Author:

Ramesh Chandra Bagadi

Data Scientist
INSOFE (International School Of Engineering), Hyderabad, India.
rameshcbagadi@uwalumni.com
+919440032711

Technical Note

Abstract

In this research Technical Note the author has presented a novel method of finding a Generalized Similarity Measure between two Vectors or Matrices or Higher Dimensional Data of different sizes.

Theory

Considering two different vectors of different sizes namely
$A_{1 x m}$ and $B_{1 x n}$, we first find the Proximity Matrix between elements of the given vectors wherein the Proximity Matrix is given by

and

d indicates the distance measured in some metric $($ default $=$ Euclidean $)$

We then find the Norm Of P_{A} as $\left\|P_{A} \cdot P_{A}\right\|$. For the Euclidean case, it is given by $\left\|P_{A} \cdot P_{A}\right\|=\sum_{j=1}^{m} \sum_{i=1}^{m} P(i, j) \cdot P(i, j)$. Also, $m<n$. Similarly, we compute the Norm of P_{B} as $\left\|P_{B} \cdot P_{B}\right\|$. For the Euclidean case, it is given by $\left\|P_{B} \cdot P_{B}\right\|=\sum_{j=1}^{n} \sum_{i=1}^{n} P(i, j) \cdot P(i, j)$.

We then find the ratio $k_{1}=\frac{\left\|P_{B} \cdot P_{B}\right\|}{\left\|P_{A} \cdot P_{A}\right\|}$.
Actually, we can note that there are only $N_{B}=\frac{n^{2}-n}{2}$ number of possibly distinct values of Proximity Matrix elements in P_{B} and similarly, there are only $N_{A}=\frac{m^{2}-m}{2}$ number of possibly distinct values of Proximity Matrix elements in P_{A}.

Similarly, we find some more ratio's $k_{N_{B}-1}=\frac{f_{\left(N_{B}-1\right)}\left(P_{B}\right)}{f_{\left(N_{B}-1\right)}\left(P_{A}\right)}$ where $f_{\left(N_{B}-1\right)}\left(P_{B}\right)$ is some Scalar Function of the Matrix P_{B}. And so is $f_{\left(N_{B}-1\right)}\left(P_{A}\right)$. Note that $f_{\left(N_{B}-1\right)}$ is the same in $f_{\left(N_{B}-1\right)}\left(P_{B}\right)$ and $f_{\left(N_{B}-1\right)}\left(P_{A}\right)$.These functions can be any of the known $\left(N_{B}-1\right)$ number of Similarity Measuring Functions that are actually the Norms calculated using the Distance Metric slated by the Similarity Functions. We now consider a fictitious Vector $A_{B_{1 \times n}}$, i.e., Vector A in the basis of Vector B, colloquially speaking. Let this be $A_{B_{1, m}}=\left[\begin{array}{lllllll}c_{1} & c_{2} & c_{3} & . & c_{n-1} & c_{n}\end{array}\right]$. Now, for this, vector, we find the Proximity Matrix $P_{A_{B_{L \times n}}}$ and now assert that $k_{N_{B}-1}=\frac{f_{\left(N_{B}-1\right)}\left(P_{B}\right)}{f_{\left(N_{B}-1\right)}\left(A_{B_{1, n}}\right)}$. This gives us N_{B} number of equations from which we can solve for elements of $A_{B_{1_{1 x n}}}$. Now, we can find distance between $A_{B_{1 \times n}}$ and $B_{1 x n}$ and can also consequently find the Similarity co-efficient between them. We can also, repeat this procedure using the normalized values of the vectors $A_{1 x m}$ and $B_{1 x n}$. In the same fashion as detailed above, we can repeat this procedure for Matrices or Higher Dimensional Data of differing sizes.

References

http://www.philica.com/advancedsearch.php?author=12897
http://www.vixra.org/author/ramesh_chandra_bagadi

