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Abstract 
Exactly solvable rational extensions of the harmonic oscillator have been 

constructed as supersymmetric partner potentials of the harmonic 
oscillator [1] as well as using the so-called prepotential approach [2]. In 
this work, we use the factorization property of the energy eigenfunctions 

of the harmonic oscillator and a simple integrability condition to construct 
and examine series of regular and singular rational extensions of the 
harmonic oscillator with two known eigenstates, one of which is the 

ground state. Special emphasis is given to the interrelation between the 
special zeros of the wave function, the poles of the potential, and the 

excitation of the non-ground state. In the last section, we analyze specific 
examples.
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Dimensionless units 
In order to make the quantities that interest us dimensionless, we introduce the 

dimensionless variable xx
l

≡% , where x  is the position and l  is a positive real 

constant with dimensions of length, which later can be related to the length scale of 
the examined particle. 
Then, the wave function ( )xψ  of the particle and the potential ( )V x  become 

functions of x% , i.e. ( ) ( )x xψ ψ→ %  and ( ) ( )V x V x→ % . 
Also, we have 

1d dx d d
dx dx dx l dx

= =
%

% %
 

2 2

2 2 2

1 1 1d d d d d d
dx dx dx l dx l dx l dx

= = =
% % %

 

Thus 
2 2

2 2 2

1d d
dx l dx

=
%

 

Then, the second derivatives of the wave function with respect to x  and x%  are related 
by the equation 

( ) ( )2 2

2 2 2

1d x d x
dx l dx
ψ ψ

=
%

%
 

The energy eigenvalue equation of the particle in the potential ( )V x , i.e. the equation 

( ) ( )( ) ( )
2

2 2

2 0
d x m E V x x

dx
ψ

ψ+ − =
h

 

is then written as 

( ) ( )( ) ( ) ( ) ( )( ) ( )
2 2

2 2 2 2

1 2 20 0
d x m mlE V x x x E V x x

l dx
ψ

ψ ψ ψ′′+ − = ⇒ + − = ⇒
%

% % % % %
% h h

( ) ( ) ( )
22

2 2

22 0
ml V xml Ex xψ ψ

 ′′⇒ + − = 
 

%
% %

h h
 (1) 

where the primes now denote differentiation with respect to x% . 
We observe that 

}

2

22 2

2 2 2 2

2 1
pE
mml mx m

p x p E

=

       = = =            h
 

The quantity 
2

22ml
h  has then dimensions of energy and we use it to make the energy 

and the potential dimensionless. 
To this end, we set 
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2

2

2ml EE ≡%

h
 (2) 

( ) ( )2

2

2ml V x
V x ≡

%
% %

h
 (3) 

The quantities E%  and ( )V x% %  are then dimensionless. 

For convenience, we’ll call the dimensionless variables x% , E% , and ( )V x% % , 
dimensionless position, dimensionless energy, and dimensionless potential, 
respectively. 
Substituting (2) and (3) into (1), we obtain 

( ) ( )( ) ( ) 0x E V x xψ ψ′′ + − =% %% % %  (4) 

This is the energy eigenvalue equation in terms of the dimensionless position, energy, 
and potential. 
In what follows, we’ll work with the dimensionless position, energy, and potential, 
but for simplicity and convenience, we’ll keep denoting them by x , E , and ( )V x . 

General analysis 
It is known that [3], leaving aside the normalization constants, the energy 
eigenfunctions of the harmonic oscillator are products of its ground-state wave 
function and the respective Hermite polynomials, i.e. ( ) ( ) ( )0n nx H x xψ ψ∼ , where 

( )0 xψ  and ( )n xψ  are, respectively, the ground-state and the n -th excited-state wave 

functions, and ( )nH x  is the respective Hermite polynomial. 

Using this property as our starting point, we’ll search for real potentials ( )V x  having 

a bound eigenstate of energy 1E , which is described by a wave function ( )1 xψ , and a 
bound eigenstate of energy 2 1E E≠ , which is described by a wave function of the 
form 

( ) ( ) ( )2 2 1x A p x xψ ψ=  (5) 

where 2A  is the normalization constant of the wave function ( )2 xψ . 

For the moment, we’ll assume that ( )p x  is a general, appropriate function, and later 
we’ll restrict our attention to polynomials of definite parity. 
Since both wave functions describe bound energy eigenstates, they must both be 
square integrable. 
The wave functions ( )1 xψ  and ( )2 xψ  satisfy, respectively, the energy eigenvalue 
equations 

( ) ( )( ) ( )1 1 1 0x E V x xψ ψ′′ + − =  (6) 

( ) ( )( ) ( )2 2 2 0x E V x xψ ψ′′ + − =  (7) 

Using (5), the first derivative of ( )2 xψ  is 
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( ) ( ) ( ) ( ) ( )2 1 1x p x x p x xψ ψ ψ′ ′′= +  

Then, the second derivative of ( )2 xψ  is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 1x p x x p x x p x x p x xψ ψ ψ ψ ψ′′ ′ ′ ′′′′ ′ ′= + + + =

( ) ( ) ( ) ( ) ( ) ( )1 1 12p x x p x x p x xψ ψ ψ′ ′′′′ ′= + +  

That is 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 12x p x x p x x p x xψ ψ ψ ψ′′ ′ ′′′′ ′= + +  (8) 

Besides, from (6) we obtain 

( ) ( )( ) ( )1 1 1x V x E xψ ψ′′ = −  

Substituting the expression of ( )1 xψ ′′  into (8), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 1 1 1 12x p x x p x x p x V x E xψ ψ ψ ψ′′ ′′′ ′= + + − =

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 12 p x x V x E p x p x xψ ψ′′ ′′= + − +  

That is 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 1 1 12x p x x V x E p x p x xψ ψ ψ′′ ′′ ′′= + − +  (9) 

The equations (5) and (9) give us ( )2 xψ  and its second derivative in terms of ( )1 xψ , 

( )p x , and their derivatives. Observe that the second derivative of ( )2 xψ  contain 

only the first derivative of ( )1 xψ , not the second. 

Then, substituting (5) and (9) into the energy eigenvalue equation for ( )2 xψ  (eq. (7)), 

we obtain a first-order, linear – and homogeneous – differential equation for ( )1 xψ . 
We have 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 2 12 0p x x V x E p x p x x E V x p x xψ ψ ψ′′ ′′+ − + + − = ⇒

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )1 1 2 12 0p x x V x E p x p x E V x p x xψ ψ′′ ′′⇒ + − + + − = ⇒

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 2 12 0p x x V x E E V x p x p x xψ ψ′′ ′′⇒ + − + − + = ⇒

( ) ( ) ( ) ( ) ( )( ) ( )1 2 1 12 0p x x E E p x p x xψ ψ′′ ′′⇒ + − + = ⇒

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

1 2 1 1 2 1

1 1

0
2 2

x E E p x p x x E E p x p x
x p x x p x

ψ ψ
ψ ψ

′ ′′′ ′′− + − +
⇒ + = ⇒ = − =

′ ′

( )
( )

( )
( )

2 1 1
2 2

p x p xE E
p x p x

′′−
= − −

′ ′
 

That is 
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( )
( )

( )
( )

( )
( )

1 2 1

1

1
2 2

x p x p xE E
x p x p x

ψ
ψ

′ ′′−
= − −

′ ′
 (10) 

Since the two energy eigenstates are bound, each of the wave functions ( )1 xψ  and 

( )2 xψ  is [3] the product of a real-valued function and a constant complex phase that 
can be incorporated into the respective normalization constant. 
Thus, the function ( )p x  can be assumed a real-valued function. 
Also, omitting for the moment the normalization constants, we can assume that the 
two wave functions are also real-valued. 
Then 

( )
( ) ( )( )1ln

p x
p x C

p x
′′ ′′= +
′

 (11) 

and 

( )
( ) ( )( )1

1 2
1

ln
x

x C
x

ψ
ψ

ψ

′ ′= +  (12) 

with 1 2,C C  being real constants. 
By means of (11) and (12), (10) is written as 

( )( ) ( )
( ) ( )( )2 1

1 2 1
1ln ln

2 2
p xE Ex C p x C
p x

ψ −′ ′′+ = − − + ⇒
′

( ) ( )
( ) ( )( )2 1

1 2 1
1ln ln

2 2x

p yE Ex C dy p x C
p y

ψ − ′⇒ + = − − + ⇒
′∫

( ) ( )
( ) ( )2 1 1

1 2
1ln ln

2 2 2x

p yE E Cx dy p x C
p y

ψ − ′⇒ = − − − − ⇒
′∫

( ) ( )
( ) ( ) 1 22 1 1

1 2ln ln
2 2x

p yE E Cx dy p x C
p y

ψ
−− ′⇒ = − + − −

′∫  

Setting 1
22

CC C≡ − −  a new real constant, the previous equation is written as 

( ) ( )
( ) ( ) 1 22 1

1ln ln
2 x

p yE Ex dy p x C
p y

ψ
−− ′= − + +

′∫  (13) 

We can also incorporate into C  the constant of the integral ( )
( )x

p y
dy

p y′∫ , and thus we 

do the integration without adding a constant. 
From (13) we obtain 
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( ) ( )
( ) ( ) 1 22 1

1 exp ln
2 x

p yE Ex dy p x C
p y

ψ
− − ′= − + + =  ′ 

∫

( )
( ) ( )( ) ( )1 22 1exp exp ln exp

2 x

p yE E dy p x C
p y

− − ′= − =  ′ 
∫

( ) ( )
( ) ( ) 1 22 1exp exp

2 x

p yE EC dy p x
p y

− − ′= −  ′ 
∫  

Setting ( )1 expA C≡ , we obtain 

( ) ( ) ( )
( )

1 2 2 1
1 1 exp

2 x

p yE Ex A p x dy
p y

ψ
−  −′= −  ′ 

∫  

or 

( ) ( ) ( )
( )

1 2 2 1
1 1 exp

2 x

p yE Ex A p x dy
p y

ψ
−  −′= ± −  ′ 

∫  

Now, incorporating into ( )1 xψ  the normalization constant, which includes the 
complex phase, the constant 1A  becomes a complex constant. 
Since the plus and minus wave functions are linearly dependent, we choose one of 
them, and thus, choosing the one with the plus sign, we end up to 

( ) ( ) ( )
( )

1 2 2 1
1 1 exp

2 x

p yE Ex A p x dy
p y

ψ
−  −′= −  ′ 

∫  (14) 

where 1A  is a complex constant. 
If the function ( )p x  has definite parity, i.e. if it is an even or an odd function, then 

( )p x′  has also definite parity, but different from ( )p x , and thus ( )
( )

p y
p y′

 is always of 

odd parity. Then the function ( )
( )x

p y
dy

p y′∫  is of even parity, as the indefinite integral of 

an odd-parity function. Thus, the exponential ( )
( )

2 1exp
2 x

p yE E dy
p y

 −
−  ′ 

∫  is also an 

even-parity function. Besides, since ( )p x′  has definite parity, its absolute value 

( )p x′  is of even parity, and thus the function ( ) 1 2
p x

−
′  is also of even parity. Thus, 

the product of ( ) 1 2
p x

−
′  and ( )

( )
2 1exp

2 x

p yE E dy
p y

 −
−  ′ 

∫  is an even-parity function, 

i.e. the wave function ( )1 xψ  is of even-parity. 

Then, since ( )1 xψ  is of even-parity, from (5) we see that ( )2 xψ  is of even/odd parity 

if and only if ( )p x  is of even/odd parity, i.e. ( )2 xψ  has the same parity as ( )p x . 
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Therefore, if ( )p x  has definite parity, ( )1 xψ  is of even-parity and ( )2 xψ  has the 

same parity as ( )p x . 

Symmetric potentials 
We’ll consider symmetric potentials, i.e. potentials of even parity. Then, the energy 
eigenfunctions have definite parity [3], and thus ( )1 xψ  and ( )2 xψ  have definite 
parity. 
Since ( )1 xψ  and ( )2 xψ  have definite parity, and (5) is written as 

( ) ( )
( )

2

2 1

x
p x

A x
ψ

ψ
= , 

we conclude that ( )p x  has definite parity, and then, as we showed, ( )1 xψ  is of even-

parity and ( )2 xψ  has the same parity as ( )p x . 

Therefore, ( )1 xψ  has the same parity as the potential, it has the symmetry of the 
potential. 
Also, from (5), we see that if ( )1 xψ  has zeros, these are also zeros of ( )2 xψ , i.e. the 

zeros of ( )1 xψ  are common zeros of the two wave functions, and in this sense, they 
are special zeros, which are expected to result from the singularities of the potential. 
Thus, the wave function ( )1 xψ  has the symmetry of the potential, i.e. it is of even 
parity, and it can have only special – or common – zeros resulting from any 
singularitites of the potential. This means that ( )1 xψ  is the ground-state wave 
function. 
Then, ( )2 xψ  is an excited-state wave function, and thus 2 1E E> . 

Since ( )2 xψ  is an excited-state wave function, it must have at least one simple zero 

[4], which, as seen from (5), is also a zero of ( )p x . 

If ( )p x  has r  simple zeros, with 1, 2,...r = , then ( )2 xψ  is the r -th excited-state 
wave function [4]. 
We remind that the two wave functions must be square integrable, and also, since the 
probability density must be finite everywhere, the two wave functions must be finite 
for every x . 

The expression of the potential 
Since the potential we consider is symmetric, i.e. ( ) ( )V x V x− = , it is enough to 
calculate it in the domain 0x ≥  only. 
In the region(s) of the domain 0x ≥  where the derivative ( )p x′  is negative, i.e. 

