angular momentum 

has a topological characteristic that is represented in the form 

             
  

 
                                                                                             

where   is the curvature of the path of a particle and   is the winding number of the 

homotopy group. The relationship between the momentum of a particle and the curvature of 

its path can be established by applying the Frenet equations in differential geometry and de 



Broglie’s wavelength of the particle [6]. From Equation (18), for a Bohr’s stationary orbit of 

radius    we have 

                                                                                                                                                       

Using Equations (17) and (19) we then obtain Bohr’s results as follows 

   
    

    
                               

     

   
 

  
                                                                  

In the following, we will discuss further the application of the mixed potential to a hydrogen-

like atom in terms of wave mechanics. Since the system of a hydrogen-like atom involves 

charges, as in the case of Bohr’s quantisation of angular momentum that has a topological 

characteristic, we want to mention here that the quantisation of charge also has a topological 

feature [6]. This distinctive aspect can be established by identifying Gaussian curvature of a 

surface with charge density in Gauss’s law in classical electrodynamics. Topological methods 

have been widely used in recent developments of quantum physics. For example, topological 

concepts and formulations play fundamental roles in topological quantum field theories [7,8] 

and cobordism relations in algebraic topology are fundamental to theories of quantum gravity 

[9].  

With the potential given in Equation (14), the one-body time-independent Schrödinger 

equation describing the relative motion is 

 
  

  
        

 

 

     
 
 

 
 
   

 
                                                                                    

where            is the reduced mass of the electron and the nucleus. As discussed 

above, Equation (21) can be interpreted as a wave equation for the description of the 

dynamics of energy rather than the dynamics of the electron. In this case Equation (21) has 

the status of Maxwell’s equations in classical electrodynamics. Since the mixed Coulomb-

Yukawa potential is also spherically symmetric, Equation (21) can be written in the spherical 

polar coordinates as  

 
  

  
 
 

  
 

  
   

 

  
  

  

    
       

 

 

     
 
 

 
 
   

 
                                           

where the orbital angular momentum operator    is given by 

       
 

    

 

  
     

 

  
  

 

     

  

   
                                                                                    

Solutions of Equation (22) can be found using the separable form 

                                                                                                                                           



where     is a radial function and     is the spherical harmonic. Applying Equation (24), 

Equation (22) is reduced to the system of equations 

                                                                                                                                

  
  

  
 
  

   
 
 

 

 

  
  

        

    
 
 

 

     
 
 

 
 
   

 
                                            

Even though Equations (26) cannot be solved completely to obtain exact solutions that can be 

used to describe the physical dynamics of a hydrogen-like atom, it is possible to suggest what 

type of solutions Equation (26) should admit by considering it for extreme cases with     

and    . First consider the case when    . In this case, the Yukawa term can be ignored 

and Equation (26) reduces to Schrödinger wave equation with the Coulomb potential 

  
  

  
 
  

   
 
 

 

 

  
  

        

    
 
   

 
                                                                    

The normalised radial eigenfunctions of the bound states can be found as [10] 

          
     

   
 

 
        

          
  

   

           
                                                              

where                 and     
        is the associated Laguerre polynomial with the 

bound state energy eigenvalues given by  

    
     

   
 

  
                                                                                                                                     

Despite the results obtained for the case     are the same as that of Schrödinger wave 

equation with the Coulomb potential, the interpretation of what the wavefunctions represent 

in this case may be different. As we noticed before, in the bound states of the hydrogen-like 

atom, the kinetic energy of the electron is converted to potential energy, therefore the 

radiation process of a hydrogen-like atom does not related to the transition of the electron as a 

classical particle between energy levels when the system absorbs or emits a photon, but is due 

to the form of the potential. This may be considered as the Aharonov-Bohm effect [11]. The 

radial distribution function           
  determines the energy density rather than the electron 

density at a distance   along a given direction from the nucleus. 

Now consider the case when    . This is the case when the electron is in a region when the 

net force acting on it is negligible. Using first order expansion for the Yukawa potential at 

   , Equation (26) becomes 

  
  

  
 
  

   
 
 

 

 

  
  

        

    
 
   

  
                                                                    



As expected, the radial equation given by Equation (30) is that of a free-particle in spherical 

polar coordinates, except for the constant term        . The radial eigenfunction can be 

found as [10] 

                                                                                                                                                    

where                     ,   is a constant and        is the spherical Bessel 

functions. However, unlike the case of     in which the energy spectrum contains an 

infinite number of discrete energy levels, the energy spectrum at     is continuous.  

