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Abstract: In this work we develop a theory of temporal relativity, which includes a temporal 

special relativity and a temporal general relativity, on the basis of a generalised Newtonian 

temporal dynamics. We then show that a temporal relativity can be used to study the 

dynamics of quantum radiation of an elementary particle from a quantum system. 

 

1. Introduction 

In physics, space and time are combined to form a continuum in which space is regarded as 

consisting of three dimensions and time as one dimension. The requirement that time should 

have only one dimension can be seen as a result our perception of existence, even though the 

combination of space and time to form a unified space-time is totally asymmetric. Can we 

perceive time as a three dimensional continuum? Is there any form of physical processes that 

suggests that time should exist as a three dimensional continuum? If space and time are 

totally symmetric then from the symmetry of space and time we expect that physical laws 

which govern the spatial dynamics and the temporal dynamics of a particle should have 

identical forms, except for their roles to be reversed. It is known that in classical and wave 

mechanics, a dynamical equation that is used to describe a physical system can be derived 

from the law of conservation of energy, which in turns is derived from the concept of work 

done. In the following we show that there is a similarity between spatial and temporal 

physical entities that are used to formulate physics using the concepts of work done and 

energy. In classical mechanics, the work done is defined as [1] 

        
  

  

                                                                                                                                            

Consider an inverse square field with a force given by the form 

     
 

  
                                                                                                                                                    

where A is a constant. This force can be derived from the potential 

     
 

 
                                                                                                                                                     

The potential given be Equation (3) in turns can be seen as a weak field of the Schwarzschild 

solutions of Einstein’s field equations of general relativity. In spatial dynamics, with the form 
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of force given in Equation (2), the work done defined by Equation (1) on a particle along its 

radial motion becomes  

   
 

  
  

  

  

                                                                                                                                           

It is interesting to note that de Broglie’s relation [2] in quantum mechanics       can be 

written in the form given in Equation(4) as follows 

  
 

 
  

 

  
  

 

 

                                                                                                                                     

In quantum physics, Planck’s quantum of energy is stated through the relationship 

   
 

 
                                                                                                                                                         

where   is Planck’s constant and   is the period of wave motion of a quantum particle [3]. It 

is seen that the Planck’s quantum of energy given in Equation (6) can be put in the following 

form  

  
 

 
  

 

  
  

 

 

                                                                                                                                    

Equation (7) can be generalised to take a more general form as [4] 

   
 

  
  

  

  

                                                                                                                                            

where B is a constant. The form given in Equation (8) is similar to that of Equation (4) except 

the roles of space and time are reversed. From the similarity between space and time through 

Equations (4) and (8), we can define a temporal force as 

     
 

  
                                                                                                                                                     

Similar to spatial dynamics of classical mechanics, if the force in Equation (9) can be derived 

from a temporal potential      as            , then with the force given by Equation 

(9), the temporal potential      can be found as 

     
 

 
                                                                                                                                                    

In the following we will consider the dynamics of an elementary particle therefore the 

constant   will be identified with Planck’s constant  , and we will show that the type of 

potential given in Equation (10) can be derived from a temporal relativity.  

Consider an elementary particle of mass   under the influence of a temporal force given in 

Equation (9) by a quantum system. We need to find the corresponding force   as defined in 



classical mechanics for this temporal force. In classical mechanics, the work done W defined 

by Equation (1) for a force F that moves an object with velocity v from time    to time    is 

re-written as 

 

         

  

  

                                                                                                                                          

It should be emphasised here that the force   in Equation (11) is a normal force defined in 

classical physics, unlike the temporal force given in Equation (9) which is defined in a 

temporal manifold. From Equations (8) and (11) we obtain the relation 

    
 

  
                                                                                                                                                     

Assuming        and using Newton’s second law         , the following equation 

is obtained 

  
  

  
 

 

  
                                                                                                                                               

If we consider the condition that at the initial time     , the velocity of the particle is 

     , then solutions to Equation (13) are found as follows 

   

 
 

   
 

 
   

 

 
 

 

 
                                                                                                                         

Taking the positive sign for   from Equation (14) we obtain a propulsive force 

  
 

     
  

  
  

 
  

 
  

                                                                                                                       

The negative sign of   from the solutions (15) may be considered when the particle is being 

absorbed by a quantum system. It is also noted that by using de Broglie’s relation given in 

Equation (5), it can be shown that the momentum of the emitted particle satisfies the relation 

         
 

 
 

 

 
                                                                                                                           

where λ is the wavelength of the particle’s wave motion before it is emitted from a quantum 

system. It is seen from these results that there is a continuous transfer of energy and 

momentum between a quantum system and a microscopic object during a quantum radiation 

process. The total energy transferred to the particle is equal to the Planck’s quantum of 

energy, which is a total work done on the particle, and the momentum in de Broglie’s relation 

is a total transferred momentum.  