( ) 0p x′ < , (14) is written as 

( ) ( )( ) ( )
( )

1 2 2 1
1 1 exp

2 x

p yE Ex A p x dy
p y

ψ
−  −′= − −  ′ 

∫  (15) 
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Using (15), the first derivative of ( )1 xψ  is 

( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
1 1

1 exp
2 2 x

p yE Ex A p x p x dy
p y

ψ
−  −′ ′ ′′= − − − − +  ′ 

∫

( )( ) ( )
( )

( )
( )

1 2 2 1 2 1
1 exp

2 2 x

p x p yE E E EA p x dy
p x p y

−    − −′+ − − − =      ′ ′   
∫

( )( ) ( ) ( )
( )

3 2 2 1
1

1 exp
2 2 x

p yE EA p x p x dy
p y

−  −′ ′′= − − +  ′ 
∫

( )( ) ( ) ( )
( )( )

( )
( )

1 2 2 1
1 2 1

1 exp
2 2 x

p x p yE EA p x E E dy
p yp x

−    −′+ − − − =      ′′−   
∫

( )( ) ( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 3 2 2 1
2 1 1

1 exp
2 2 x

p yE Ep x p x E E p x p x A dy
p y

− −  −′ ′′ ′= − + − − − =  ′ 
∫

( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
2 1 1

1 exp
2 2 x

p yE Ep x E E p x p x A dy
p y

−  −′′ ′= + − − −  ′ 
∫  

That is 

( ) ( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
1 2 1 1

1 exp
2 2 x

p yE Ex p x E E p x p x A dy
p y

ψ
−  −′ ′′ ′= + − − −  ′ 

∫  (16) 

Using (16), the second derivative of ( )1 xψ  is 

( ) ( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
1 2 1 1

1 exp
2 2 x

p yE Ex p x E E p x p x A dy
p y

ψ
−  −′′ ′′′ ′ ′= + − − − +  ′ 

∫

( ) ( ) ( )( ) ( )( ) ( )( ) ( )
( )

5 2 2 1
2 1 1

1 3 exp
2 2 2 x

p yE Ep x E E p x p x p x A dy
p y

−  − ′′ ′ ′′+ + − − − − − +    ′   
∫

( ) ( ) ( )( ) ( )( ) ( )
( )

( )
( )

3 2 2 1 2 1
2 1 1

1 exp
2 2 2 x

p x p yE E E Ep x E E p x p x A dy
p x p y

−    − −′′ ′+ + − − − − =      ′ ′   
∫

( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
2 1 1

1 exp
2 2 x

p yE Ep x E E p x p x A dy
p y

−  −′′′ ′ ′= + − − − +  ′ 
∫

( ) ( ) ( )( ) ( )( ) ( ) ( )
( )

5 2 2 1
2 1 1

3 exp
4 2 x

p yE Ep x E E p x p x p x A dy
p y

−  −′′ ′ ′′+ + − − − +  ′ 
∫

( ) ( ) ( )( ) ( )( ) ( )
( )( )

( )
( )

3 2 2 1 2 1
2 1 1

1 exp
2 2 2 x

p x p yE E E Ep x E E p x p x A dy
p yp x

−    − −′′ ′+ + − − − =      ′′−   
∫

( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
2 1 1

1 exp
2 2 x

p yE Ep x E E p x p x A dy
p y

−  −′′′ ′ ′= + − − − +  ′ 
∫
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( ) ( ) ( )( ) ( )( ) ( ) ( )
( )

5 2 2 1
2 1 1

3 exp
4 2 x

p yE Ep x E E p x p x p x A dy
p y

−  −′′ ′ ′′+ + − − − +  ′ 
∫

( ) ( ) ( )( ) ( )( ) ( ) ( )
( )

5 22 1 2 1
2 1 1 exp

4 2 x

p yE E E Ep x E E p x p x p x A dy
p y

−  − −′′ ′+ + − − −  ′ 
∫  

Besides, from (15) we have 

( )
( ) ( )( ) ( )1 22 1

1 1exp
2 x

p yE EA dy p x x
p y

ψ
 − ′− = −  ′ 

∫  

Substituting into the expression of the second derivative, we obtain 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )3 2 1 2
1 2 1 1

1
2

x p x E E p x p x p x xψ ψ
−′′ ′′′ ′ ′ ′= + − − − +

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )5 2 1 2
2 1 1

3
4

p x E E p x p x p x p x xψ
−

′′ ′ ′′ ′+ + − − − +

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )5 2 1 22 1
2 1 14

E E p x E E p x p x p x p x xψ
−− ′′ ′ ′+ + − − − =

( ) ( ) ( )( ) ( )( ) ( )1
2 1 1

1
2

p x E E p x p x xψ
−

′′′ ′ ′= + − − +

( ) ( ) ( )( ) ( )( ) ( ) ( )2
2 1 1

3
4

p x E E p x p x p x xψ
−

′′ ′ ′′+ + − − +

( ) ( ) ( )( ) ( )( ) ( ) ( )22 1
2 1 14

E E p x E E p x p x p x xψ
−− ′′ ′+ + − −  

Thus 

( )
( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( )( )

( )
2

1 21
2 1 2 1

1

1 3
2 4

p x

x
p x E E p x p x p x E E p x p x p x

x
ψ
ψ

−

− −

′

′′
′′′ ′ ′ ′′ ′ ′′= + − − + + − − +

14243

( ) ( ) ( )( ) ( )( )
( )( )

( )
2

22 1
2 14

p x

E E p x E E p x p x p x
−

−

′

− ′′ ′+ + − − =
14243

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2

2 1 2 1 2

1 3
2 4

p x p x p x p x
E E E E

p x p x p x

    ′′′ ′′ ′′
 = − − − + + − +      ′ ′ ′     

( ) ( )
( ) ( ) ( )

( )
( )
( )

( )
( )

2 2

2 1 2 1
2 12

3
4 2 2 4

p x p x p x p x p xE E E EE E
p x p x p x p x

    ′′ ′′′ ′′− − + + − = − − + +      ′ ′ ′ ′     

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

22
2 1 2 12 1

2 2

3
4 4 4

E E p x p x p x p x E E p xE E
p x p x p x

 ′′ ′′− −−
+ + + =  ′ ′ ′ 

( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

2 22
2 1 2 12 1

2

3
2 2 4 4
p x p x E E p x p x E E p xE E
p x p x p x p x

   ′′′ ′′ ′′− −−
= − − + + +      ′ ′ ′ ′   

 

Thus 
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( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

2 22
1 2 12 1 2 1

2
1

3  (17)
2 4 2 2

x p x p x p x E E p x p xE E E E
x p x p x p x p x

ψ
ψ

′′    ′′ ′′′ ′′−− − = + − + −        ′ ′ ′ ′     
 

Besides, from (6), i.e. from the energy eigenvalue equation for ( )1 xψ , we obtain 

( )
( ) ( ) ( ) ( )

( )
1 1

1 1
1 1

0
x x

E V x V x E
x x

ψ ψ
ψ ψ

′′ ′′
+ − = ⇒ = +  

Substituting ( )
( )

1

1

x
x

ψ
ψ

′′
 from (17), the potential is then written as 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

2 22
2 12 1 2 1

12

3  (18)
2 4 2 2

p x p x p x E E p x p xE E E EV x E
p x p x p x p x

   ′′ ′′′ ′′−− − = + − + + −        ′ ′ ′ ′     
 

To determine the potential uniquely, we need its value at a reference point. The 
reference value of the potential may well be a limiting value at infinity. 
Using the reference value, we determine the potential uniquely and also, we obtain an 
equation for the two energies 1E  and 2E . 
In the region(s) of the domain 0x ≥  where the derivative ( )p x′  is positive, i.e. 

( ) 0p x′ > , (14) is written as 

( ) ( )( ) ( )
( )

1 2 2 1
1 1 exp

2 x

p yE Ex A p x dy
p y

ψ
−  −′= −  ′ 

∫  (19) 

Using (19), the first derivative of ( )1 xψ  is 

( ) ( )( ) ( ) ( )
( )

3 2 2 1
1 1

1 exp
2 2 x

p yE Ex A p x p x dy
p y

ψ
−  −′ ′ ′′= − − +  ′ 

∫

( )( ) ( )
( )

( )
( )

1 2 2 1 2 1
1 exp

2 2 x

p x p yE E E EA p x dy
p x p y

−    − −′+ − − =      ′ ′   
∫

( ) ( )( ) ( ) ( ) ( )( )( ) ( )
( )

3 2 3 2 2 1
2 1 1

1 exp
2 2 x

p yE Ep x p x E E p x p x A dy
p y

− −  −′′ ′ ′= − + − −  ′ 
∫  

Thus 

( ) ( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
1 2 1 1

1 exp
2 2 x

p yE Ex p x E E p x p x A dy
p y

ψ
−  −′ ′′ ′= − + − −  ′ 

∫  (20) 

Using (20), the second derivative of ( )1 xψ  is 
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( ) ( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
1 2 1 1

1 exp
2 2 x

p yE Ex p x E E p x p x A dy
p y

ψ
−  −′′ ′′′ ′ ′= − + − − −  ′ 

∫

( ) ( ) ( )( ) ( )( ) ( ) ( )
( )

5 2 2 1
2 1 1

1 3 exp
2 2 2 x

p yE Ep x E E p x p x p x A dy
p y

−  − ′′ ′ ′′− + − − − −    ′   
∫

( ) ( ) ( )( ) ( )( ) ( )
( )

( )
( )

3 2 2 1 2 1
2 1 1

1 exp
2 2 2 x

p x p yE E E Ep x E E p x p x A dy
p x p y

−    − −′′ ′− + − − − =      ′ ′   
∫

( ) ( ) ( )( ) ( )( ) ( )
( )

3 2 2 1
2 1 1

1 exp
2 2 x

p yE Ep x E E p x p x A dy
p y

−  −′′′ ′ ′= − + − − +  ′ 
∫

( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

5 2 2 1
2 1 1

3 exp
4 2 x

p yE Ep x E E p x p x p x A dy
p y

−  −′′ ′′ ′+ + − − +  ′ 
∫

( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

5 22 1 2 1
2 1 1 exp

4 2 x

p yE E E Ep x E E p x p x p x A dy
p y

−  − −′′ ′+ + − −  ′ 
∫  

Besides, from (19) we have 

( )
( ) ( )( ) ( )1 22 1

1 1exp
2 x

p yE EA dy p x x
p y

ψ
 − ′− =  ′ 

∫  

Substituting into the expression of the second derivative, we obtain 

( ) ( ) ( ) ( )( ) ( )( ) ( )1
1 2 1 1

1
2

x p x E E p x p x xψ ψ
−′′ ′′′ ′ ′= − + − +

( ) ( ) ( )( ) ( ) ( )( ) ( )2
2 1 1

3
4

p x E E p x p x p x xψ
−

′′ ′′ ′+ + − +

( ) ( ) ( )( ) ( ) ( )( ) ( )22 1
2 1 14

E E p x E E p x p x p x xψ
−− ′′ ′+ + −  

Thus 

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

1 2 1 2 12 1
2 2

1

33
2 2 4 4 4

x p x p x E E p x p x E E p x p xE E
x p x p x p x p x

ψ
ψ

′′  ′′′ ′′ ′′ ′′− −−
= − − + + + +  ′ ′ ′ ′ 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

2 2 22 2
2 1 2 12 1

2

3
4 2 4 2

E E p x p x p x p x E E p x p xE E
p x p x p x p x p x

     ′′ ′′′ ′′− −− + = + − + −           ′ ′ ′ ′ ′      
2 1

2
E E−

−  

That is 

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

2 22
1 2 12 1 2 1

2
1

3  (21)
2 4 2 2

x p x p x p x E E p x p xE E E E
x p x p x p x p x

ψ
ψ

′′    ′′ ′′′ ′′−− − = + − + −        ′ ′ ′ ′     
 

Comparing (17) and (21), we see that they are the same expressions. 
In the previous case, we saw that, using again (6), the potential is 
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( ) ( )
( )

1
1

1

x
V x E

x
ψ
ψ

′′
= +  

Substituting ( )
( )

1

1

x
x

ψ
ψ

′′
 from (21), the potential is then written as 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

2 22
2 12 1 2 1

12

3
2 4 2 2

p x p x p x E E p x p xE E E EV x E
p x p x p x p x

   ′′ ′′′ ′′−− − = + − + + −        ′ ′ ′ ′     
 
which is the same expression as (18). 
At the zeros of ( )p x′ , i.e. at the points where ( ) 0p x′ = , the wave function ( )1 xψ , 

and then ( )2 xψ  too, is not differentiable. 

However, since the expressions of the potential in the regions where ( )p x′  is 

negative and positive are the same, and assuming that ( )p x′  is continuous, so that the 
wave functions are continuous, which is necessary for the probability density to be 
continuous too, if 0x  is a zero of ( )p x′ , the left-side and right-side limits of the 
potential at 0x  are the same, and we can define the value of the potential at 0x  as the 
value of these two limits. If 0x  is a simple zero of ( )p x′ , then the limits are infinity, 
and thus 0x  is a singular point of the potential. 
Therefore, the simple zeros of ( )p x′  are singular points of the potential. 
To give a summary of what we’ve done so far, the wave functions (14) and (5), 
provided that they are square integrable and finite for every x , describe, respectively, 
the ground state, of energy 1E , and a bound excited state, of energy 2 1E E> , of the 
potential 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

2 22
2 12 1 2 1

12

3  (22)
2 4 2 2

p x p x p x E E p x p xE E E EV x E
p x p x p x p x

   ′′ ′′′ ′′−− − = + − + + −        ′ ′ ′ ′     
 

The potential is uniquely determined if we know its value at a reference point, which 
may well be the infinity. 
In the previous section, we showed that if the potential is symmetric, ( )p x  has 
definite parity. 
Using (22), it is easily shown the opposite, i.e. if ( )p x  has definite parity, then the 
potential is symmetric. 
Indeed, if ( )p x  has definite parity, then ( )p x′  has opposite parity from ( )p x , and 

thus ( )
( )

p x
p x′

 is of odd parity, and then ( )
( )

2
p x
p x

 
  ′ 

 is of even parity. 
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Also, ( )p x′′  has the same parity as ( )p x , and thus has opposite parity from ( )p x′ , 

and then ( )
( )

p x
p x
′′
′

 is of odd parity, and thus ( )
( )

2
p x
p x

 ′′
  ′ 

 is of even parity. 

Also, ( )p x′′  has opposite parity from both ( )p x′  and ( )p x′′′ , and thus ( )p x′  and 

( )p x′′′  have the same parity, and then ( )
( )

p x
p x
′′′
′

 is of even parity. 

Also, since ( )
( )

p x
p x′

 and ( )
( )

p x
p x
′′
′

 are both of odd parity, ( ) ( )
( )2

p x p x
p x

′′
′

 is of even parity. 

The constant 2 1
1 2

E EE −
− , as any constant, is an even-parity function. 

Therefore, using (22), the potential, as a sum of even-parity functions, is of even 
parity (symmetric). 

The case where the function p(x) is a definite-parity polynomial 
We’ll now assume that ( )p x  is a polynomial of even or odd parity. 

Since we can always incorporate the leading coefficient of ( )p x  – which by 
definition is non-zero – into the normalization constant 2A  of the wave function 

( )2 xψ , we can assume that ( )p x  is monic, i.e. its leading coefficient is 1. 

In this case, as seen from (22), the singularities of the potential are the zeros of ( )p x′  

– if ( )p x′  has any zeros – and they are poles of second order. 

We’ll examine separately the case where ( )p x  is of odd parity and the case where it 
is of even parity. 

