A Generalized Similarity Measure ISSN 1751-3030

Author: **Ramesh Chandra Bagadi** Data Scientist INSOFE (International School Of Engineering), Hyderabad, India. rameshcbagadi@uwalumni.com +91 9440032711

Technical Note

Abstract

In this research Technical Note the author has presented a novel method of finding a Generalized Similarity Measure between two Vectors or Matrices or Higher Dimensional Data of different sizes.

Theory

Considering two different vectors of different sizes namely

 A_{1xm} and B_{1xn} , we first find the Proximity Matrix between elements of the given vectors wherein the Proximity Matrix is given by

and

d indicates the distance measured in some metric (default = Euclidean)

We then find the Norm Of P_A as $||P_A \cdot P_A||$. For the Euclidean case, it is given by $||P_A \cdot P_A|| = \sum_{j=1}^m \sum_{i=1}^m P(i, j) \cdot P(i, j)$. Also, m < n. Similarly, we compute the Norm of P_B as $||P_B \cdot P_B||$

. For the Euclidean case, it is given by $||P_B \cdot P_B|| = \sum_{j=1}^n \sum_{i=1}^n P(i, j) \cdot P(i, j).$

We then find the ratio $k_1 = \frac{\left\| P_B \cdot P_B \right\|}{\left\| P_A \cdot P_A \right\|}$.

Actually, we can note that there are only $N_B = \frac{n^2 - n}{2}$ number of possibly distinct values of Proximity Matrix elements in P_B and similarly, there are only $N_A = \frac{m^2 - m}{2}$ number of possibly distinct values of Proximity Matrix elements in P_A .

Similarly, we find some more ratio's $k_{N_B-1} = \frac{f_{(N_B-1)}(P_B)}{f_{(N_B-1)}(P_A)}$ where $f_{(N_B-1)}(P_B)$ is some Scalar Function of the Matrix P_B . And so is $f_{(N_B-1)}(P_A)$. Note that $f_{(N_B-1)}$ is the same in $f_{(N_B-1)}(P_B)$ and $f_{(N_B-1)}(P_A)$. These functions can be any of the known (N_B-1) number of **Similarity Measuring Functions** that are actually **the Norms** calculated using the **Distance Metric** slated by the **Similarity Functions**. We now consider a fictitious Vector $A_{B_{1,m}}$, i.e., Vector A in the basis of Vector B, colloquially speaking. Let this be $A_{B_{1,m}} = \begin{bmatrix} c_1 & c_2 & c_3 & \dots & c_{n-1} & c_n \end{bmatrix}$. Now, for this, vector, we find the Proximity Matrix $P_{A_{B_{1,m}}}$ and now assert that $k_{N_B-1} = \frac{f_{(N_B-1)}(P_B)}{f_{(N_B-1)}(A_{B_{1,m}})}$. This gives us N_B number of equations from which we can solve for elements of $A_{B_{1,m}}$. Now, we can find distance between $A_{B_{1,m}}$ and $B_{1,xn}$ and can also consequently find the Similarity co-efficient between them. We can also, repeat this procedure using the normalized values of the vectors $A_{1,xm}$ and $B_{1,xn}$. In the same fashion as detailed above, we can repeat this procedure for Matrices or Higher Dimensional Data of differing sizes.

References

http://www.philica.com/advancedsearch.php?author=12897

http://www.vixra.org/author/ramesh_chandra_bagadi