From the similarity between space and time discussed above, the aim of this work is to 

formulate a theory of temporal relativity, which is a relativistic theory of a three dimensional 

temporal continuum. To achieve this aim first we need to formulate a temporal dynamics 

which is a dynamics with regards to the rate of change of time. Even though the formulation 

of a temporal dynamics has been discussed in details in our other works [4], for clarity, an 

outline of the main features of the temporal dynamics is given in Section 2 and 3. We will 

develop a special theory of temporal relativity in Section 4 and in Section 5 we will 

generalise and formulate a general theory of temporal relativity. 

2. The concept of time in Einstein’s theory of special relativity 

In this section we want to show that a temporal dynamics, which is similar to Newtonian 

dynamics, can be derived from Einstein’s theory of special relativity. Consider two inertial 

reference systems   and    with coordinates              and    
    

    
     . If the system    

moves relative to the system   along the   -axis with the velocity v, then according to 

Newtonian physics the transformation of the coordinates of the two systems is the Galilean 

transformation [5] 

     
          

       
                                                                              

The concept of absolute time in Newtonian physics was changed when Einstein proposed his 

theory of special relativity. Instead of the Galilean transformation, in special relativity the 

transformation of the coordinates adopts the Lorentz transformation  

   
  

     

   
  

  

      
       

    
   

 
    

   
  

  

                                                      

From Equations (18), for infinitesimal changes, the formulas for the length contraction and 

the time dilation are derived as  

   

   
 
 

 

   
  

  

                                                                                                                                         

  

   
 

 

   
  

  

                                                                                                                                          

In the following we will consider the system    as a moving particle in a reference system  . 

During its motion, if the particle interacts with other physical objects, as in the case of 

Compton’s scattering between an electron and a photon, then the particle’s direction and 

speed will change. From Equation (20), the proper time interval will change during the 

interaction if we assume the time of the reference frame still flows at a constant rate. In this 

case we have a rate of change of the proper time of the particle. However, if the speed of the 

particle remains small compared to the speed of light after this short period of interaction 



then the proper time flow will still be the same as that of the reference frame. Inversely, if we 

assume the proper time to flow at a constant rate during the interaction then the time interval 

of the time of the reference frame will change, and in this case we have the rate of change of 

the time of the reference frame. Furthermore, we will consider the case when the interaction 

happens only in a very short duration of time, therefore, we assume that the form in Equation 

(20) still remains valid even though the velocity of the particle changes continuously. This 

can be considered as an extension of the postulate of relativity. It should be mentioned here 

that this kind of extension of the postulate of relativity had led Einstein to develop his general 

theory of relativity. The extended principle of relativity is stated as: “The law of physics must 

be of such a nature that they apply to systems of reference in any kind of motion” [6]. With 

the assumption that the relation given by Equation (20) remains valid for a continuous change 

of velocity, we obtain the second rate of change of the time of the reference frame with 

respect to the proper time as 

   

    
 

       

     
  

   
    

  

   
                                                                                                                     

Using Equation (20) and multiplying both sides of Equation (21) by the relativistic mass of 

the particle,              , where    is the particle’s rest mass, we obtain  

  

   

    
 

         

     
  

   
   

 

   
  

   
   

                                                                                              

Equation (22) can be re-written as 

   
    

  

  
 

 
   

    
                                                                                                                       

where           is a Newtonian force that is responsible for the rate of change of the 

time of the particle. The dynamical equation given by Equation (23) needs to be reformulated 

in terms of variables in the reference system in order to be applied. For example, consider the 

radial motion. In this case we have                  . Then Equation (23) can be re-

written as  

    
     

  

  
 

 
   

      
                                                                                                              

Using Equation (20), we can write                                   . With 

this result, Equation (24) becomes 

    
     

  

  
 
   

   
                                                                                                                     

If we define a new physical quantity 



      
     

  

  
                                                                                                                           

then Equation (25) takes the form 

 
   

   
                                                                                                                                                     

The dynamical equation given in Equation (27) has the form of Newton’s second law of 

motion. However, in this case the roles of space and time are reversed. The new physical 

quantity   plays the role of the inertial mass of a particle in Newtonian mechanics. As in the 

case of special relativistic dynamics, this new physical quantity also depends on the velocity 

of the particle.  

