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Abstract

This paper presents evidence for the idea that much of the workings
of brains and nervous systems may be understood as compression of
information via the matching and unification of patterns. Information
compression can mean selective advantage for any creature: in the effi-
cient storage and transmission of information; and, owing to the close
connection between information compression and concepts of predic-
tion and probability, in the making of predictions about where food
may be found, potential dangers, and so on. Several aspects of our
everyday perceptions and thinking may be seen as information com-
pression. For example, many words in natural languages may be seen
as relatively short identifiers or “codes” for relatively complex con-
cepts. When viewing the world with two eyes, we see one view, not
two. Random-dot stereograms provide confirmation that, in binocular
vision, we do indeed merge information from our two eyes and thus
compress it. Information compression may be seen in the workings of
sensory units in the eye of Limulus, the horseshoe crab. Computer
models demonstrate how information compression may be a key to
the unsupervised discovery of grammars for natural language, includ-
ing segmental structures (words and phrases), classes of structure,
and abstract patterns. Information compression may be seen in the
perceptual constancies, including size constancy, lightness constancy,
and colour constancy. Mathematics, which is a product of the human
intellect, may be seen to be a set of techniques for the compression

∗Dr Gerry Wolff BA (Cantab) PhD (Wales) CEng MIEEE MBCS; CognitionRe-
search.org, Menai Bridge, UK; jgw@cognitionresearch.org; +44 (0) 1248 712962; +44 (0)
7746 290775; Skype: gerry.wolff; Web: www.cognitionresearch.org.

1

mailto:jgw@cognitionresearch.org
http://www.cognitionresearch.org


of information, and their application. The SP theory of intelligence
provides evidence for the importance of information compression in
several aspects of human intelligence. Four objections to the main
thesis of this paper are described, with answers to those objections.

Keywords: information compression, intelligence, perception, learning, cog-
nition

1 Introduction

“Fascinating idea! All that mental work I’ve done over the years,
and what have I got to show for it? A goddamned zipfile! Well,
why not, after all?” (John Winston Bush, 1996).

This paper describes observations and arguments in support of the idea
that much of the workings of brains and nervous systems may be understood
as compression of information via the matching and unification of patterns.
This idea will be referred to as “BICMUP”, short for “Brain: Information
Compression via the Matching and Unification of Patterns” (see also Section
2.3). The aim here is to review, update, and extend the discussion in [33],
itself the basis for [34, Chapter 2].

Observations and arguments in this paper provide some of the empirical
support for the SP theory of intelligence (Section 2.2), and also SP-neural,
a version of the SP theory expressed in terms of neurons and their intercon-
nections. In that latter connection, this paper complements [39], a previous
paper about SP-neural.

The next section describes some of the background to this research and
some relevant general principles. Several sections that follow describe strands
of evidence in support of BICMUP. And Section 16, with Appendix C, de-
scribes apparent contradictions of the BICMUP thesis, and the related SP
theory of intelligence, and how they may be resolved.

2 Background and general principles

This section provides some background to this paper and summarises some
general principles that have a bearing on BICMUP.

2.1 Approaches to information compression

There are many approaches to information compression, most of them with
a mathematical flavour, and many of them described at length in books such
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as [21].
The orientation here is different. It derives largely from the SP theory of

intelligence, introduced in Section 2.2. Amongst other things, the SP theory
attempts to get below or behind the mathematics of other approaches, to
focus on the relatively simple, ‘primitive’ idea that information compression
may be understood in terms of the matching and unification of patterns.

A potential benefit is that, since this idea is relatively ‘concrete’ and
less abstract than much of mathematics, it suggests avenues that may be
explored in understanding possible mechanisms for information compression
in artificial systems and in brains and nervous systems.

Another reason for this approach is that the SP theory aims to be,
amongst other things, a theory of the foundations of mathematics [41], so it
would not be appropriate for the theory to be too dependant on mathematics.

2.2 The SP theory of intelligence

The SP theory of intelligence, and its realisation in the SP computer model,
is a unique attempt to simplify and integrate observations and arguments
across artificial intelligence, mainstream computing, mathematics, and hu-
man learning, perception, and cognition, with information compression as a
unifying theme.

There is an outline of the SP system in Appendix A with pointers to
where fuller information may be found.

As noted in the Introduction, the observations and arguments in this
paper provide some of the empirical support for the SP theory. More specif-
ically they provide empirical support for the SP theory viewed as a theory
of human intelligence. And the paper provides empirical underpinnings for
SP-neural, described in [39].