I. p(x) is of odd parity and satisfies an integrability condition 
If ( )p x  is an odd-parity polynomial, it will be of odd degree and it will have the form 

( ) 2 1
2 1

0

n
m

m
m

p x p x +
+

=

= ∑  (23) 

where 2 1 1np + =  and 0,1,...n =  
Since ( )p x  is of odd parity, it has a zero at 0. 

The first derivative of ( )p x  is 

( ) ( ) 2
2 1

0
2 1

n
m

m
m

p x m p x+
=

′ = +∑  (24) 

Using (23) and (24), we have 
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( )
( ) ( ) ( )

2 1 2 2
2 1 2 1 2 1

0 0 0

2 2 2
2 1 2 1 2 1

0 0 0

2 1 2 12 12 1 2 1
2 1 2 1

n n n
m m m

m m m
m m m

n n n
m m m

m m m
m m m

p x x p x p xp x x
m mp x nm p x n p x p x
n n

+
+ + +

= = =

+ + +
= = =

= = = =
+ +′ ++ +
+ +

∑ ∑ ∑

∑ ∑ ∑
2 2 2

2 1 2 1 2 1
0

2
2 1

0

2 1 2 11 1
2 1 2 1

2 12 1
2 1

n
m m m

m m m
m

n
m

m
m

m mp x p x p x
n nx

mn p x
n

+ + +
=

+
=

 + +    + − − −    + +    = =
++
+

∑

∑
2 2

2 1 2 1
0

2
2 1

0

2 1 2 11 1 1
2 1 2 1

2 12 1
2 1

n
m m

m m
m

n
m

m
m

m mp x p x
n nx

mn p x
n

+ +
=

+
=

 + +    + − − −    + +    = =
++
+

∑

∑
2 2

2 1 2 1
0

2
2 1

0

2 1 2 1 1
2 1 2 1

2 12 1
2 1

n
m m

m m
m

n
m

m
m

m mp x p x
n nx

mn p x
n

+ +
=

+
=

 + +  − −  + +  = =
++
+

∑

∑
2 2

2 1 2 1
0 0

2
2 1

0

2 1 2 1 1
2 1 2 1

2 12 1
2 1

n n
m m

m m
m m

n
m

m
m

m mp x p x
x n n

mn p x
n

+ +
= =

+
=

+ + − − + + = =
++
+

∑ ∑

∑
2 22

2 1 2 12 1
0 00

2 2 2
2 1 2 1 2 1

0 0 0

2 1 2 12 1 1 1
2 1 2 12 1 1

2 1 2 1 2 12 1 2 1
2 1 2 1 2 1

n nn
m mm

m mm
m mm

n n n
m m m

m m m
m m m

m mm p x p xp x
x xn nn

m m mn np x p x p x
n n n

+ ++
= ==

+ + +
= = =

 +   + +    − −      + ++       = − = − =
+ + ++ +   

   + + +   

∑ ∑∑

∑ ∑ ∑

( )

( )

( )

2 12 1
2 12 1

00

2 2
2 1 2 1

0 0

2 1 2 12 1 1 2 12 1
2 1 2 12 1 2 1

nn
mm

mm
mm

n n
m m

m m
m m

m nm p xp x nx xn
n nm p x m p x

++
++

==

+ +
= =

+ − + + −    ++   = − = − =
+ ++ +

∑∑

∑ ∑
( )

( )

( )

( ) ( )

2 1 2 1
2 1 2 1

0 0

2 2
2 1 2 1

0 0

2
2

2 1
2 1 2 12 1 2 1 2 1

n n
m m

m m
m m

n n
m m

m m
m m

m n
p x m n p x

x xn
n nm p x n m p x

+ +
+ +

= =

+ +
= =

−
−

+= − = − =
+ ++ + +

∑ ∑

∑ ∑

( )

( ) ( )

2 1
2 1

0

2
2 1

0

2

2 1 2 1 2 1

n
m

m
m

n
m

m
m

n m p x
x

n n m p x

+
+

=

+
=

−
= +

+ + +

∑

∑
 

That is 
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( )
( )

( )

( ) ( )

2 1
2 1

0

2
2 1

0

2

2 1 2 1 2 1

n
m

m
m

n
m

m
m

n m p xp x x
p x n n m p x

+
+

=

+
=

−
= +

′ + + +

∑

∑
 

Since the coefficient ( ) 2 12 mn m p +−  vanishes for m n= , 

( ) ( )
1

2 1 2 1
2 1 2 1

0 0
2 2

n n
m m

m m
m m

n m p x n m p x
−

+ +
+ +

= =

− = −∑ ∑ , 

and thus 

( )
( )

( )

( ) ( )

1
2 1

2 1
0

2
2 1

0

2

2 1 2 1 2 1

n
m

m
m

n
m

m
m

n m p xp x x
p x n n m p x

−
+

+
=

+
=

−
= +

′ + + +

∑

∑
 (25) 

where 1, 2,...n =  

If 0n = , then ( ) 2 1
2 1

0
2 0

n
m

m
m

n m p x +
+

=

− =∑ , and ( )
( ) 2*0 1

p x x x
p x

= =
′ +

, as expected since 

then ( )p x x= . 

In this case, where ( )p x x=  and thus ( ) 1p x′ = , we obtain the wave functions of the 
ground-state and of the first excited state, and the respective energies, of a harmonic 
oscillator. Thus, this case can be considered as trivial. 

In (25), we observe that the numerator ( )
1

2 1
2 1

0
2

n
m

m
m

n m p x
−

+
+

=

−∑ is of degree 2 1n − , 

while the denominator ( ) 2
2 1

0
2 1

n
m

m
m

m p x+
=

+∑  is of degree 2n , and thus, at long 

distances, i.e. for x → ∞ , the fraction 
( )

( ) ( )

1
2 1

2 1
0

2
2 1

0

2

2 1 2 1

n
m

m
m

n
m

m
m

n m p x

n m p x

−
+

+
=

+
=

−

+ +

∑

∑
 goes to zero, and 

then ( )
( ) 2 1

p x x
p x n′ +

; . Then, the integration of 
2 1

x
n +

 gives 
( )

2

2 2 1
x
n +

, which appear in 

the exponential factor ( )
( )

2 1exp
2 x

p yE E dy
p y

 −
−  ′ 

∫ , and thus, in order for the wave 

functions to be square integrable, the factor 2 1

2
E E−

−  must be negative, which means 

that 2 1E E> . 

As noted, in the fraction 
( )

( )

1
2 1

2 1
0

2
2 1

0

2

2 1

n
m

m
m

n
m

m
m

n m p x

m p x

−
+

+
=

+
=

−

+

∑

∑
, the degree of denominator is equal 

to the degree of numerator plus 1. 
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Then, to proceed, we’ll consider the case where the series in the numerator is 
proportional to the derivative of the series in the denominator, i.e. 

( ) ( )
1

2 1 2
2 1 2 1

0 0

2 2 1
n n

m m
m m

m m

n m p x a m p x
−

+
+ +

= =

′ − = + 
 

∑ ∑  (26) 

where a  is a non-zero real number. 

The relation (26) is a condition that allows us to calculate the integral ( )
( )x

p y
dy

p y′∫ . 

From (26), we have 

( ) ( )
1

2 1 2 1
2 1 2 1

0 1
2 2 2 1

n n
m m

m m
m m

n m p x a m m p x
−

+ −
+ +

= =

− = + ⇒∑ ∑

( ) ( )
1

2 1 2 1
2 1 2 1

0 1
2 1

n n
m m

m m
m m

n m p x a m m p x
−

+ −
+ +

= =

⇒ − = +∑ ∑  (27) 

Changing the summation index to 1m m′ = + , the series ( )
1

2 1
2 1

0

n
m

m
m

n m p x
−

+
+

=

−∑  is 

written as 

( )( ) ( )
( ) ( )2 1 1 2 1

2 12 1 1
1 1

1 1
n n

m m
mm

m m
n m p x n m p x′− + ′−

′−′− +
′ ′= =

′ ′− − = − +∑ ∑  

Renaming the summation index of the last series to m , we obtain 

( ) ( )
1

2 1 2 1
2 1 2 1

0 1
1

n n
m m

m m
m m

n m p x n m p x
−

+ −
+ −

= =

− = − +∑ ∑  

Using the last relation, (27) becomes 

( ) ( )2 1 2 1
2 1 2 1

1 1
1 2 1

n n
m m

m m
m m

n m p x a m m p x− −
− +

= =

− + = +∑ ∑  

Equating the coefficients of the same degree terms in x , we obtain 

( ) ( )2 1 2 11 2 1m mn m p am m p− +− + = +  

or 

( )
2 1 2 1

2 1
1m m

am m
p p

n m− +

+
=

− +
 (28) 

where 1, 2,..., 1m n= ≥ , and 2 1 1np + = . 
From the previous relation, we calculate the coefficients of the polynomial (23). 
Besides, using (24), the condition (26) is written as 

( ) ( )
1

2 1
2 1

0
2

n
m

m
m

n m p x ap x
−

+
+

=

′′− =∑  (29) 

By means of (24) and (29), (25) is written as 

( )
( )

( )
( ) ( )2 1 2 1

p x ap xx
p x n n p x

′′
= +

′ ′+ +
 (30) 
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where a  is a non-zero real number and 1n ≥ . 
This is the differential equation the ( )2 1n + -degree, odd-parity polynomial ( )p x  
must satisfy in order for the condition (26) to hold. 

Using (30), the integral ( )
( )x

p y
dy

p y′∫  is easily calculated. 

We have 

( )
( )

( )
( ) ( ) ( )

( )
( )

2

2 1 2 1 2 2 1 2 1x x x

p y ap y p yy x ady dy dy
p y n n p y n n p y

 ′′ ′′
= + = + =  ′ ′ ′+ + + + 

∫ ∫ ∫  

( ) ( )
2

ln
2 2 1 2 1

x a p x
n n

′= +
+ +

 

That is 

( )
( ) ( ) ( )

2

ln
2 2 1 2 1x

p y x ady p x
p y n n

′= +
′ + +∫  (31) 

We again remind that the integral ( )
( )x

p y
dy

p y′∫  is calculated without adding an 

integration constant. 
Substituting (31) into (14), the wave function ( )1 xψ  is 

( ) ( ) ( ) ( )
2

1 2 2 1
1 1 exp ln

2 2 2 1 2 1
E E x ax A p x p x

n n
ψ

−   −′ ′= − + =    + +  

( ) ( )
( )

( )
( ) ( )

2
1 2 2 1 2 1

1 exp ln
4 2 1 2 2 1
E E x a E E

A p x p x
n n

−  − −
′ ′= − − =  + + 

{ ( ) ( )
( ) ( ) ( ) ( )2 1

2
1 2 2 2 12 1

1
0

exp ln
4 2 1

a E E n

a

E E x
A p x p x

n
− − − +

≠

 −
′ ′= − + =  + 

( ) ( ) ( ) ( ) ( )
( )

2 1
2

1 2 2 2 1 2 1
1 exp

4 2 1
a E E n E E x

A p x p x
n

− − − +  −
′ ′= − =  + 

( ) ( ) ( ) ( )
( )

2 1
2

1 2 2 2 1 2 1
1 exp

4 2 1
a E E n E E x

A p x
n

− − − +  −
′= − =  + 

( ) ( )( ) ( )
( )

2 1
2

1 2 1 2 1 2 1
1 exp

4 2 1
a E E n E E x

A p x
n

− + − +  −
′= −  + 

 

That is 

( ) ( ) ( )( ) ( )
( )

2 1
2

1 2 1 2 1 2 1
1 1 exp

4 2 1
a E E n E E x

x A p x
n

ψ
− + − +  −

′= −  + 
 (32) 

Then, from (5), i.e. 

( ) ( ) ( )2 2 1x A p x xψ ψ= , 
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we calculate and the wave function ( )2 xψ . 

Since ( )p x  and ( )p x′  are polynomials, in order for the two wave functions to be 

square integrable, it is necessary – but not sufficient if ( )p x′  has zeros – that 2 1E E> . 
For convenience, we set 

( )2 11 1
2 2 1

a E E
n

ρ
− 

= − + + 
 (33) 

Then, we have 

( ) ( ) ( )2 1 2 12 1 2 1
2 1 2 1

a E E a E E
n n

ρ ρ
− −

− = + ⇒ = − + ⇒
+ +

 

2 1 2 1
2 1

E E
n a

ρ− +
⇒ = −

+
 (34) 

Since 2 1 0E E− > , then 2 1 0
a

ρ +
< , and thus the signs of a  and 2 1ρ +  must be 

opposite. 
By means of (33) and (34), (32) is written as 

( ) ( ) ( ) ( )
2

2

1 1 1

2 1
2 1

exp exp
4 4

x xax A p x A p x
a

ρ ρ

ρ
ρ

ψ

 +  −    +  ′ ′= − =  
    
 

 

That is 

( ) ( ) ( ) 2

1 1

2 1
exp

4
x

x A p x
a

ρ ρ
ψ

 +
′=  

 
 (35) 

and 

( ) ( ) ( )2 2 1x A p x xψ ψ=  

As explained, the two wave functions must be finite for every x . Thus, if ( )p x′  has 
zeros, the parameter ρ  must be non-negative, i.e. 0ρ ≥ . 

The previous condition along with the square-integrability condition 2 1 0
a

ρ +
<  are 

the two conditions the wave functions ( )1 xψ  and ( )2 xψ  must fulfill. 