3. Time as a 3-dimensional manifold 

In Newtonian physics, time is an independent 1-dimensional Euclidean continuum, which is 

an essential component of the fundamental structure of the nature. Time is considered to be 

absolute and its properties are independent of any system of reference. The time intervals of 

time between two events are identical for all reference systems. In classical physics, the 

dynamics of a particle is a study of its motion in space with respect to time under the action 

of forces, where time is considered to be universal and to flow at a constant rate. Because 

time is considered to be 1-dimensional, therefore we will discuss the dynamics of a particle in 

1-dimension first and then extend the discussion to a 3-dimensional temporal manifold. 

Consider the motion of a particle in a straight line under the action of a force  . Its 

displacement from an origin is represented by the position vector  . In order to study the 

dynamics of the particle, we divide the 1-dimensional Euclidean time into equal intervals    

and measure the distance     that the particle has travelled in the     time interval. In this 

case we define the rate of change of the displacement of the particle as       . If these rates 

are equal then we say the particle is moving with a constant velocity  . Let     , we have 

       . If the rates are different then we say the particle is moving with an acceleration 

               . When physical entities related to the particle, such as mass   and 

charge  , are introduced then we can formulate a classical dynamics such as Newtonian 

dynamics 

 
   

   
                                                                                                                                                    

In the following we will term Newtonian dynamics as the spatial dynamics, in contrast to the 

temporal dynamics that we formulate as follows. We also consider the motion of the particle 

along a straight line as described above. Instead of dividing the time line into equal intervals, 

we divide the spatial line into equal spatial intervals   . After the particle moves through the 

    spatial interval we measure the corresponding time interval     that the particle has taken 

to move through that distance. In this case we define the rate of change of the temporal 

displacement of the particle with respect to distance as       . The temporal displacement 

from a temporal origin is represented by the temporal vector  . If these rates are equal then 



we say the particle is moving with a constant temporal velocity   . Let     , we have 

        . If the rates are different then we say the particle is moving with a temporal 

acceleration                  . If the temporal dynamics of the particle is also 

caused by a force   then we can formulate a temporal dynamics similar to Newtonian 

dynamics 

 
   

   
                                                                                                                                                     

where the physical quantity  , which plays the role of the inertial mass   in Newtonian 

mechanics needs to be determined. The quantity   has the dimension of the quantity given by 

Equation (26), i.e.,             . The form given by Equation (29) is similar to Newton’s 

second law of motion given by Equation (28), except for the roles of space and time are 

reversed. 

We now generalise to formulate a 3-dimensional temporal dynamics that involves the second 

rate of change of time with respect to distance. Mathematically, space-time can be assumed to 

be a six-dimensional metrical continuum, which is a union of a 3-dimensional spatial 

manifold and a 3-dimensional temporal manifold. The spatial manifold is a simply connected 

Euclidean space    and the temporal manifold is also a simply connected Euclidean manifold 

  . The points of this space-time are expressed as                    , where            

representing           , and the square of the infinitesimal space-time length is of a quadratic 

form          
      For the purpose of this work, however, as in Newtonian physics, we 

will consider space-time as two separate Euclidean manifolds which exist together. However, 

as shown below, these spatial and temporal manifolds are connected dynamically. In this 

case, the quadratic forms for the infinitesimal spatial arc length and the temporal arc length 

are reduced respectively to the forms          
       

       
  and          

  

     
       

 . In Newtonian physics, the dynamics of a particle is a description of the rate 

of change of its position in space with respect to time according to Newton’s laws of motion, 

where time is assumed to flow at a constant rate and is considered to be a 1-dimensional 

continuum. In the following, we will generalise this formulation by considering the dynamics 

of a particle as a description of the mutual rates of change of the position and the time of a 

particle with respect to one another, where not only space but time is also considered to be a 

3-dimensional manifold. As shown below, this generalisation will yield new insights that can 

be used to explain physical phenomena. Especially, it is shown that matter, space and time of 

a particle are connected through the spatial mass m and the temporal mass D.  