There is other empirical support for the SP system, summarised in Section
15, and that evidence provides indirect support for BICMUP.

2.3 SP-multiple-alignment and information compres-
sion via the matching and unification of patterns

Here, some principles and techniques for the compression of information are
outlined. Fuller descriptions may be found in [41, Section 2].

All of these principles and techniques may be seen to be special cases of
the powerful concept of SP-multiple-alignment, a key part of the SP system,
described briefly in Appendix A.1.

As noted there, the concept of SP-multiple-alignment is founded on the
previously-mentioned concept of information compression via the matching
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and unification of patterns or “ICMUP”. This means that a body of infor-
mation may be compressed by searching for redundancy in the form of pat-
terns that match each other, and then reducing that redundancy and thus
compressing the information by merging or unifying two or more matching
patterns to make one.

There are five main variants of ICMUP:

• Chunking-with-codes. With each unified “chunk” of information, give
it a relatively short name, identifier, or “code”, and use that as a short-
hand for the chunk of information wherever it occurs. As mentioned in
[41, Section 2.1], compression may be optimised by assigning shorter
codes to more frequent chunks and longer codes to rarer chunks, in
accordance with some such scheme as Shannon-Fano-Elias coding [9].

• Schema-plus-correction. This variant is like chunking-with-codes but
the unified chunk of information may have variations or “corrections”
on different occasions.

• Run-length coding. This variant may be used with any sequence of two
or more copies of a pattern. In that case, it is only necessary to record
one copy of the pattern, with the number of copies or tags to mark the
start and end of the sequence.

• Class-inclusion hierarchies with inheritance of attributes. Here, there is
a hierarchy of classes and subclasses, with “attributes” at each level. At
every level except the top level, the subclass “inherits” the attributes
of all higher levels.

• Part-whole hierarchies with inheritance of contexts. This is like class-
inclusion hierarchies with inheritance of attributes except that the
structure represents the parts and subparts of some entity. Each sub-
part may be seen to inherit its place in larger structures.

All these five variants of ICMUP may be modelled via the concept of
SP-multiple-alignment in the SP system. Within that framework they may
be integrated seamlessly in any combination.

2.4 Information compression and concepts of predic-
tion and probability

It has been recognised for some time that there is an intimate relation be-
tween information compression and concepts of prediction and probability
[29, 24, 25, 13].
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In case this seems obscure, it makes sense in terms of ICMUP: a pattern
that repeats is one that invites information compression via ICMUP, but it
is also one that, via inductive reasoning, suggests what may happen in the
future. As can be seen in the workings of the SP system, probabilities may
be calculated from the frequencies with which different patterns occur ([34,
Section 3,7], [36, Section 4.4]).

In more concrete terms, any repeating pattern—such as the association
between black clouds and rain—provides a basis for prediction—black clouds
suggest that rain may be on the way—and probabilities may be derived from
the number of repetitions.

There is a little more detail in [41, Appendix D], and a lot more detail
about how this works with the SP-multiple-alignment concept in [34, Section
3.7] and [36, Section 4.4].

3 Early work

Apart from the suggestion by William of Ockham in the 14th century that
“Entities are not to be multiplied beyond necessity.”, and remarks by promi-
nent scientists about the importance of simplicity in science (summarised in
[41, Section 3]), research with a bearing on BICMUP began in the 1950s and
’60s after the publication of Claude Shannon’s [23] “theory of communica-
tion” (later called “information theory”), and partly inspired by it. In what
follows, there is a rough distinction between research with the main focus on
human learning, perception, and cognition, and research that concentrates
on issues in mathematics and computing.

3.1 Psychology-related research

In a paper called “Some informational aspects of visual perception”, Fred
Attneave [1] argues that we naturally compress visual information so that
we can easily recognise something from an outline picture of it in which
much of the repeated, redundant, information has been stripped away.

Also, “Common objects may be represented with great economy, and
fairly striking fidelity, by copying the points at which their contours change
direction maximally, and then connecting these points appropriately with
a straight edge.” (ibid., p. 185), as shown in a drawing of a sleeping cat
reproduced in Figure 1.

As indicated in Section 2.4, Satosi Watanabe picked up the baton in
a paper called “Information-theoretical aspects of inductive and deductive
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INFORMATIONAL ASPECTS OF VISUAL PERCEPTION 185

Fie. 2. Subjects attempted to approximate
the dosed figure shown above with a pattern
of 10 dots. Radiating bars indicate the rela-
tive frequency with which various portions of
the outline were represented by dots chosen.