From the above considerations for extreme cases, it is possible to suggest that the exact 

solutions to Equation (26) should be of such a form, solutions given by Equations (28) and 

(31) are their asymptotic solutions. At near stationary orbits     the exact solutions will 

approach the spherical Bessel solutions                and at large distances     they 

will approach solutions            
     

   
 
         

          
  
   

           
       . Furthermore, 

the energy of these solutions also needs to change from a continuous spectrum to a discrete 

spectrum.   

 

Appendix: A line element of the Yukawa potential 

The type of potential given in Equation (3) can be derived from Einstein’s general theory of 

relativity by choosing a suitable energy-momentum tensor. The field equations of general 

relativity are [12]  

    
 

 
                                                                                                                             

Assuming a centrally symmetric field, the space-time metric can be written as [13] 

                                                                                                             

Denoting the coordinates   ,,,rct  by }{ x  3,2,1,0 , the metric tensor     of this line 

element is  

     

     
      
      
           

                                                                                              

In terms of the metric     given in Equation (34), the non-zero components of the connection 

   
  

 

 
                                                                                                                      

 are found as 



   
  

 

 

  

  
        

  
    

 

  

  
        

  
 

 

  

  
        

  
 

 

  

  
                                                                

   
  

    

 

  

  
       

  
 

 

  

  
       

  
 

 
       

  
 

 
       

                                                              

   
              

                    
                                                                            

With the line element in Equation (33), and 0 , the vacuum solutions satisfy the 

following system of equations 

  

  
 
 

 
 
  

 
                                                                                                                                             

  

  
 
 

 
 
  

 
                                                                                                                                             

  

  
                                                                                                                                                                

 
   

   
  

  

  
 
 

 
 

 
 
  

  
 
  

  
  

  

  

  

  
       

   

   
  

  

  
 
 

 
  

  

  

  
                   

These equations are not independent, since it can be verified that the last equation follows 

from the first three equations. Furthermore, the first two equations result in       

       , which leads to      , due to the possibility of an arbitrary transformation of 

the time coordinate. The system of equations (37) admits the Schwarzschild line element 

which can be used to describe the massless force carriers of the gravitational field. In this 

work, however, we need a non-vacuum solution. In order to find an appropriate solution to 

describe the potential required, an energy-momentum tensor must be specified. Obviously, 

the present state of atomic physics does not allow us to specify a precise form for this kind of 

energy-momentum tensor. In this situation, it is appropriate to construct an energy-

momentum tensor so that it not only gives rise to an exact solution with the desired metric of 

the Yukawa form, but also satisfies the conservation law     
   . As an illustration, we 

consider in the following form of the energy-momentum tensor 

  
  

 

 
 
 
 
 
  

 

    

  
   

  
  

 

    

  
  

  
   

  

    

 
 

   
   

  

    

  

 
 
 
 

                                                                                                                               

where the constants α and β will be needed to be specified. It can be verified that the energy-

momentum tensor given in Equation (38) satisfies the conservation law 



    
  

 

   

   
    

   
 
 

 

    
   

                                                                                             

It can also be shown that this tensor admits a line element of the Yukawa potential as an exact 

solution to the field equations of general relativity. With the energy-momentum tensor given 

in Equation (38) together with the metric tensor (34), the field equations of general relativity 

reduce to the following system of equations 

    
  

  
 
 

 
  

 

 
    

    

 
                                                                                                                 

    
  

  
 
 

 
  

 

 
    

    

 
                                                                                                                

  

  
                                                                                                                                                                

     
   

   
  

  

  
 
 

 
 

 
 
  

  
 
  

  
  

  

  

  

  
      

   

   
  

  

  
 
 

 
  

  

  

  
 

   
    

 
                                                                                                                                                 

The system of equations given in Equation (40) when integrated gives a metric of the form 

       
    

 
 
 

 
                                                                                                                           

where Q is a constant of integration. The term     can be interpreted as Coulomb potential 

and the term          can be interpreted as Yukawa potential. This result leads to the 

conclusion that by specifying an appropriate matter source, it is possible to consider the 

atomic interaction of a hydrogen-like atom as a manifestation of general relativity at short 

range.  
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