Now, substituting the expression of ( )
( )

p x
p x′

 from the differential equation (30) into the 

expression of the potential (22), we obtain 

( ) ( )
( ) ( )

( )
( )

( )
( )

2 22
2 1 3

2 2 1 2 1 4 2
ap x p x p xE E xV x

n n p x p x p x
   ′′ ′′ ′′′− = + + − +        ′ ′ ′+ +     

( ) ( )
( ) ( )

( )
( )

2 1
2 1 12 1 2 1 2

ap x p x E ExE E E
n n p x p x

 ′′ ′′ −
+ − + + − =  ′ ′+ + 
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( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 2

2 1 2 13
2 2 1 4 2 2 1

p x p x p x p x p xE E E Ex a x a
n p x p x p x n p x p x

       ′′ ′′ ′′′ ′′ ′′− −
= + + − + + +              ′ ′ ′ ′ ′+ +       

( )
( )
( )

( )
( )

( )
( )

( )
( )

2 2 2

2 22 1 2 1
1

32
2 2 2 1 4 2

p x p x p x p xE E E EE x ax a
n p x p x p x p x

      ′′ ′′ ′′ ′′′− −  + − = + + + − +          ′ ′ ′ ′ +      

( ) ( )
( )

( ) ( )
( )

2

2 1 2 1 2 1
12 1 2 1 2

E E x p x a E E p x E EE
n p x n p x

 ′′ ′′− − −
+ + + − =  ′ ′+ +  

( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 2 22
2 122 1 2 1 3

2 2 1 2 1 2 2 2 1 4 2
p x a E E p x p x p xE E E E axx

n n p x n p x p x p x
       ′′ ′′ ′′ ′′′−− − = + + + − +               ′ ′ ′ ′+ + +        

( ) ( )
( )

( ) ( )
( )

2

2 1 2 1 2 1
12 1 2 1 2

E E x p x a E E p x E EE
n p x n p x

 ′′ ′′− − −
+ + + − =  ′ ′+ +  

( )
( )
( )

( )
( )

( )
( )

( ) ( )
( )

2 2 2

2 1 2 1 2 122 1 2 1 31
2 2 1 2 1 2 2 1 2 2 1 2 1 4

a E E xp x a E E a E E p xE E E Ex
n n n p x n n p x

        ′′ ′′− − −− −  = + + + + + −              ′ ′ + + + + +        
( )
( )

2 1
12 2

p x E EE
p x
′′′ −

− + −
′

 

That is 

( ) ( )
( )
( )

( )
( )

2

2 122 1 2 1 1
2 2 1 2 1 2 2 1

a E E xp xE E E EV x x
n n n p x

    ′′−− −
= + + +       ′+ + +   

( )
( )

( ) ( )
( )

( )
( )

2 2

2 1 2 1 2 1
1

3
2 2 1 2 1 4 2 2

a E E a E E p x p x E EE
n n p x p x

    ′′ ′′′− − − + + + − + −      ′ ′ + +    
 

Substituting (34) into the last equation, we obtain 

( ) ( )
( )

2

2

2 1
2 1 2 1 1

2 2
xp xaV x x

a p x

ρ
ρ ρ

+ −  ′′+ + = − − + +    ′  
 

( ) ( )
( )

( )
( )

22
2 1

1
2 1 32 1

2 4 2 2
p x p x E EE
p x p x

ρ ρ
  ′′ ′′′ −+ + − − + + − + − =       ′ ′    

( ) ( )
( )

( )
( )

( )
( )

22 2
2

2

2 1 2 1 2 1 1 31 2 1
4 2 2 4 2

xp x p x p x
x

a a p x p x p x
ρ ρ ρ ρ ρ

  ′′ ′′ ′′′+ + +   = + − + + − − + − +        ′ ′ ′      

( ) ( )
( )

( )
( )

22
2 22 1

1 2

2 1 2 1 2 1 2 1 32 1
2 4 2 4 4

xp x p xE EE x
a a p x p x

ρ ρ ρ ρ ρ ρ
 ′′ ′′+− + + −   + − = + + + + − − + −      ′ ′     

( )
( )

( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2 22 1

1 2

2 1 2 1 2 1
2 2 4 2 2
p x xp x p x p xE EE x
p x a a p x p x p x

ρ ρ ρ
ρ ρ

 ′′′ ′′ ′′ ′′′+ − +−
− + − = + + − − +  ′ ′ ′ ′ 
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( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
22 1 2 1

1 12

2 1 2 1 2 1
1

2 4 2 2 2
xp x p x p xE E E EE x E

a a p x p x p x
ρ ρ ρ

ρ ρ
 ′′ ′′ ′′′+ − +− −

+ − = + + − − + −  ′ ′ ′ 
 
That is 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2 2 1

12

2 1 2 1 2 1
1  (36)

4 2 2 2
xp x p x p x E EV x x E

a a p x p x p x
ρ ρ ρ

ρ ρ
 ′′ ′′ ′′′+ − + −

= + + − − + −  ′ ′ ′ 
 
We see that the potential (36) consists of the harmonic oscillator potential 
( )2

2
2

2 1
4

x
a

ρ +
 and a rational part with even parity. 

Defining the degree of a fraction ( )
( )

f x
g x

 as the degree of ( )f x  minus the degree of 

( )g x , we have 

( )
( )

deg 0
xp x
p x

 ′′
=  ′ 

 

( )
( )

( )
( ) ( )

2

deg 2deg 2 1 2
p x p x
p x p x

   ′′ ′′
= = − = −      ′ ′   

 

( )
( )

deg 2
p x
p x

 ′′′
= −  ′ 

 

Then 

( )
( )

2

lim 0
x

p x
p x→∞

 ′′
=  ′ 

 

( )
( )

lim 0
x

p x
p x→∞

′′′
=

′
 

( )
( )

lim
x

xp x
p x→∞

′′
=

′
 a non-zero (finite) constant 

Since the polynomial ( )p x  is of odd parity, then ( )p x′  is of even parity and ( )p x′′ , 

and thus, since x  is of odd parity, ( )xp x′′  is of even parity. Then, ( )
( )

xp x
p x

′′
′

 is of even 

parity, and thus its limits at plus and minus infinity are equal. 
Therefore, at long distances, the potential (36) is approximately the harmonic 

oscillator potential ( )2
2

2

2 1
4

x
a

ρ +
 plus the constant 
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( )( ) ( )
( )

2 1
1

2 1 2 1
lim

2 2x

xp x E EE
a p x

ρ ρ
→∞

 ′′− + −
+ −  ′ 

. 

Choosing the infinity as the reference point of the potential, we set the previous 
constant equal to zero, i.e. 

( )( ) ( )
( )

2 1
1

2 1 2 1
lim 0

2 2x

xp x E EE
a p x

ρ ρ
→∞

 ′′− + −
+ − =  ′ 

 (37) 

The potential then becomes a rational extension of the harmonic oscillator 
( )2

2
2

2 1
4

x
a

ρ +
. 

Since ( )xp x′′  is an even-parity polynomial of degree 2n  and ( )p x′  is also an even-

parity polynomial of the same degree, the limit ( )
( )

lim
x

xp x
p x→∞

′′
′

 is equal to the ratio of the 

leading coefficients of the numerator and denominator, i.e. of ( )xp x′′  and ( )p x′ . 

From (24), the leading coefficient of ( )p x′  is ( ) 2 12 1 2 1nn p n++ = + . 

Using (24), the second derivative of ( )p x  is 

( ) ( ) 2 1
2 1

1
2 2 1

n
m

m
m

p x m m p x −
+

=

′′ = +∑  

Thus 

( ) ( ) 2
2 1

1
2 2 1

n
m

m
m

xp x m m p x+
=

′′ = +∑  

Then, the leading coefficient of ( )xp x′′  is ( ) ( )2 12 2 1 2 2 1nn n p n n++ = + . 
Thus 

( )
( )

( )2 2 1
lim 2

2 1x

xp x n n
n

p x n→∞

′′ +
= =

′ +
 

Then, the condition (37) takes the form 

( )( ) 2 1
1

2 1 2 1
2 0

2 2
E En E

a
ρ ρ− + −

+ − =  

Thus 

( ) ( )2 1
1

2 1 2 1
2

nE EE
a

ρ ρ− +−
− = −  (38) 

Substituting (38) into the expression of the potential (36), we obtain 
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( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

( ) ( )
22

2
2

2 1 2 1 2 1 2 1 2 1
1

4 2 2
xp x p x p x n

V x x
a a p x p x p x a

ρ ρ ρ ρ ρ
ρ ρ

 ′′ ′′ ′′′+ − + − +
= + + − − − =  ′ ′ ′ 

( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2

2

2 1 2 1 2 1
2 1

4 2 2
xp x p x p x

x n
a a p x p x p x

ρ ρ ρ
ρ ρ

   ′′ ′′ ′′′+ − +
= + − + − − =      ′ ′ ′   

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2

2

2 1 2 1 2 1 2
1

4 2 2
xp x np x p x p x

x
a a p x p x p x

ρ ρ ρ
ρ ρ

   ′′ ′ ′′ ′′′+ − + −
= + + − −      ′ ′ ′   

 

That is 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2

2

2 1 2 1 2 1 2
1  (39)

4 2 2
xp x np x p x p x

V x x
a a p x p x p x

ρ ρ ρ
ρ ρ

   ′′ ′ ′′ ′′′+ − + −
= + + − −      ′ ′ ′   

 

Using (34) and (38), we can express the two energies 1E  and 2E  in terms of the 
parameters a  and ρ . 
From (34), we obtain 

( )( )
2 1

2 1 2 1n
E E

a
ρ+ +

− = −  (40) 

By means of (40), (38) becomes 

( )( )
( )( ) ( ) ( ) ( )( )

1 1

2 1 2 1
2 1 2 1 2 1 2 1 2 1 2 1

2 2

n
n n naE E

a a a

ρ
ρ ρ ρ ρ ρ

+ +
− − + + + − +

− = − ⇒ + = − ⇒

( )( ) ( )( ) ( ) ( )( )( )
1

2 2 1 2 1 2 12 2 1 2 1 2 1 2 1
2 2 2

n nn n
E

a a a
ρ ρρ ρ ρ − + + +− + + +

⇒ = − − = − =

( )( ) ( )( )4 2 2 1 2 1 4 1 2 1
2 2

n n n n
a a

ρ ρ ρ ρ− + + + + +
= − = −  

That is 

( )( )
1

4 1 2 1
2

n
E

a
ρ ρ+ +

= −  (41) 

By means of (41), (40) becomes 

( ) ( ) ( )( ) ( )( ) ( )( )
2 2

4 1 2 1 2 1 2 1 2 2 1 2 1 4 1 2 1
2 2 2

n n n n
E E

a a a a
ρ ρ ρ ρ ρ ρ+ + + + + + + +

+ = − ⇒ = − − =

( ) ( )( )( ) ( )( ) ( )( )( )2 2 1 4 1 2 1 4 1 3 2 14 2 4 1 2 1
2 2 2

n n nn n
a a a
ρ ρ ρ ρρ ρ+ + + + + + ++ + + +

= − = − = −

 
That is 

( )( )( )
2

4 1 3 2 1
2

n
E

a
ρ ρ+ + +

= −  (42) 
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As explained, 2 1 0
a

ρ +
< , so that the two wave functions are square integrable. Thus 

2 1 0
2a
ρ +

− > , and then 1E  has the same sign as 4 1nρ + , while 2E  has the same sign 

as ( )4 1 3n ρ + + . 

Also, since ( ) {
0

4 1 3 4 1 4 2 4 1n n n nρ ρ ρ
>

+ + = + + + > + , then 2 1E E> , as it should. 

For 0ρ = , the square-integrability condition 2 1 0
a

ρ +
<  becomes 1 0

a
< , and thus 

0a < . 

Besides, for 0ρ = , the wave function ( )1 xψ  becomes ( )
2

1 1 exp
4
xx A
a

ψ
 

=  
 

, with 

0a < , which is the ground-state wave function of a harmonic oscillator. Then, for 
0ρ = , the potential (39) must become a harmonic oscillator potential. 

Let us verify it. 
For 0ρ = , (39) becomes 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2

21 1 2
4 2 2 4 2 2

xp x np x p x xp x p xx xV x n
a a p x p x a a p x p x

   ′′ ′ ′′′ ′′ ′′′−
= − − = − − − =      ′ ′ ′ ′   

( )
( )

( )
( )

2

2

1 2
4 2

xp x ap xx n
a a p x p x

 ′′ ′′′
= − − +  ′ ′ 

 

That is 

( ) ( )
( )

( )
( )

2

2

1 2
4 2

xp x ap xxV x n
a a p x p x

 ′′ ′′′
= − − +  ′ ′ 

 (43) 

Using (30), we’ll show that the expression in parentheses vanishes. 
Differentiating both members of (30) with respect to x , we obtain 

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )2 2

1
2 1 2 1

p x p x p x p x p x p xa
p x p x n n p x p x

 ′ ′′ ′′′ ′′ ′′
− = + − ⇒  ′ ′ ′ ′+ +  

( )
( )

( )
( )

( )
( )

( )
( )

2
11

2 1 2 1
p x p x p x p xa
p x p x n n p x p x

  ′′ ′′′ ′′
 ⇒ − = + −   ′ ′ ′ ′ + +   

 

Using (30), the previous equation becomes 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

2
11

2 1 2 1 2 1 2 1
ap x p x p x p xx a

n n p x p x n n p x p x

    ′′ ′′ ′′′ ′′
 − + = + − ⇒      ′ ′ ′ ′ + + + +    

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

2
11

2 1 2 1 2 1 2 1 2 1
p x ap x p x p x p xx a a

n p x n p x p x n n p x n p x
 ′′ ′′ ′′ ′′′ ′′

⇒ − − = + − ⇒  ′ ′ ′ ′ ′+ + + + +  

( )
( )

( )
( )

( )
( )

( )
( )

2 2
11

2 1 2 1 2 1 2 1 2 1
p x p x p x p xx a a a

n p x n p x n n p x n p x
   ′′ ′′ ′′′ ′′

⇒ − − = + − ⇒      ′ ′ ′ ′+ + + + +   
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( )
( )

( )
( )

( )
( )

( )
( )

11 2 1 1
2 1 2 1 2 1

p x p x xp x ap xx a n
n p x n n p x p x p x

′′ ′′′ ′′ ′′′
⇒ − = + ⇒ + − = + ⇒

′ ′ ′ ′+ + +

( )
( )

( )
( )

0 2
xp x ap x

n
p x p x

′′ ′′′
⇒ = − +

′ ′
 

That is 

( )
( )

( )
( )

2 0
xp x ap x

n
p x p x

′′ ′′′
− + =

′ ′
 

Thus, for 0ρ = , the potential becomes the harmonic oscillator potential ( )
2

24
xV x
a

= . 

Besides, for 0ρ = , (41) and (42) give, respectively, 

1
1

2
E

a
= −  and 2

4 3
2
nE

a
+

= − . 

1E  is the ground-state energy of the harmonic oscillator 
2

24
x
a

, and since 0a < , it is 

positive, as it should. 

2E  is an odd-parity excited-state energy of the harmonic oscillator 
2

24
x
a

, and it is 

greater than 1E , as it should. 
We remind that we work with dimensionless variables. 

If 1
2

a = − , then ( ) 2V x x= , and 1 1E =  and 2 4 3E n= + , while 

if 1a = − , then ( )
2

4
xV x = , and 1

1
2

E =  and ( )2
4 3 12 1

2 2
nE n+

= = + + , 

which are, respectively, the ground-state energy and the ( )2 1n + -th excited-state 
energy of a harmonic oscillator with 1ω ≡h . 