Evidence from other and entirely dif-
ferent situations supports both of these
inferences. The concentration of infor-
mation in contours is illustrated by the
remarkably similar appearance of ob-
jects alike in contour and different
otherwise. The "same" triangle, for ex-
ample, may be either white on black or
green on white. Even more impressive
is the familiar fact that an artist's
sketch, in which lines are substituted
for sharp color gradients, may consti-
tute a readily identifiable representation
of a person or thing.

An experiment relevant to the second
principle, i.e., that information is fur-
ther concentrated at points where a
contour changes direction most rapidly,
may be summarized briefly.8 Eighty 5s
were instructed to draw, for each of 16
outline shapes, a pattern of 10 dots
which would resemble the shape as
closely as possible, and then to indicate
on the original outline the exact places

3 This study has been previously published
only in the form of a mimeographed note:
"The Relative Importance of Parts of a Con-
tour," Research Note P&MS Sl-8, Human Re-
sources Research Center, November 1951.

which the dots represented. A good
sample of the results is shown in Fig. 2:
radial bars indicate the relative fre-
quency with which dots were placed on
each of the segments into which the con-
tour was divided for scoring purposes.
It is clear that Ss show a great deal of
agreement in their abstractions of points
best representing the shape, and most
of these points are taken from regions
where the contour is most different from
a straight line. This conclusion is veri-
fied by detailed comparisons of dot fre-
quencies with measured curvatures on
both the figure shown and others.

Common objects may be represented
with great economy, and fairly striking
fidelity, by copying the points at which
their contours change direction maxi-
mally, and then connecting these points
appropriately with a straightedge. Fig-
ure 3 was drawn by applying this tech-
nique, as mechanically as possible, to a
real sleeping cat. The informational
content of a drawing like this may be
considered to consist of two compo-
nents: one describing the positions of
the points, the other indicating which
points are connected with which others.
The first of these components will al-
most always contain more information
than the second, but its exact share will
depend upon the precision with which
positions are designated, and will fur-
ther vary from object to object.

Let us now return to the hypothetical
subject whom we left between the corner

FIG. 3. Drawing made by abstracting 38
points of maximum curvature from the con-
tours of a sleeping cat, and connecting these
points appropriately with a straightedge.

Figure 1: Drawing made by abstracting 38 points of maximum curvature from
the contours of a sleeping cat, and connecting these points appropriately with
a straight edge. Reproduced from Figure 3 in [1], with permission.

inference” [29]. He later wrote about the role of information compression in
pattern recognition [30, 31].

Horace Barlow published a paper called “Sensory mechanisms, the reduc-
tion of redundancy, and intelligence” [2] in which he argued, on the strength
of the large amounts of sensory information being fed into the human central
nervous system, that “the storage and utilization of this enormous sensory
inflow would be made easier if the redundancy of the incoming messages was
reduced.” (ibid. p. 537).

It is interesting to see that Barlow suggests that:

“... the mechanism that organises [the large size of the sensory in-
flow] must play an important part in the production of intelligent
behaviour.” (ibid. p. 555).

and

“... the operations required to find a less redundant code have
a rather fascinating similarity to the task of answering an intel-
ligence test, finding an appropriate scientific concept, or other
exercises in the use of inductive reasoning. Thus, redundancy
reduction may lead one towards understanding something about
the organization of memory and intelligence, as well as pattern
recognition and discrimination.” [3, p. 210].

These prescient insights into the significance of information compression
for the workings of human intelligence, with further discussion in [4], is a
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strand of thinking that has carried through into the SP theory of intelligence,
with a wealth of supporting evidence.1

Barlow developed these and related ideas over a period of years in several
papers, some of which are referenced in this paper. However, in a paper
published in 2001 [5], he adopted a new position, arguing that:

“... the [compression] idea was right in drawing attention to the
importance of redundancy in sensory messages because this can
often lead to crucially important knowledge of the environment,
but it was wrong in emphasizing the main technical use for re-
dundancy, which is compressive coding. The idea points to the
enormous importance of estimating probabilities for almost ev-
erything the brain does, from determining what is redundant to
fuelling Bayesian calculations of near optimal courses of action in
a complicated world.” (ibid. p. 242).