Consider a particle of inertial mass   that occupies a position in space. In a coordinate 

system  , the position of the particle at the time   is determined by the position vector 

                         . We have assumed the Newtonian time is the temporal arc 

length  .  As in classical physics, the classical dynamics of the particle is governed by 

Newton’s laws of motion. We will term Newton’s laws as spatial laws. These laws are stated 

as follows: 



 First spatial law: In an inertial reference frame, unless acted upon by a force, an object 

either remains at rest or continues to move at a constant velocity. 

 Second spatial law: 

 

 
   

   
                                                                                                                                       

 

This law is used to determine the spatial trajectory of the particle in space with respect 

to time. 

 Third spatial law: for every action, there is an equal and opposite reaction. 

These spatial laws determine the dynamics of a particle in space with the assumption that 

time is 1-dimensional, universal and flowing at a constant rate. For example, within this 

formulation, Equation (24) for the simple harmonic motion should have been written as 

            , where   is the temporal arc length in the 3-dimensional temporal 

manifold and          
       

       
 .  

Similar to the case of 1-dimensional time, we can establish a dynamics for a 3-dimensional 

temporal manifold by considering space as an independent variable. However, due to the 

symmetry between space and time we may use the following argument to formulate. As in 

classical dynamics, in order for a particle to change its position it needs a flow of time. So, 

similarly, we assume that in order for the particle to change its time it would need an 

expansion of space. We consider the motion of a particle in space as its local spatial 

expansion. This assumption then allows us to define the rate of change of time with respect to 

space. From this mutual symmetry between space and time, a temporal dynamics, which is 

identical to Newtonian dynamics, can be assumed. Consider a particle of a temporal mass   

that occupies a time in the 3-dimensional temporal manifold. In the coordinate system  , the 

time of the particle at the position specified by the spatial vector   is determined by the 

temporal vector                          , where   is the spatial arc length in the 3-

dimensional spatial manifold and          
       

       
 .  We assume the 

temporal dynamics of the particle is governed by dynamical laws which are similar to 

Newton’s laws of motion in space. In the following we will term these laws as temporal laws. 

These laws are stated as follows: 

 First temporal law: In an inertial reference frame, unless acted upon by a force, the 

time of an object either does not flow or flows at a constant rate. This is a 

generalisation of Newtonian concept of time, which is considered to be universal and 

flowing at a constant rate independent of the state of motion of the particle.  

 Second temporal law: 

 

 
   

   
                                                                                                                                       

 



The constant   is a dimensional constant which plays the role of the inertial mass   

of the particle in space. We can choose a unit for D so that the force F in Equation 

(31) remains a force. This law is used to determine the temporal trajectory of the 

particle in the time manifold with respect to space. 

 Third temporal law: for every action, there is an equal and opposite reaction. 

With the view that time is a 3-dimensional manifold, it follows that time flow is a complex 

description with regards to a physical process. Time is not simply specified as past, present 

and future, but also dependent on its direction of flow. Only when the direction of flow of 

time can be specified then the state and the dynamics of a particle can be determined 

completely. For example, if time is a 3-dimensional continuum whose topology is Euclidean 

   then the time of a particle with a temporal distance of unit length from the origin of a 

reference system is a temporal sphere of unit radius. The 3-dimensional temporal manifold 

can be reduced to 1-dimensional continuum by considering the 3-dimensional temporal 

manifold as a compactified manifold of the form     , where    is a 2-dimensional 

compact manifold whose size is much smaller than any length. However, in the following we 

will only consider forces that act along a radial spatial direction, such as the force of gravity 

and Coulomb force, therefore even though we can assume time as a 3-dimensional continuum 

whose topology is Euclidean   , we will also only consider the dynamics of a particle along 

its radial time. In this case time is effectively a 1-dimensional continuum. Therefore, in the 

following, otherwise stated, we will assume       and      .  

4. A temporal special relativity 

Consider two 1-dimensional inertial reference systems   and    with coordinates       and 

       . We will extend the 1-dimensional temporal continuum to a 3-dimensional continuum 

with coordinates              and    
    

    
     , where     ,   

     and other temporal 

coordinates can be set to be constant.  