The odd-parity polynomials p(x) for α<0 and for α>0 
The differential equation (30) is written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 0n p x xp x ap x ap x xp x n p x′ ′′ ′′ ′+ = + ⇒ + − + = ⇒

( ) ( ) ( ) ( )2 2 2 2 1 0ap x xp x n p x′′ ′⇒ − − + + =  (44) 

i. 0a <  
Then a a= − , and (44) becomes 

( ) ( ) ( ) ( )2 2 2 2 1 0a p x xp x n p x′′ ′− + + =  (45) 

Setting 1
2

x x
a

=% , we have 

1
2

d dx d d
dx dx dx dxa

= =
%

% %
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and 

2 2

2 2

1 1 1
22 2

d d d dx d dx d d d d
dx dx dx dx dx dx dx dx dx a dxa a

       = = = =          

% %

% % % % %
 

Also 

2x a x= %  (46) 

Thus, with respect to x% , (45) is written as 

( ) ( ) ( ) ( )1 12 2 2 2 2 1 0
2 2

a p x a x p x n p x
a a

′′ ′− + + = ⇒% % % %

( ) ( ) ( ) ( )2 2 2 1 0p x xp x n p x′′ ′⇒ − + + =% % % %  

where now the primes denote differentiation with respect to x% . 
We see that ( )p x%  satisfies the Hermite differential equation, i.e. 

( ) ( ) ( )2 2 0y x xy x y xλ′′ ′− + =% % % % , 

for 2 1nλ = + . 
Thus, since ( )p x%  is a polynomial, then ( ) ( )2 1np x bH x+=% % , where ( )2 1nH x+ %  is the 
Hermite polynomial of degree 2 1n + , and b  is a real non-zero constant. 
Obviously, the polynomials ( )p x%  and ( )2 1nH x+ %  have the same zeros. 
The Hermite polynomials are orthogonal, and a Hermite polynomial of degree n  has 
n  zeros. 
Thus, ( )2 1nH x+ %  has 2 1n +  zeros, and then ( )p x%  has also 2 1n +  zeros. 

Since the relation (46) is a linear, one-to-one relation, ( )p x  has also 2 1n +  zeros. 

Using that 1
2

x x
a

=% , the relation ( ) ( )2 1np x bH x+=% %  is written as 

( ) 2 1
1
2

np x bH x
a

+

 
 =
 
 

. Then, the constant b  is calculated by comparing the 

leading coefficient of ( )p x , which is 1, with the leading coefficient of 

2 1
1
2

nH x
a

+

 
 
 
 

. 

We thus showed that if 0a < , the odd-parity polynomial ( )p x  has 2 1n +  zeros. 

Then, from Rolle’s theorem, the derivative ( )p x′  has at least 2n  zeros, and because 
it is a polynomial of degree 2n , it has exactly 2n  zeros. 

Therefore, if α<0, p(x) has 2n+1 zeros and p΄(x) has 2n zeros. 

ii. 0a >  
We showed that, in any case, the coefficients of ( )p x  are given by (28), i.e. 
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( )
2 1 2 1

2 1
1m m

am m
p p

n m− +

+
=

− +
, 

where 1, 2,..., 1m n= ≥ , and 2 1 1np + = . 

Since 0n m− ≥ , the fraction ( )2 1
1

am m
n m

+
− +

 has the same sign as a . Thus, if 0a > , 

then ( )2 1
0

1
am m

n m
+

>
− +

, and since the polynomial ( )p x  is monic, i.e. 2 1 1 0np + = > , all 

its coefficients are positive. 
Then ( ) 0p x >  for 0x > . Since ( )p x  is of odd parity, ( ) 0p x <  for 0x < , and, also, 

( )0 0p = . 

Thus, if 0a > , ( )p x  has only one zero, at 0. 

Since all coefficients of ( )p x  are positive, the coefficients of ( )p x′  are positive too, 

because each coefficient of ( )p x′  is the product of a respective (positive) coefficient 

of ( )p x  and a positive integer. 

Now, since ( )p x  is of odd-parity, ( )p x′  is of even parity. 

Thus, ( )p x′  is an even-parity polynomial with positive coefficients. 

Then, ( ) 0p x′ >  for 0x > , and since ( ) ( )p x p x′ ′− = , ( ) 0p x′ >  for 0x < . 

Also, ( ) 10 0p p′ = > . 

Thus, the polynomial ( )p x′  has no zeros. 

Therefore, if α>0, p(x) has only one zero, at 0, and p΄(x) has no zeros. 

Summary of the case where p(x) is an odd-parity polynomial and 
satisfies the integrability condition (26) 

To summarize the case where ( )p x  is an odd-parity polynomial of degree 2 1n + , 
with 1n ≥ , we have 

α<0 
Then ( )p x  has 2 1n +  zeros and ( )p x′  has 2n  zeros. 

Since ( )p x′  has zeros, the condition that the wave functions must be finite for every 
x  gives 0ρ ≥ . 

Then, the square integrability condition 2 1 0
a

ρ +
<  is satisfied. 

In this case, the two wave functions have 2n  common – or special – zeros, which are 
the simple zeros of ( )p x′ , and the wave function ( )2 xψ  has 2 1n +  more zeros, 

which are the simple zeros of ( )p x . 

At each zero of ( )p x′ , the potential has a pole of second order, and thus the potential 
has 2n  second-order poles. 
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The potential is then a singular rational extension of the harmonic oscillator 
( )2

2
2

2 1
4

x
a

ρ +
. 

The wave function ( )1 xψ  is the ground-state wave function, with energy 1E , while 

the wave function ( )2 xψ  is the (2 1)n + -th excited-state wave function, with energy 

2E . 
Between the two energy levels 1E  and 2E , there are 2n  energy levels, as many as the 
poles of the potential. 
The two energies are given by 

( )( )
1

4 1 2 1
2

n
E

a
ρ ρ+ +

= −  and 
( )( )( )

2

4 1 3 2 1
2

n
E

a
ρ ρ+ + +

= −  

The energy 1E  has the same sign as 4 1nρ + , and thus, since 0ρ ≥ , it is positive. 
That is, the ground-state energy, and thus all excited-state energies too, are positive. 

For 0ρ = , the potential becomes the harmonic oscillator potential ( )
2

24
xV x
a

= , and 

the two wave functions ( )1 xψ  and ( )2 xψ  then become, respectively, the ground-state 
wave function and an odd-parity excited-state wave function of the previous harmonic 
oscillator. 

α>0 
Then ( )p x  has only one zero, at 0, and ( )p x′  has no zeros. 

Since ( )p x′  has no zeros, the two wave functions are finite for every x  for every 
value of the parameter ρ . 

The square integrability condition 2 1 0
a

ρ +
<  gives 1

2
ρ < − . 

In this case, ( )1 xψ  has no zeros, and it is the ground-state wave function, with energy 

1E , while ( )2 xψ  has one zero, at 0, and it is the first-excited-state wave function, 
with energy 2E . 
The potential has no singularities, it is a smooth function, and it is a regular rational 

extension of the harmonic oscillator ( )2
2

2

2 1
4

x
a

ρ +
. 

In this case, between the two energy levels 1E  and 2E  there are no energy levels. 
As in the case where 0a < , the two energies are given by 

( )( )
1

4 1 2 1
2

n
E

a
ρ ρ+ +

= −  and 
( )( )( )

2

4 1 3 2 1
2

n
E

a
ρ ρ+ + +

= −  

The energy 1E  has the same sign as 4 1nρ + , while the energy 2E  has the same sign 
as ( )4 1 3n ρ + + , respectively. 

Since 1
2

ρ < − , and 1n ≥ , then 1 4 2 4 1 1 0
2

n n nρ ρ ρ< − ⇒ < − ⇒ + < − < . 
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Thus 1 0E < , i.e. the ground-state energy is always negative. 
For the first-excited-state energy, we have the cases 

If ( ) ( ) 3 34 1 3 0 4 1 3 1 1
4 4

n n
n n

ρ ρ ρ ρ+ + < ⇒ + < − ⇒ + < − ⇒ < − − , then 2E  is also 

negative, i.e. the first-excited-state energy is negative. 

If ( ) 34 1 3 0 1
4

n
n

ρ ρ+ + = ⇒ = − − , then the first-excited-state energy is zero. 

If ( ) 34 1 3 0 1
4

n
n

ρ ρ+ + > ⇒ > − − , i.e. if 1 31
2 4n

ρ− > > − − , then the first-excited-

state energy becomes positive. 
Observe that for n → ∞ , i.e. for big odd-parity polynomials ( )p x , the critical value 
of ρ , the value for which the first-excited-state energy vanishes, tends to 1− . 

If 1 1
2

ρ− > > − , the first-excited-state energy is positive for every 1n ≥ , and then the 

first two energies, i.e. the ground-state energy and the first-excited-state energy, have 
different signs. 

II. p(x) is of even parity and satisfies an integrability condition 
If ( )p x  is an even-parity polynomial, it will be of even degree and it will have the 
form 

( ) 2
2

0

n
m

m
m

p x p x
=

= ∑  (47) 

where 2 1np =  and 1, 2,...n =  
The case 0n =  ( )( )1p x =  is excluded, since then ( ) 0p x′ = . 

Besides, if ( ) 1p x = , then ( ) ( )2 2 1x A xψ ψ= , i.e. the two wave functions are linearly 
dependent and thus they describe the same eigenstate, i.e. 2 1E E= . 
Observe also that since ( )p x  is of even parity, ( )p x′  is of odd parity, and then is has 
a zero at 0, which is then a singular point – a second order pole – of the potential. In 
other words, in this case the potential is always singular. 
From (47), the first derivative of ( )p x  is 

( ) 2 1
2

1
2

n
m

m
m

p x mp x −

=

′ = ∑  (48) 

Then, we have 
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( )
( )

2 2 2 1
2 2 0 2

0 1 1 0

2 1 2 1 2 1 2 1
2 2 2 2

1 1 1 1
2 2 2 2

n n n
m m m

m m m
m m m

n n n n
m m m m

m m m m
m m m m

p x p x p x p xp x p
p x mp x mp x mp x mp x

−

= = =

− − − −

= = = =

+
= = = + =

′

∑ ∑ ∑

∑ ∑ ∑ ∑
2 1 2 1 2 12 1

2 2 22
11 0

2 1 2 1 2 1
2 2 2

1 1 1

1 1

22 2 2
2

nn
m m mm

m m mm
mm

n n n
m m m

m m m
m m m

m mx p x p x p xx p x
n np

m mn p x mp x n p x
n n

− − −−

==

− − −

= = =

    + − − −        = + = +
∑∑

∑ ∑ ∑
2 1 2 1

2 2
10 0

2 1 2 1 2 1
2 2 2

1 1 1

1 1 1

22 2

n
m m

m m
m

n n n
m m m

m m m
m m m

m mp x p x
n np px

mnmp x p x mp x
n

− −

=

− − −

= = =

    + − − −        + = + =
∑

∑ ∑ ∑
2 1 2 1

2 2
1 0

2 1 2 1
2 2

1 1

1

2 2

n
m m

m m
m

n n
m m

m m
m m

m mp x p x
n n px

mn p x mp x
n

− −

=

− −

= =

  − −    = + =
∑

∑ ∑
2 12 1

22
11 0

2 1 2 1 2 1
2 2 2

1 1 1

1

2 2

nn
mm

mm
mm

n n n
m m m

m m m
m m m

mm p xp x
px nn

m mn p x p x mp x
n n

−−

==

− − −

= = =

  −    = − + =
 
 
 

∑∑

∑ ∑ ∑

2 1 2
2 2

1 10 0

2 1 2 1 2 1 2 1
2 2 2 2

1 1 1 1

1 1
1

2 22 2 2

n n
m m

m m
m m

n n n n
m m m m

m m m m
m m m m

m mp x p x
p px xn n

mn np x mp x mp x mp x
n

−

= =

− − − −

= = = =

    − −        = − + = − + =
 
 
 

∑ ∑

∑ ∑ ∑ ∑

( )2 2
2 2

1 0 1 0

2 1 2 1 2 1 2 1
2 2 2 2

1 1 1 1

2 22 2 2 2

n n
m m

m m
m m

n n n n
m m m m

m m m m
m m m m

m n p x m n p x
p px xn

n nmp x mp x n mp x mp x

= =

− − − −

= = = =

− −
= − + = − + =

∑ ∑

∑ ∑ ∑ ∑

( ) ( )2 2
2 2 0

1 0 1

2 1 2 1 2 1
2 2 2

1 1 1

2 22 2 2

n n
m m

m m
m m

n n n
m m m

m m m
m m m

n m p x n m p x np
px x

n nn mp x mp x n mp x

= =

− − −

= = =

− − +
= + + = +

∑ ∑

∑ ∑ ∑
 

That is 

( )
( )

( ) 2
2 0

1

2 1
2

1

2 2

n
m

m
m

n
m

m
m

n m p x npp x x
p x n n mp x

=

−

=

− +
= +

′

∑

∑
 

But 

( ) ( ) ( )
1

2 2 2
2 0 2 2

1 0 0

n n n
m m m

m m m
m m m

n m p x np n m p x n m p x
−

= = =

− + = − = −∑ ∑ ∑ , 
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because the coefficient ( ) 2mn m p−  vanishes for m n= . 

Then, the previous expression of ( )
( )

p x
p x′

 is written as 

( )
( )

( )
1

2
2

0

2 1
2

1

2 2

n
m

m
m

n
m

m
m

n m p xp x x
p x n n mp x

−

=

−

=

−
= +

′

∑

∑
 (49) 

where 1, 2,...n =  

In (49), the degree of denominator 2 1
2

1
2

n
m

m
m

mp x −

=
∑  is 2 1n − , while the degree of 

numerator ( )
1

2
2

0

n
m

m
m

n m p x
−

=

−∑  is ( )2 1 2 2n n− = − . 

As in the case of odd-parity polynomials ( )p x , the degree of denominator is equal to 
the degree of numerator plus one, and then we’ll consider the case where the series 
in the numerator is proportional to the derivative of the series in the 
denominator, i.e. 

( )
1

2 2 1
2 2

0 1

2
n n

m m
m m

m m

n m p x a mp x
−

−

= =

′ − =  
 

∑ ∑  (50) 

where a  is a non-zero real number. 
As in the case of odd-parity polynomials ( )p x , the relation (50) is a condition that 

allows us to calculate the integral ( )
( )x

p y
dy

p y′∫ . 

