THE INFINITY OF TWIN PRIMES

JOSEPH DISE

DEFINITION 1

\[6x \pm 1 \] are twin primes where \(x = 6nm \pm (n \pm m) \) has no solution for positive integers \(x, n, \) and \(m \).

DEFINITION 2

Given \(n \) and \(m \) are interchangeable,

all solutions for \(x \) are \(x \mod (6n + 1) \pm n = 0 \equiv (x \pm n) \mod (6n + 1) = 0 \), for all \(n \leq \sqrt{x}/6 \).

There are four results for each \(x, n \): \((x \pm n) \mod (6n + 1) \).

DEFINITION 3

The distribution of \(x \) values with no solution is bounded by

\[
D(x) \geq x \prod_{n=1}^{\left\lceil \sqrt{x} \right\rceil} \frac{6n-3}{6n+1}
\]

such that \(0 < \frac{D(x)}{x} \leq 1 \) for all \(x \).

DEFINITION 4

The average distribution of \(x \) values with no solution in a range defined by \(6(n - 1)^2 \leq x \leq 6n^2 \), where \(n > 1 \), grows by a minimum rate of

\[
\left[\frac{6(2n-1)}{6(2n-1)-1} \times \frac{6n-3}{6n+1} \right] > 1
\]

\(\therefore \) there will tend to exist more \(x \) values with no solution in subsequent ranges of \(\langle x \rangle \), where \(|\langle x \rangle| = 6(2n-1) \) and \(6(n - 1)^2 \leq x \leq 6n^2 \), as \(n \) increases.

\(\therefore \) there will exist twin primes to infinity.