Now consider a particle which is located at the origin of the reference system    in both space 

and time. In this work we assume that any flow of time must be associated with a spatial 

motion, therefore, if the particle remains at the origin then there will be no flow of time. The 

particle then starts to move and consequently the time of the particle starts to flow. The rate 

of flow of time will depend on the rate of displacement of the particle in space. This time is 

denoted by   . The displacement of the particle at time    is denoted by   . If the system    is 

not moving relative to the system   then we have the following coordinate transformation 

     
                

                
                                                                                                    

If the system    moves relative to the system   along the   -axis with a constant temporal 

velocity   , where, in general, a temporal velocity is defined as         , with   is the 

temporal vector, and if the system    is not moving relative to the system   spatially, then the 

extra time that has passed is    
 , and the transformation of the coordinates of the particle in 

the two systems is the Galilean-like transformation 

     
     

       
       

                                                                             



However, if we assume that time-flow must be associated with motion in space, then the 

transformation given in Equation (33) cannot be applied. In this case we need to use a more 

general transformation that specifies the motion of the system    with respect to the system  . 

As in the case of Einstein’s theory of special relativity, if we assume that there must be a 

maximal universal temporal speed,         , then a transformation similar to Lorentz 

transformation can be formulated as follows 

       
     

        
       

             
   

                                        

An expression for the quantity   can be found if we assume the invariance of space-time 

intervals 

    
       

         
      

                                                                                                         

Using Equations (34) and (35) we obtain 

    
       

            
   

       
         

   
      

                                            

The quantity   is deduced from Equation (36) as 

  
 

     
   

  
                                                                                                                                  

From Equations (34), for infinitesimal changes, the formulas for the length contraction and 

the time dilation are derived as  

   

   
 
 

 

   
  

 

  
 

                                                                                                                                       

  

   
 

 

   
  

 

  
 

                                                                                                                                        

For two events that are infinite close to each other, the invariant infinitesimal interval    can 

be defined as 

      
        

     
     

                                                                                                    

5. A temporal general relativity 

A general temporal relativity can be developed from the special temporal relativity 

formulated in Section 4. Consider two inertial reference systems   and    with coordinates 

with coordinates              and    
    

    
     . We assume that the field equations of the 

temporal general relativity take the same form as that of Einstein’s field equations, except for 

the roles of space and time are reversed, as follows [6] 



    
 

 
                                                                                                                             

where     is the temporal energy-momentum tensor,     is the temporal metric tensor,     is 

the temporal Ricci curvature tensor,   is the temporal scalar curvature,   is the temporal 

cosmological constant. For our discussions in this work, we assume a centrally symmetric 

field, and in this case the space-time metric can be written as 

        
                                                                                                    

Denoting the coordinates             by                 , the metric tensor     of this 

line element is  

     

     
      
      
           

                                                                                               

In terms of the metric     given in Equation (43), the non-zero components of the connection 

   
  

 

 
                                                                                                                     

 are found as 

   
  

 

 

  

  
        

  
    

 

  

  
        

  
 

 

  

  
        

  
 

 

  

  
                                                             

   
  

    

 

  

  
       

  
 

 

  

  
       

  
 

 
       

  
 

 
       

                                                           

   
              

                    
                                                                           

With the line element in Equation (42), and    , the vacuum solutions satisfy the 

following system of equations 

  

  
 

 

 
 

  

 
                                                                                                                                             

  

  
 

 

 
 

  

 
                                                                                                                                             

  

  
                                                                                                                                                                

 
   

   
  

  

  
 
 

 
 

 
 
  

  
 

  

  
  

  

  

  

  
       

   

   
  

  

  
 
 

 
  

  

  

  
                   

These equations are not independent, since it can be verified that the last equation follows 

from the first three equations. Furthermore, the first two equations result in       



       , which leads to      , due to the possibility of an arbitrary transformation of 

the spatial coordinate. The system of equations (46) admits a temporal line element, which 

has the form of the Schwarzschild line element 

       
 

 
   

        
 

 
 
  

                                                                  

The temporal field given by Equation (47) has a singularity at the time    . However, 

whether it has a singular spherical surface at     depends on the sign of  . For the case of 

a quantum particle that is emitted from a quantum system, as discussed in the introduction, 

we take    . This line element yields the temporal potential 

     
 

 
                                                                                                                                                    

If we define a temporal force      by the relation            , then we have 

     
 

  
                                                                                                                                                   

Since    , the force given in Equation (49) is a repulsive force. However, if the constant of 

integration   take negative values,    , then besides the singularity at    , we also have 

a singular spherical surface at    . This can be considered as a temporal black hole.  