The condition (50) gives 

( ) ( ) ( ) ( )
1

2 12 2 2
2 2 2

0 1 1
2 2 1 2 2 1

n n n
mm m

m m m
m m m

n m p x a m m p x a m m p x
−

−−

= = =

− = − = −∑ ∑ ∑  

That is 

( ) ( ) ( )
1

2 12
2 2

0 1
2 2 1

n n
mm

m m
m m

n m p x a m m p x
−

−

= =

− = −∑ ∑  (51) 

Changing the summation index of the series in the right-hand side of (51) to 
1m m′ = − , we have 

( ) ( ) ( ) ( )( ) ( )

1
2 1 2

2 2 1
1 0
2 2 1 2 1 2 1 1

n n
m m

m m
m m

m m p x m m p x
−

− ′
′+

′= =

′ ′− = + + − =∑ ∑

( )( ) ( ) ( )( )
1 1

2 2
2 22 1

0 0
2 1 2 1 2 1 2 2

n n
m m

mm
m m

m m p x m m p x
− −

′ ′
′+′+

′ ′= =

′ ′ ′ ′= + + = + +∑ ∑  

Renaming the summation index of the last series to m , we end up to 

( ) ( ) ( )( )
1

2 1 2
2 2 2

1 0
2 2 1 2 1 2 2

n n
m m

m m
m m

m m p x m m p x
−

−
+

= =

− = + +∑ ∑  
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Substituting the last relation into (51), we obtain 

( ) ( )( )
1 1

2 2
2 2 2

0 0
2 1 2 2

n n
m m

m m
m m

n m p x a m m p x
− −

+
= =

− = + +∑ ∑  

Equating the coefficients of the same degree in x , we obtain 

( ) ( )( )2 2 22 1 2 2m mn m p a m m p +− = + +  

or 

( )( )
2 2 2

2 1 2 2
m m

a m m
p p

n m +

+ +
=

−
 (52) 

where 0,1,... 1m n= −  ( )1n ≥ , and 2 1np = . 
From the previous relation, we calculate the coefficients of the polynomial (47). 
By means of (48), the condition (50) is written as 

( ) ( )
1

2
2

0

n
m

m
m

n m p x ap x
−

=

′′− =∑  

Using again (48), and the previous relation, (49) is written as 

( )
( )

( )
( )2

p x ap xx
p x n np x

′′
= +

′ ′
 (53) 

where a  is a non-zero real number and 1n ≥ . 
This is the differential equation the 2n -degree, even-parity polynomial ( )p x  must 
satisfy in order for the condition (50) to hold. 

Using (53), the integral ( )
( )x

p y
dy

p y′∫  becomes 

( )
( )

( )
( )

( )
( ) ( )

2 2

ln
2 4 4x x x

p y ap y p yy x a x ady dy dy p x
p y n np y n n p y n n

 ′′ ′′
′= + = + = +  ′ ′ ′ 

∫ ∫ ∫  

That is 

( )
( ) ( )

2

ln
4x

p y x ady p x
p y n n

′= +
′∫  (54) 

We once again remind that we omit the integration constant in the calculation of the 

integral ( )
( )x

p y
dy

p y′∫ . 

By means of (54), the wave function ( )1 xψ , which is given by (14), is written as 

( ) ( ) ( )
2

1 2 2 1
1 1 exp ln

2 4
E E x ax A p x p x

n n
ψ

−   −′ ′= − + =  
  

( ) ( ) ( ) ( )
2

1 2 2 1 2 1
1 exp ln

8 2
E E x a E E

A p x p x
n n

−  − −
′ ′= − − = 
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}

( ) ( ) ( ) ( )2 1

0 2
1 2 22 1

1 exp ln
8

a
a E E nE E x

A p x p x
n

≠
− − − −

′ ′= − + = 
 

( ) ( ) ( ) ( )2 1
2

1 2 2 2 1
1 exp

8
a E E n E E x

A p x p x
n

− − −  −
′ ′= − = 

 

( ) ( ) ( )2 1
2

1 2 2 2 1
1 exp

8
a E E n E E x

A p x
n

− − −  −
′= − = 

 

( ) ( )( ) ( )2 1
2

1 2 1 2 1
1 exp

8
a E E n E E x

A p x
n

− + −  −
′= − 

 
 

That is 

( ) ( ) ( )( ) ( )2 1
2

1 2 1 2 1
1 1 exp

8
a E E n E E x

x A p x
n

ψ
− + −  −

′= − 
 

 (55) 

and ( ) ( ) ( )2 2 1x A p x xψ ψ= . 
In order for the two wave functions to be square integrable, it is necessary – but not 
sufficient as ( )p x′  has zero(s) – that 2 1E E> . 

As in the case of odd-parity polynomials ( )p x , we set the exponent 

( )2 11 1
2

a E E
n
− 

− + 
 

 as a new parameter ρ , i.e. 

( )2 11 1
2

a E E
n

ρ
− 

= − + 
 

 (56) 

Making use of (56), we obtain 

( )2 1 2 1 2 12 1
a E E E E

n n a
ρρ

− − +
− = + ⇒ = −  (57) 

Since 2 1E E> , then 2 1 0
a

ρ +
< . 

Then, in terms of the parameters a  and ρ , the wave function (55) is written as 

( ) ( ) ( ) ( )
2

2

1 1 1

2 1
2 1

exp exp
8 8

x xax A p x A p x
a

ρ ρ

ρ
ρ

ψ

 +  −    +  ′ ′= − =  
    
 

 

That is 

( ) ( ) ( ) 2

1 1

2 1
exp

8
x

x A p x
a

ρ ρ
ψ

 +
′=  

 
 (58) 

and ( ) ( ) ( )2 2 1x A p x xψ ψ= . 
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As noted, since ( )p x  is of even parity, ( )p x′  is of odd parity, and thus it has a zero 
at 0. Then, in order for the two wave functions to be finite at 0, ρ  must be non-

negative, i.e. 0ρ ≥ . Then 2 1 0ρ + >  and the square-integrability condition 2 1 0
a

ρ +
<  

gives 0a < . 

Thus, if p(x) is an even-parity polynomial that satisfies the condition (50), α can 
be only negative, while ρ is non-negative, i.e. zero or positive. 

We’ll now substitute the expression of ( )
( )

p x
p x′

 from the differential equation (53) into 

the potential (22), to derive an expression of the potential in the case where ( )p x  is 
an even-parity polynomial that satisfies the condition (50). 
We have 

( ) ( )
( )

( )
( )

( )
( )

2 22
2 1 3

2 2 4 2
ap x p x p xE E xV x

n np x p x p x
   ′′ ′′ ′′′− = + + − +        ′ ′ ′     

( ) ( )
( )

( )
( )

2 1
2 1 12 2

ap x p x E ExE E E
n np x p x

 ′′ ′′ −
+ − + + − =  ′ ′ 

( )
( )
( )

( )
( )

( )
( )

( )
( )

2 22 22
2 1

2 2

3
2 4 22

p x p x p x p xE E x a ax
n p x n p x p x p xn

    ′′ ′′ ′′ ′′′−    = + + + − +         ′ ′ ′ ′        

( )
( )

( ) ( )
( )

2

2 12 1 2 1
12 2

xp x a E E p xE E E EE
n p x n p x

 ′′ ′′−− −
+ + + − =  ′ ′ 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 222 2
2 122 1 2 1 3

4 2 2 4 2
a E E p x axp x p x p xE E E Ex

n n p x n p x p x p x
   ′′ ′′ ′′ ′′′− − −   = + + + − +          ′ ′ ′ ′        

( )
( )

( ) ( )
( )

2

2 12 1 2 1
12 2

xp x a E E p xE E E EE
n p x n p x

 ′′ ′′−− −
+ + + − =  ′ ′ 

( ) ( ) ( )
( )

( ) ( )
( )

222
2 1 2 1 2 122 1 2 13 1

4 2 4 2 2
a E E a E E p x a E E xp xE E E Ex

n n n p x n n p x

   ′′ ′′− − −   − −   = + + + + + −         ′ ′       
( )
( )

2 1
12 2

p x E EE
p x
′′′ −

− + −
′

 

That is 

( ) ( ) ( )
( )

2
2 122 1 2 1 1

4 2 2
a E E xp xE E E EV x x

n n n p x
′′− − − = + + +   ′   

( ) ( ) ( )
( )

( )
( )

22
2 1 2 1 2 1

1
3

2 4 2 2
a E E a E E p x p x E EE

n n p x p x

   ′′ ′′′− −  − + + + − + −      ′ ′    
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Substituting (57) into the last equation, we obtain 

( ) ( )
( )

2

2

2 1
2 1 2 1 1

4 2 2
xp xaV x x

a p x

ρ
ρ ρ

+ −  ′′+ + = − − + +    ′  
 

( ) ( )
( )

( )
( )

22
2 1

1
2 1 32 1

2 4 2 2
p x p x E EE
p x p x

ρ ρ
  ′′ ′′′ −+ + − − + + − + − =       ′ ′    

( ) ( )
( )

( )
( )

( )
( )

22 2
2

2

2 1 2 1 2 1 1 31 2 1
16 2 2 2 4 2

xp x p x p x
x

a a p x p x p x
ρ ρ ρ ρ ρ

  ′′ ′′ ′′′+ + +   = + − + + − − + − +        ′ ′ ′      

( ) ( )
( )

( )
( )

22
2 22 1

1 2

2 1 2 1 2 1 2 1 32 1
2 16 2 2 4 4

xp x p xE EE x
a a p x p x

ρ ρ ρ ρ ρ ρ
 ′′ ′′+− + + −   + − = + + + + − − + −      ′ ′     

( )
( )

( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2 22 1

1 2

2 1 2 1 2 1
2 2 16 4 2
p x xp x p x p xE EE x
p x a a p x p x p x

ρ ρ ρ
ρ ρ

 ′′′ ′′ ′′ ′′′+ − +−
− + − = + + − − +  ′ ′ ′ ′ 

( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
22 1 2 1

1 12

2 1 2 1 2 1
1

2 16 4 2 2
xp x p x p xE E E EE x E

a a p x p x p x
ρ ρ ρ

ρ ρ
 ′′ ′′ ′′′+ − +− −

+ − = + + − − + −  ′ ′ ′ 
 

That is 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2 2 1

12

2 1 2 1 2 1
1  (59)

16 4 2 2
xp x p x p x E EV x x E

a a p x p x p x
ρ ρ ρ

ρ ρ
 ′′ ′′ ′′′+ − + −

= + + − − + −  ′ ′ ′ 
 

As in the case of odd-parity polynomials ( )p x , the potential consists of a harmonic 
oscillator potential and a rational part with even parity, and also, we have 

( )
( )

deg 0
xp x
p x

 ′′
=  ′ 

 

( )
( )

( )
( ) ( )

2

deg 2deg 2 1 2
p x p x
p x p x

   ′′ ′′
= = − = −      ′ ′   

 

( )
( )

deg 2
p x
p x

 ′′′
= −  ′ 

 

Then 

( )
( )

2

lim 0
x

p x
p x→∞

 ′′
=  ′ 

 

( )
( )

lim 0
x

p x
p x→∞

′′′
=

′
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( )
( )

lim
x

xp x
p x→∞

′′
=

′
 a non-zero (finite) constant 

The polynomial ( )p x  is of even parity, and thus ( )p x′  is of odd parity and ( )p x′′  is 

of even parity, and then, since x  is of odd parity, ( )xp x′′  is of odd parity. Since 

( )xp x′′  and ( )p x′  have the same parity, ( )
( )

xp x
p x

′′
′

 is of even parity, and thus its limits 

at plus and minus infinity are equal. 
Then, at long distances, the potential is approximately the harmonic oscillator 

potential ( )2
2

2

2 1
16

x
a

ρ +
 plus the constant 

( )( ) ( )
( )

2 1
1

2 1 2 1
lim

4 2x

xp x E EE
a p x

ρ ρ
→∞

 ′′− + −
+ −  ′ 

. 

As in the case of odd-parity polynomials ( )p x , we choose the infinity as the 
reference point of the potential and we set the previous constant equal to zero, i.e. 

( )( ) ( )
( )

2 1
1

2 1 2 1
lim 0

4 2x

xp x E EE
a p x

ρ ρ
→∞

 ′′− + −
+ − =  ′ 

 (60) 

The potential then becomes a rational extension of the harmonic oscillator 
( )2

2
2

2 1
16

x
a

ρ +
. 

Since the derivative ( )p x′  has simple zero(s), the potential has singularities, and thus 
it is a singular rational extension of the harmonic oscillator. 
Since ( )xp x′′  is an odd-parity polynomial of degree 2 1n −  and ( )p x′  is also an odd-

parity polynomial of the same degree, the limit ( )
( )

lim
x

xp x
p x→∞

′′
′

 is equal to the ratio of the 

leading coefficients of the two polynomials. 
From (48), we see that the leading coefficient of ( )p x′  is 22 2nnp n= . 
Besides, using (48), we have 

( ) ( ) ( ) ( )2 2 2 1
2 2

1 1
2 2 1 2 2 1

n n
m m

m m
m m

p x m m p x xp x m m p x− −

= =

′′ ′′= − ⇒ = −∑ ∑  

Thus, the leading coefficient of ( )xp x′′  is ( ) ( )22 2 1 2 2 1nn n p n n− = − . 