While there are some valid points in what Barlow says in support of his
new position, his overall conclusions appear to be wrong. His main arguments
are summarised in Appendix B, with what I’m sorry to say are my critical
comments after each one.2

3.2 Mathematics- and computer-related research

Research under the general heading minimum length encoding, with the
main emphasis on issues in mathematics and computing, is also relevant
to BICMUP. This includes:

• Ray Solomonoff developed a formal theory known as algorithmic prob-
ability showing the intimate relation between information compression
and inductive inference [24, 25].

• Chris Wallace and David Boulton explored the significance of informa-
tion compression in classification and related areas in [28] and subse-
quent papers.

• Gregory Chaitin and Andrei Kolmogorov, working independently, built
on the work of Ray Solomonoff in developing algorithmic information

1When I was an undergraduate at Cambridge University, it was fascinating lectures by
Horace Barlow about the significance of information compression in the workings of brains
and nervous systems, that first got me interested in those ideas.

2I feel apologetic about this because, as I mentioned earlier, Barlow’s lectures and his
earlier research relating to BICMUP have been an inspiration for me over many years.
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theory. The main idea here is that the information content of a string
of symbols is equivalent to the length of the shortest computer program
that anyone has been able to devise that describes the string.

• Jorma Rissanen has developed related ideas in [19, 20] and other pub-
lications.

A detailed description of these and related bodies of research may be
found in [13].

4 Information compression and biology

This section and those that follow describe evidence for BICMUP.
First, let’s take a bird’s eye view of why information compression might

be important in people and other animals.
In terms of biology, information compression can confer a selective ad-

vantage to any creature:

• By allowing it to store more information in a given storage space or use
less storage space for a given amount of information, and by speeding
up transmission of information along nerve fibres—thus speeding up
reactions—or reducing the bandwidth needed for any given volume of
information.

In connection with the last point, we have seen in Section 3.1 how
Barlow [2, p. 548] draws attention to evidence that, in vertebrates at
least, each optic nerve is far too small to carry reasonable amounts of
the information emanating from the retina unless there is considerable
compression of that information.

• Perhaps more important than the impact of information compression
on the storage or transmission of information is the close connection,
outlined in Section 2.4 and noted in Section 3.2, between information
compression and concepts of prediction and probability. Compression
of information provides a means of predicting the future from the past
and estimating probabilities so that, for example, an animal may get
to know where food may be found or where there may be dangers.

As mentioned in Section 2.4, the close connection between information
compression and concepts of prediction and probability makes sense in
terms of ICMUP: any repeating pattern provides a basis for prediction
and probabilities may be derived from the number of repetitions.
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• Being able to make predictions and estimate probabilities can mean
large savings in the use of energy with consequent benefits in terms of
survival.

It is likely that similar principles apply in computers and other artificial
systems for the processing of information.

5 Hiding in plain sight

Compression of information is so much embedded in our thinking, and seems
so natural and obvious, that it is easily overlooked. Here are some examples.

5.1 Words as codes or shorthands

In the same way that “TFEU” may be a convenient code or shorthand for
the rather cumbersome expression “Treaty on the Functioning of the Euro-
pean Union” (Appendix C.1.1), a name like “New York” is a compact way
of referring to the many things of which that renowned city is composed.
Likewise for the many other names that we use: “Nelson Mandela”, “George
Washington”, “Mount Everest”, and so on.

More generally, most words in our everyday language stand for classes
of things and, as such, are powerful aids to economical description. Imagine
how cumbersome things would be if, on each occasion that we wanted to refer
to a “table”, we had to say something like “A horizontal platform, often made
of wood, used as a support for things like food, normally with four legs but
sometimes three, ...”, like the slow Entish language of the Ents in Tolkien’s
The Lord of the Rings.3 Likewise for verbs like “speak” or “dance”, adjectives
like “artistic” or “exuberant”, and adverbs like “quickly” or “carefully”.4

5.2 Merging multiple views to make one

Here is another example. If, when we are looking at something, we close our
eyes for a moment and open them again, what do we see? Normally, it is
the same as what we saw before. But recognising that the before and after

3J. R. R. Tolkien, The Lord of the Rings, London: HarperCollins, 2005, Kindle edition.
For a description of Entish, see, for example, page 480. See also, pages 465, 468, 473, 477,
478, 486, and 565.

4Although natural language provides a very effective means of compressing information
about the world, it is not free of redundancy. And that redundancy has a useful role to
play in, for example, enabling us to understand speech in noisy conditions, and in learning
the structure of language (Section C.2 and [36, Section 5.2]).
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views are the same, means unifying the two patterns to make one and thus
compressing the information, as shown schematically in Figure 2.