In the following we will extend our discussion for a non-zero energy-momentum tensor of the 

form  

  
  

 

 
 
 
 
 

  

 

    

  
   

  
  

 

    

  
  

  
   

  

    

 
 

   
   

  

    

  

 
 
 
 

                                                                                                                               

where the constants α and β will be needed to be specified. It can be verified that the energy-

momentum tensor given in Equation (50) satisfies the conservation law 

    
  

 

   

   
    

   
 

 

 

    

   
                                                                                             

With the energy-momentum tensor given in Equation (50) together with the metric tensor 

(43), the field equations of the temporal general relativity are reduced to the following system 

of equations 

    
  

  
 

 

 
  

 

 
    

    

 
                                                                                                                 



    
  

  
 

 

 
  

 

 
    

    

 
                                                                                                                

  

  
                                                                                                                                                                

     
   

   
  

  

  
 
 

 
 

 
 
  

  
 

  

  
  

  

  

  

  
      

   

   
  

  

  
 
 

 
  

  

  

  
 

   
    

 
                                                                                                                                                 

The system of equations given in Equation (52) when integrated gives the following line 

element 

        
    

 
 

 

 
   

         
    

 
 

 

 
 

  

                             

The line element given in Equation (53) yields a mixed potential of the form 

       
    

 
 

 

 
                                                                                                                              

The constants α, β and the constant of integration Q need to be specified with known physical 

quantities. From Equation (54) we obtain the following equations by differentiation 

  

  
       

 

 
 

 

  
  

 

  
                                                                                                                    

   

   
        

  

 
 

  

  
 

 

  
  

  

  
                                                                                                

The corresponding temporal force defined by the relation             is   

            
 

 
 

 

  
  

 

  
                                                                                                             

The force of interaction given by Equation (57) can be attractive or repulsive depending on 

the time of interaction. In particular, we can assume        at         and with this 

assumption, from Equation (57), we obtain the relation  

     
  

 
                                                                                                                                         

Assume     then we have       . The mixed potential in Equation (54) now takes the 

form 

      
  

 

  
 
 

 
 

 

 
                                                                                                                             



and the force of interaction becomes 

      
  

 
  

 
  

 

  
 

 

  
  

 

  
                                                                                                        

In order to investigate further we need to know the nature of the stationary point at    . 

The second derivative of       at     is given by 

   

   
  

 

   
                                                                                                                                            

Depending on the signs of Q we have two different cases. In the case when     we have 

         , therefore V(t) has a minimum at    . Since            , the force is 

repulsive for     and attractive for    . In the following, we will focus on the case when 

   . In this case          , therefore V(t) has a maximum at    . Since      

      , the force is attractive for     and repulsive for    . At    , we expect 

        , where   is the Planck’s constant, the mixed potential becomes 

      
  

 

  
 
 

 
 

 

 
                                                                                                                              

The corresponding temporal force is found as 

      
  

 
  

 
  

 

  
 

 

  
  

 

  
                                                                                                           

With the temporal force given by Equation (63), instead of Equation (13), we have the 

following equation 

     
  

 
  

 
  

 

  
 

 

  
  

 

  
                                                                                                            

Also assuming        and using Newton’s second law         , we obtain 

  
  

  
    

 

 
  

 
  

 

  
 

 

  
  

 

  
                                                                                                   

If we also consider the condition that at the initial time     , the velocity of the particle is 

     , then solutions to Equation (65) are found as 

   

 
 

   
 

 
   

 

 
 

 

 
  

 

 
 
   

 
 

 
 

 

 
                                                                                           

From Equation (66) it is seen that when    , we have          
     

 
   . This 

amount of energy that is transferred to an elementary particle from a quantum system is equal 

to the energy of the ground level of the harmonic oscillator.  



It is also interesting to note that, as in the case of Einstein’s general theory of relativity, the 

temporal general relativity may be formulated as a quantum theory by applying various 

quantisation methods used in quantum gravity [8-9]. In particular, if the field equations of the 

temporal general relativity     
 

 
               are derived through the principle of 

least action     , where the action   is defined as     
 

  
                 

[11], and if the energy-momentum tensor is defined by the relation             , then for 

the case when    , because we have the identity     
 

 
    , the resulting field 

equations of the temporal general relativity are satisfied by any metric tensor    . This result 

can be seen as a verification of Feynman’s postulate in the path integral formulation of 

quantum mechanics [7,12]. 
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