Then, the limit ( )
( )

lim
x

xp x
p x→∞

′′
′

 is 

( )
( )

( )2 2 1
lim 2 1

2x

xp x n n
n

p x n→∞

′′ −
= = −

′
 

Substituting into the condition (60), we obtain 
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( )( ) ( ) 2 1
1

2 1 2 1
2 1 0

4 2
E En E

a
ρ ρ− + −

− + − = ⇒

( )( )( )2 1
1

2 1 2 1 2 1
2 4

nE EE
a

ρ ρ− − +−
⇒ − = −  (61) 

Substituting the previous equation into the potential (59), we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2

2

2 1 2 1 2 1
1

16 4 2
xp x p x p x

V x x
a a p x p x p x

ρ ρ ρ
ρ ρ

 ′′ ′′ ′′′+ − +
= + + − − −  ′ ′ ′ 

( )( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

22
2

2

2 1 2 1 2 1 2 1 2 1 2 1
2 1 1

4 16 4
n xp x p x

x n
a a a p x p x

ρ ρ ρ ρ ρ
ρ ρ

   ′′ ′′− − + + − +
− = + − − + − −      ′ ′   

( )
( )

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2

2

2 1 2 1 2 1 2 1
1

2 16 4 2
p x xp x n p x p x p x

x
p x a a p x p x p x

ρ ρ ρ
ρ ρ

   ′′′ ′′ ′ ′′ ′′′+ − + − −
− = + + − −      ′ ′ ′ ′   
 

That is 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

22
2

2

2 1 2 1 2 1 2 1
1  (62)

16 4 2
xp x n p x p x p x

V x x
a a p x p x p x

ρ ρ ρ
ρ ρ

   ′′ ′ ′′ ′′′+ − + − −
= + + − −      ′ ′ ′   

 

As in the case of odd-parity polynomials ( )p x , we’ll use the relations (57) and (61) 
to express the two energies 1E  and 2E  in terms of the parameters a  and ρ . 
From (57), we obtain 

( )
2 1

2 1n
E E

a
ρ +

− = −  (63) 

Substituting into (61) yields 

( )
( )( )( ) ( ) ( )( )( )

1 1

2 1
2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 4 2 4

n
n n naE E

a a a

ρ
ρ ρ ρ ρ ρ

+
− − − + + − − +

− = − ⇒ + = − ⇒

( )( )( ) ( ) ( )( )( )( )
1

2 1 2 1 2 2 12 1 2 1 2 1 2 2 1
4 4 4

n nn n
E

a a a
ρ ρρ ρ ρ − − + +− − + +

⇒ = − − = − =

( )( ) ( )( ) ( )( )( )2 2 1 1 2 14 2 2 1 2 2 1 4 2 1 2 1
4 4 4

nn n n n
a a a

ρ ρρ ρ ρ ρ ρ ρ − + +− − + + + − + +
= − = − = −

 

That is 

( )( )( )
1

2 2 1 1 2 1
4

n
E

a
ρ ρ− + +

= −  (64) 

Substituting (64) into (63) yields 
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( )( )( ) ( ) ( ) ( )( )( )
2 2

2 2 1 1 2 1 2 2 1 1 2 12 1 4 2 1
4 4 4

n nn n
E E

a a a a
ρ ρ ρ ρρ ρ− + + − + ++ +

+ = − ⇒ = − − =

( )( )( )4 2 2 1 1 2 1
4

n n
a

ρ ρ+ − + +
= −  

That is 

( )( )( )
2

2 2 1 4 1 2 1
4

n n
E

a
ρ ρ− + + +

= −  (65) 

As explained, in the case of even-parity polynomials ( )p x  satisfying the condition 
(50), 0a <  and 0ρ ≥ . 

Thus 2 1 0
4a
ρ +

− >  and also, since 1n ≥ , then ( )2 2 1 1 0nρ − + > , and thus 

( ) ( )2 2 1 4 1 2 2 1 1 0n n nρ ρ− + + > − + > . 
Then, from (64) and (65), we see that both energies are positive, and 2 1E E> , as it 
should. 

For 0ρ = , (58) gives ( )
2

1 1 exp
8
xx A
a

ψ
 

=  
 

, with 0a < , which is the ground-state 

wave function of a harmonic oscillator. 
Then, for 0ρ = , the potential (62) must become a harmonic oscillator potential. 
Let us verify it. 
For 0ρ = , (62) becomes 

( ) ( ) ( ) ( )
( )

( )
( )

2

2

2 11
16 4 2

xp x n p x p xxV x
a a p x p x

 ′′ ′ ′′′− −
= − − =  ′ ′ 

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( )

( )
2 2

2 2

21 12 1 2 1
16 4 2 16 4

xp x p x xp x ap xx xn n
a a p x p x a a p x p x

   ′′ ′′′ ′′ ′′′
= − − − − = − − − +      ′ ′ ′ ′   

 

That is 

( ) ( )
( ) ( ) ( )

( )
2

2

21 2 1
16 4

xp x ap xxV x n
a a p x p x

 ′′ ′′′
= − − − +  ′ ′ 

 

Using the differential equation (53), we’ll show that the expression in parentheses 
vanishes. 
Differentiating both members of (53) with respect to x , we obtain 

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )2 2

1
2

p x p x p x p x p x p xa
p x p x n n p x p x

 ′ ′′ ′′′ ′′ ′′
− = + − ⇒  ′ ′ ′ ′ 

( )
( )

( )
( )

( )
( )

( )
( )

2
11
2

p x p x p x p xa
p x p x n n p x p x

  ′′ ′′′ ′′
 ⇒ − = + −   ′ ′ ′ ′   

 

Using again (53), the previous equation is written as 
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( )
( )

( )
( )

( )
( )

( )
( )

2
11

2 2
ap x p x p x p xx a

n np x p x n n p x p x

    ′′ ′′ ′′′ ′′
 − + = + − ⇒      ′ ′ ′ ′     

( )
( )

( )
( )

( )
( )

( )
( )

2 2
11

2 2
xp x p x ap x p xa a
np x n p x n np x n p x

   ′′ ′′ ′′′ ′′
⇒ − − = + − ⇒      ′ ′ ′ ′   

( )
( )

( )
( )

( )
( )

( )
( )

211 2 1
2 2
xp x ap x xp x ap x

n
np x n np x p x p x

′′ ′′′ ′′ ′′′
⇒ − = + ⇒ − = + ⇒

′ ′ ′ ′

( )
( )

( )
( )

( )
( ) ( ) ( )

( )
2 2

0 1 2 2 1
xp x ap x xp x ap x

n n
p x p x p x p x

′′ ′′′ ′′ ′′′
⇒ = + − + = − − +

′ ′ ′ ′
  

That is 

( )
( ) ( ) ( )

( )
2

2 1 0
xp x ap x

n
p x p x

′′ ′′′
− − + =

′ ′
 

Thus, for 0ρ = , the potential becomes the harmonic oscillator potential 

( )
2

216
xV x
a

= . 

Besides, for 0ρ = , (64) and (65) give, respectively, 

1
1

4
E

a
= −  and 2

4 1
4
nE

a
+

= −  

Since a  is negative, the ground-state energy 1E  of the harmonic oscillator 
2

216
x
a

 is 

positive, and thus all excited-state energies are also positive, as expected. 
The energy 2E  is an even-parity excited-state energy of the previous harmonic 
oscillator. 

If 1
2

a = − , the two energies become 1
1
2

E =  and 2
4 1 12

2 2
nE n+

= = + , i.e. we obtain, 

respectively, the ground-state energy and the 2n -th excited-state energy of a 
harmonic oscillator with 1ω ≡h . 

The even-parity polynomials p(x) for α<0 
The differential equation (53) is written as 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 0np x xp x ap x ap x xp x np x′ ′′ ′′ ′= + ⇒ + − = ⇒

( ) ( ) ( )4 2 4 0ap x xp x np x′′ ′⇒ − − + =  

As explained, in this case, where ( )p x  is of even parity and satisfies the condition 
(50), a  can be only negative, and 0ρ ≥ . 
Since 0a < , a a= − , and the previous differential equation is written as 

( ) ( ) ( )4 2 4 0a p x xp x np x′′ ′− + =  (66) 
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Setting 1
4

x x
a

=% , we have 

1
4

d dx d d
dx dx dx dxa

= =
%

% %
 

and 
2 2

2 2

1
4

d d d dx d dx d d
dx dx dx dx dx dx dx a dx

  = = =  
  

% %

% % %
 

Also 

4x a x= %  (67) 

Thus, (66) becomes 

( ) ( ) ( )1 14 2 4 4 0
4 4

a p x a x p x np x
a a

′′ ′− + = ⇒% % % %

( ) ( ) ( )2 4 0p x xp x np x′′ ′⇒ − + =% % % %  

where, now, the primes denote differentiation with respect to x% . 
We see that ( )p x%  satisfies the Hermite differential equation, i.e. 

( ) ( ) ( )2 2 0y x xy x y xλ′′ ′− + =% % % % , 

for 2nλ = . 
Thus, since ( )p x%  is a polynomial, ( ) ( )2np x cH x=% % , where ( )2nH x%  is the Hermite 

polynomial of degree 2n  and c  a real non-zero constant. ( )p x%  and ( )2nH x%  have the 

same zeros, and since ( )2nH x%  has 2n  zeros, ( )p x%  has also 2n  zeros. Then, since the 

relation (67) is a linear, one-to-one relation, ( )p x  has 2n  zeros too. 

Using that 1
4

x x
a

=% , we obtain ( ) 2
1
4

np x cH x
a

 
 =
 
 

, and we calculate the 

constant c  by comparing the leading coefficient of ( )p x , which is 1, with the leading 

coefficient of 2
1
4

nH x
a

 
 
 
 

. 

We thus showed that if 0a < , the even-parity polynomial ( )p x  has 2n  zeros. 

Then, from Rolle’s theorem, the derivative ( )p x′  has at least 2 1n −  zeros, and as it is 

a polynomial of degree 2 1n − , it has exactly 2 1n −  zeros ( )1n ≥ . 

Therefore, if α<0, p(x) has 2n zeros and p΄(x) has 2n-1 zeros (n>0). 
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Summary of the case where p(x) is an even-parity polynomial and 
satisfies the integrability condition (50) 

 
In this case, the two wave functions have 2 1n −  common – or special – zeros, which 
are the simple zeros of ( )p x′ , while ( )2 xψ  has 2n  more zeros, which are the simple 

zeros of ( )p x . 

At each zero of ( )p x′ , the potential has a pole of second order, and thus it has 2 1n −  
poles of second order. The potential is then a singular rational extension of the 

harmonic oscillator ( )2
2

2

2 1
16

x
a

ρ +
. 

The wave function ( )1 xψ  is the ground-state wave function, with energy 1E , while 

the wave function ( )2 xψ  is the 2n -th excited-state wave function, with energy 2E . 
Between the two energy levels 1E  and 2E , there are 2 1n −  energy levels, as many as 
the poles of the potential. 
The two energies are given by 

( )( )( )
1

2 2 1 1 2 1
4

n
E

a
ρ ρ− + +

= −  and 
( )( )( )

2

2 2 1 4 1 2 1
4

n n
E

a
ρ ρ− + + +

= − , 

and they are both positive. 
As the ground-state energy 1E  is positive, all energies of the potential are positive. 

Examples 

1. 
( ) 1p x =  

As mentioned, this case is excluded, since then the two wave functions are linearly 
dependent, and thus they describe the same eigenstate. 

2. 
( )p x x=  

Then ( ) 1p x′ =  and ( )
( )

2

2x

p y xdy
p y

=
′∫  

Thus, from (14) and (5), the two wave functions are respectively written as 

( ) ( ) 2
2 1

1 1 exp
4

E E x
x Aψ

 −
= − 

 
 

( ) ( ) 2
2 1

2 2 exp
4

E E x
x A xψ

 −
= − 

 
 

with 2 1E E> , so that the wave functions are square integrable. 
These are, respectively, the ground-state wave function and the first-excited-state 
wave function of a harmonic oscillator. 
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Indeed, from (22), using that ( ) ( ) 0p x p x′′ ′′′= = , we obtain 

( )
2

22 1 2 1
12 2

E E E EV x x E− − = + − 
 

, 

which is a harmonic oscillator potential plus a constant. 

Setting 2 1
1 0

2
E EE −

− = , the potential becomes 

( )
2

22 1

2
E EV x x− =  

 
 

Observe that in order to calculate uniquely the two energies, we need one more 
equation. This equation can come from the “strength” of the harmonic oscillator, i.e. 

how big is the factor 
2

2 1

2
E E− 

 
 

. 

If 
2

2 1

2
E Eξ − =  

 
, then using this equation and the condition 2 1

1 0
2

E EE −
− = , we 

calculate the two energies, i.e. the ground-state energy and the first-excited-state 
energy of the harmonic oscillator. 

3. 
( ) 2

0p x x p= +  ( )1n =  
This is the first non-trivial case. 
Since ( )p x  is of even parity, 0a <  and 0ρ ≥ . 
Using the recursion relation (52), we calculate the coefficient 0p , which is 

{0 2
1

*1*2 2
1 0

ap p a= =
−

 

Then 

( ) 2 2p x x a= +  (68) 

Since 0a < , the binomial (68) has two zeros, at 2 a± . 

Using (68), the derivatives of ( )p x  are 

( ) 2p x x′ = , ( ) 2p x′′ = , ( ) 0p x′′′ =  

Then, the wave function (58) is written as 

( ) ( ) ( )2 2

1 1 1

2 1 2 1
2 exp 2 exp

8 8
x x

x A x A x
a a

ρ ρρρ ρ
ψ

   + +
= =   

   
 

Incorporating the constant 2ρ  into the normalization constant 1A , we write ( )1 xψ  as 

( ) ( ) 2

1 1

2 1
exp

8
x

x A x
a

ρ ρ
ψ

 +
=  

 
 (69) 



Regular and singular rational extensions of the harmonic oscillator with two known 
eigenstates 

  15 August 2017  43 

Also, using (68), the wave function (5) is written as 

( ) ( ) ( )2
2 2 12x A x a xψ ψ= +  (70) 

Substituting the derivatives of ( )p x  and 1n =  into (62), we obtain the expression of 
the potential, which is then 

( ) ( ) ( )( ) ( )( ) ( )

2 2 0
2 2

2
2

2 1 2 1 2 1 2 2 1 2 21
16 4 2 2

x x

x x
V x x

a a x x
ρ ρ ρ

ρ ρ

− = 
 + − + − −  = + + − =   

   
 

6447448

( ) ( )2
2

2 2

2 1 1
16

x
a x

ρ ρ ρ+ −
= +  

That is 

( ) ( ) ( )2
2

2 2

2 1 1
16

V x x
a x

ρ ρ ρ+ −
= +  (71) 

with 0a <  and 0ρ ≥ . 
For 1ρ > , the potential (71) is the potential of an isotonic oscillator [5], and it is 
exactly solvable. 
We observe that the potential (71) has a pole of second order, at 0, as expected, since 
the derivative ( )p x′  has a pole at 0. 
The potential (71) is then a singular rational extension of the harmonic oscillator 
( )2

2
2

2 1
16

x
a

ρ +
. 

Substituting 1n =  into the general expressions (64) and (65), the energies of the two 
eigenstates are 

( )( )( ) ( )2

1

2 2 1 1 2 1 2 1
4 4

E
a a

ρ ρ ρ− + + +
= − = −  

( )( )( ) ( ) ( )
2

2 2 1 4 1 2 1 2 5 2 1
4 4

E
a a

ρ ρ ρ ρ− + + + + +
= − = −  

That is 

( )2

1

2 1
4

E
a

ρ +
= −  (72) 

( )( )
2

2 5 2 1
4

E
a

ρ ρ+ +
= −  (73) 

We see that both energies are positive. 
The two wave functions have a common zero at 0, which is the zero of ( )p x′ , and the 

wave function ( )2 xψ  has two more zeros, which are the zeros of ( )p x . 
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Therefore, ( )1 xψ  is the ground-state wave function, with energy given by (72), while 

( )2 xψ  is the second-excited-state wave function, with energy given by (73), of the 
potential (71). 
We also observe that the potential (71) becomes a harmonic oscillator potential for 
two values of ρ , and particularly for 0ρ =  and for 1ρ = . 
However, if 1ρ = , both wave functions (69) and (70) are not differentiable at 0, due 
to the presence of the term x , and this is unacceptable for a smooth polynomial 
potential, as is the harmonic oscillator potential. 
On the contrary, if 0ρ = , the absolute value of x  vanishes, and both wave functions 
become smooth. 
Thus, the value 0ρ =  is the right one to obtain the harmonic oscillator potential. 

For 0ρ = , the potential (71) becomes ( )
2

216
xV x
a

= , in accordance with what we’ve 

found in the general case of even-parity polynomials ( )p x  satisfying the condition 
(50). 

4. 
( ) 3

1p x x p x= +  ( )1n =  
Using the recursion relation (28), we calculate the coefficient 1p , which is 

{1 3
1

*1*3 3
1 1 1
ap p a= =
− +

 

Then 

( ) 3 3p x x ax= +  (74) 

The derivatives of ( )p x  are then 

( ) ( )2 23 3 3p x x a x a′ = + = +  

( ) 6p x x′′ =  

( ) 6p x′′′ =  

Then, using (35), the wave function ( )1 xψ  is 

( ) ( ) ( ) ( )2 2
2 2

1 1 1

2 1 2 1
3 exp 3 exp

4 4
x x

x A x a A x a
a a

ρ ρρρ ρ
ψ

   + +
= + = +   

   
 

Incorporating the constant 3ρ  into the normalization constant 1A , we write ( )1 xψ  as 

( ) ( ) 2
2

1 1

2 1
exp

4
x

x A x a
a

ρ ρ
ψ

 +
= +  

 
 (75) 

Using (74), the wave function (5) is written as 
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( ) ( ) ( )2
2 2 13x A x x a xψ ψ= +  (76) 

As showed for odd-parity polynomials ( )p x  satisfying the condition (26), the 

domains of a  and ρ  are 0a >  and 1
2

ρ < − , or 0a <  and 0ρ ≥ . 

Substituting the derivatives of ( )p x  and 1n =  into (39), we obtain the potential, 
which is then 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

22 2
2

2 2 2 2

6 2*32 1 2 1 2 1 6 61
4 2 3 3 2*3

x x x a xV x x
a a x a x a x a

ρ ρ ρ
ρ ρ

   − ++ − +
   = + + − − =
   + + +   

( ) ( )( )
( ) ( )

2 2
2

2 2 22

2 1 2 1 2 1 6 2 11
4 2 3

a xx
a a x a x ax a

ρ ρ ρ
ρ ρ

 + − + −   = + + − − =   + ++   

( ) ( )( ) ( )
( )

2 2
2

22 2 22

2 1 2 1 2 1 4 1 1
4

x
x

a x a x ax a

ρ ρ ρ ρ ρ+ − + −
= − + − =

+ ++

( ) ( )( ) ( )
( )

( ) ( )
( )

2 22 22
2 2

2 22 2 2 22 2

2 1 2 1 2 1 1 4 1 2 1 4 14
4 4

x x
x x

a x a a x ax a x a

ρ ρ ρ ρ ρ ρ ρ ρρ+ − + + − + −
= − + = − + =

+ ++ +

( ) ( ) ( )
( )

( )
( )

2 22 2 2 2 2 2 2 2 2
2 2

2 22 22 2

4 1 42 1 2 1 4 4 4 4
4 4

x x a x x x ax x
a ax a x a

ρ ρ ρρ ρ ρ ρ ρ ρ− − ++ + − − −
= + = + =

+ +

( )
( )

( ) ( )
( )

2 2 22 2
2 2

2 22 22 2

42 1 2 14 4
4 4

x ax ax x
a ax a x a

ρ ρρ ρρ ρ ++ +− −
= + = −

+ +
 

That is 

( ) ( ) ( )
( )

2 2
2

22 2

42 1
4

x a
V x x

a x a

ρ ρρ ++
= −

+
 (77) 

If 0a > , the potential (77) has no singularities, it is differentiable everywhere and its 
derivatives are also differentiable, i.e. the potential is a smooth function of x . 

The potential is then a regular rational extension of ( )2
2

2

2 1
4

x
a

ρ +
. 

In this case, where 0a > , 1
2

ρ < − . If 1ρ = − , the potential (77) becomes 

( ) ( ) ( )( )
( )

( )
( )

2 2 22
2

2 22 22 2

4 1 41
4 4

x a x axV x x
a ax a x a

− − −−
= − = +

+ +
 

That is 

( ) ( )
( )

22

22 2

4
4

x axV x
a x a

−
= +

+
 (78) 



Regular and singular rational extensions of the harmonic oscillator with two known 
eigenstates 

  15 August 2017  46 

Since 0a > , the potential (78) is a generalized isotonic oscillator [5, 6]. 
If 0a < , the potential has two singularities, two poles of second order at a± . 

For 0ρ =  ( )0a < , the potential (77) becomes ( )
2

24
xV x
a

= , and the wave functions 

(75) and (76) are, respectively, the ground-state wave function and the third-excited-
state wave function (as it has three zeros, at 0, 3 a± ) of the harmonic oscillator 

2

24
x
a

. 

Substituting 1n =  into (41) and (42), we obtain the two energies, which are 

( )( )
1

4 1 2 1
2

E
a

ρ ρ+ +
= −  (79) 

( )( )
2

4 7 2 1
2

E
a

ρ ρ+ +
= −  (80) 

If 0a >  and 1
2

ρ < − , ( )1 xψ  has no zeros, while ( )2 xψ  has one zero, at 0. 

Thus, ( )1 xψ  is the ground-state wave function and ( )2 xψ  is the first-excited-state 
wave function of the potential (77), with energies given by (79) and (80), respectively. 

As 44 1 1 1 0
2

ρ + < − + = − < , then from (79) we see that 1 0E < , i.e. the ground-state 

energy is negative. 

From (80), we see that the first-excited-state energy 2E  is negative if 7
4

ρ < − , it is 

zero if 7
4

ρ = − , and it is positive if 7 1
4 2

ρ− < < − . 

If 0a <  and 0ρ ≥ , the two wave functions have two common zeros, at a± , and 

( )2 xψ  has three more zeros, at 0, 3 a± , which are the zeros of ( )p x . 

Thus, ( )1 xψ  is the ground-state wave function and ( )2 xψ  is now the third-excited-
state wave function, with energies given by (79) and (80), respectively. Both energies 
are now positive. 
In this case, the potential (77) has two second-order poles at a± , and thus it is a 

singular rational extension of ( )2
2

2

2 1
4

x
a

ρ +
. 

We see that the presence of the two poles in the potential raises the ground-state 
energy, so that it is always positive, and it also results in the presence of two energy 
levels between 1E  and 2E . 

5. 
( ) 4 2

2 0p x x p x p= + +  ( )2n =  

As showed for even-parity polynomials ( )p x  satisfying the condition (50), 0a <  and 
0ρ ≥ . 
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Using the recursion relation (52), we calculate the coefficients 0p  and 2p . 
We have 

( ) ( )
{2 4

1

2 1 2 2
12

2 1
a

p p a
+ +

= =
−

 

2
0 2

2 12 12
2 0

ap p a a a= = =
−

  

Thus 

( ) 4 2 212 12p x x ax a= + +  (81) 

The derivatives of ( )p x  are then 

( ) ( )3 24 24 4 6p x x ax x x a′ = + = +  

( ) ( )2 212 24 12 2p x x a x a′′ = + = +  

( ) 24p x x′′′ =  

Using (58), the wave function ( )1 xψ  then becomes 

( ) ( ) ( ) ( ) ( )2 2
2 2

1 1 1

2 1 2 1
4 6 exp 4 6 exp

8 8
x x

x A x x a A x x a
a a

ρ ρρρ ρ
ψ

   + +
= + = +   

   
 

Incorporating the constant 4ρ  into the normalization constant 1A , ( )1 xψ  is written as 

( ) ( ) ( ) 2
2

1 1

2 1
6 exp

8
x

x A x x a
a

ρ ρ
ψ

 +
= +  

 
 (82) 

Also, using (81), the wave function ( )2 xψ  is written as, from (5), 

( ) ( ) ( )4 2 2
2 2 112 12x A x ax a xψ ψ= + +  (83) 

As shown for the even-parity polynomials ( )p x  satisfying the condition (50), a  can 

be only negative, and then, for this case, ( )p x  has four zeros and ( )p x′  has three 
zeros. 
Then, the wave functions (82) and (83) have three common zeros, which are the three 
zeros of ( )p x′ , while ( )2 xψ  has four more zeros, which are the zeros of ( )p x . 

Thus, ( )1 xψ  is the ground-state wave function, while ( )2 xψ  is the fourth-excited-
state wave function of the potential we’ll calculate now. 
Substituting the derivatives of ( )p x  and 2n =  into (62), we obtain the expression of 
the potential, which is then 
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( ) ( ) ( )( ) ( ) ( ) ( )
( )

2 2 2
2

2 2

12 2 2*2 1 4 62 1 2 1 2 1
16 4 4 6

x x a x x a
V x x

a a x x a
ρ ρ ρ  + − − ++ − +

 = + +
 + 

( ) ( )
( ) ( )

( )
2 22

2
22 2

12 2 2 1241
164 6 2*4 6

x a x x
ax x a x x a

ρ
ρ ρ

 + +
 + − − = +
 + + 

( )( ) ( ) ( )
( ) ( ) ( )

( )

22 2 2

22 2

12 2 12 6 3 22 1 2 1 31
4 64 6 6

x x a x x a x a
a x ax x a x x a

ρ ρ
ρ ρ

   + − + +− +
   + + − − =
    ++ +   

( ) ( )( ) ( ) ( ) ( )( )
( )

22 2 2 2
2

22 2 22 2

3 2 3 6 9 1 22 1 2 1 2 1 3
16 4 6 66

x a x a x a
x

a a x a x ax x a

ρ ρρ ρ ρ  + − + − ++ − +
 = + + − =
 + ++ 

( ) ( )( ) ( )( )
( )

22 2
2

22 2 22 2

9 1 22 1 2 1 2 1 12 3
16 4 6 66

x aax
a a x a x ax x a

ρ ρρ ρ ρ − ++ − + − = + + − = + +  +

( ) ( )( ) ( )( )
( )

22 2
2

22 2 22 2

9 1 22 1 3 2 1 2 1 3
16 6 66

x a
x

a x a x ax x a

ρ ρρ ρ ρ − ++ − +
= − + −

+ ++
 

That is 

( ) ( ) ( )( ) ( )( )
( )

22 2
2

22 2 22 2

9 1 22 1 3 2 1 2 1 3
16 6 66

x a
V x x

a x a x ax x a

ρ ρρ ρ ρ − ++ − +
= − + −

+ ++
 (84) 

But 

( )( ) ( ) ( )
( )

22

22 22 2

9 1 23 2 1 2 1 3
6 66

x a
x a x ax x a

ρ ρρ ρ − +− +
− + − =

+ ++

( ) ( )( )
( )

( )( )
( )

2 22 2 22

2 22 2 22 2 2 2

3 4 1 9 1 2 9 1 23 12 3 3
6 6 66 6

x a x a
x a x a x ax x a x x a

ρ ρ ρ ρ ρρ− − + − +− +
= − − + = − + =

+ + ++ +

( )( )
( )

( )( ) ( )
( )

2 22 2 2 2 22

2 22 2 2 2 2

9 1 2 9 1 2 12 612
6 6 6

x a x a x x a
x a x x a x x a

ρ ρ ρ ρ ρρ − + − + − +
= − + = =

+ + +

( )( )( )
( )

2 4 2 2 2 4 2 2

22 2

3 3 3 4 4 4 24

6

x ax a x a x

x x a

ρ ρ ρ ρ− + + − −
= =

+

( )
( )

2 4 2 2 2 2 4 2 2 2 4 2 2

22 2

3 3 12 12 3 12 12 4 24

6

x a x a x a x a x a x

x x a

ρ ρ ρ ρ ρ ρ ρ ρ+ + − − − − −
= =

+

( )
( )

2 4 2 2 2 2 4 2 2

22 2

3 12 12 3 12 12

6

x a x a x a x a

x x a

ρ ρ ρ ρ ρ ρ− − + − − −
= =

+
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( ) ( ) ( )( )
( )

2 4 2 2 2 2

22 2

3 3 12 12

6

x a x a

x x a

ρ ρ ρ ρ ρ ρ− + − + + −
= =

+

( ) ( ) ( )
( )

2 4 2 2 2 2

22 2

3 3 36 36

6

x a x a

x x a

ρ ρ ρ ρ ρ ρ− + − + + −
= =

+

( ) ( ) ( )
( )

4 2 2

22 2

3 3 36 1 36 1

6

x a x a

x x a

ρ ρ ρ ρ ρ ρ− + − + + −
= =

+

( ) ( ) ( )( )
( )

4 2 2

22 2

3 3 12 1 12 1

6

x a x a

x x a

ρ ρ ρ ρ+ + + − −
= −

+
 

Then, the potential (84) is written as 

( ) ( ) ( ) ( ) ( )( )
( )

2 4 2 2
2

22 2 2

3 3 12 1 12 12 1
16 6

x a x a
V x x

a x x a

ρ ρ ρ ρρ + + + − −+
= −

+
 (85) 

The potential (85) has three poles of second order, at 0, 6 a± , which are the zeros of 

( )p x′ . 
The potential is then a singular rational extension of the harmonic oscillator 
( )2

2
2

2 1
16

x
a

ρ +
. 

As noted 0ρ ≥ . For 0ρ = , the potential (85) gives the harmonic oscillator potential 
2

216
x
a

, in accordance with what we’ve found in the general case of even-parity 

polynomials ( )p x  satisfying the condition (50). Then, the wave function (82) 

becomes ( )
2

1 1 exp
8
xx A
a

ψ
 

=  
 

 and it is the ground-state wave function of the 

harmonic oscillator 
2

216
x
a

 ( )0a < , while the wave function (83) is then the fourth-

excited-state wave function of the previous oscillator. 
Substituting 2n =  into the general expressions (64) and (65), the energies of the two 
eigenstates are 

( )( )
1

6 1 2 1
4

E
a

ρ ρ+ +
= −  (86) 

( )( )
2

6 9 2 1
4

E
a

ρ ρ+ +
= −  (87) 

Since 0ρ ≥  and 0a < , both energies (86) and (87) are positive, and 2 1E E> , as 
expected. 
The energy (86) is the ground-state energy, while the energy (87) is the fourth-
excited-state energy of the potential (85). 
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The presence of three poles in the potential results in the presence of three energy 
levels between 1E  and 2E . 
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