Figure 2: A schematic view of how, if we close our eyes for a moment
and open them again, we normally merge the before and after views to
make one. The landscape here and in Figure 3 is from Wallpapers Buzz
(www.wallpapersbuzz.com), reproduced with permission.

It seems so simple and obvious that if we are looking at a landscape like
the one in the figure, there is just one landscape even though we may look
at it two, three, or more times. But if we did not unify successive views
we would be like an old-style cine camera that simply records a sequence
of frames, without any kind of analysis or understanding that, very often,
successive frames are identical or nearly so.

5.3 Recognition

Of course, we can recognise something that we have seen before even if the in-
terval between one view and the next is hours, months, or years. In cases like
that, it is more obvious that we are relying on memory, as shown schemati-
cally in Figure 3. Notwithstanding the undoubted complexities and subtleties
in how we recognise things, the process may be seen in broad terms as one of
matching incoming information with stored knowledge, merging or unifying
patterns that are the same, and thus compressing the information. If we
did not compress information in that way, our brains would quickly become
cluttered with millions of copies of things that we see around us—people,
furniture, cups, trees, and so on—and likewise for sounds and other sensory
inputs.
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Figure 3: Schematic representation of how, in recognition, incoming visual
information may be matched and unified with stored knowledge.

As mentioned earlier, Satosi Watanabe has explored the relationship be-
tween pattern recognition and information compression [30, 31].

6 Binocular vision

Information compression may also be seen at work in binocular vision:

“In an animal in which the visual fields of the two eyes overlap
extensively, as in the cat, monkey, and man, one obvious type of
redundancy in the messages reaching the brain is the very nearly
exact reduplication of one eye’s message by the other eye.” [3, p.
213].

In viewing a scene with two eyes, we normally see one view and not two.
This suggests that there is a matching and unification of patterns, with a
corresponding compression of information. A sceptic might say, somewhat
implausibly, that the one view that we see comes from only one eye. But that
sceptical view is undermined by the fact that, normally, the one view shows
depth with a vividness that comes from merging the two slightly different
views from both eyes.

Strong evidence that, in stereoscopic vision, we do indeed merge the views
from both eyes, comes from a demonstration with ‘random-dot stereograms’,
as described in [37, Section 5.1].

In brief, each of the two images shown in Figure 4 is a random array of
black and white pixels, with no discernable structure, but they are related
to each other as shown in Figure 5: both images are the same except that
a square area near the middle of the left image is further to the left in the
right image.
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Figure 4: A random-dot stereogram from [12, Figure 2.4-1], reproduced with
permission of Alcatel-Lucent/Bell Labs.

Figure 5: Diagram to show the relationship between the left and right images
in Figure 4. Reproduced from [12, Figure 2.4-3], with permission of Alcatel-
Lucent/Bell Labs.
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When the images in Figure 4 are viewed with a stereoscope, project-
ing the left image to the left eye and the right image to the right eye, the
central square appears gradually as a discrete object suspended above the
background.

Although this illustrates depth perception in stereoscopic vision—a sub-
ject of some interest in its own right—the main interest here is on how we
see the central square as a discrete object. There is no such object in either
of the two images individually. It exists purely in the relationship between
the two images, and seeing it means matching one image with the other and
unifying the parts which are the same.

This example shows that, although the matching and unification of pat-
terns is a usefully simple idea, there are interesting subtleties and complexi-
ties that arise when two patterns are similar but not identical.

Seeing the central object means finding a ‘good’ match between relevant
pixels in the central area of the left and right images, and likewise for the
background. Here, a good match is one that yields a relatively high level
of information compression. Since there is normally an astronomically large
number of alternative ways in which combinations of pixels in one image may
be aligned with combinations of pixels in the other image, it is not normally
feasible to search through all the possibilities exhaustively.

As with many such problems in artificial intelligence, the best is the
enemy of the good. Instead of looking for the perfect solution, we can do
better by looking for solutions that are good enough for practical purposes.
With this kind of problem, acceptably good solutions can often be found in a
reasonable time with heuristic search: doing the search in stages and, at each
stage, concentrating the search in the most promising areas and cutting out
the rest, perhaps with backtracking or something equivalent to improve the
robustness of the search. One such method for the analysis of random-dot
stereograms has been described by Marr and Poggio [15].

7 Abstracting object concepts via motion

It seems likely that the kinds of processes that enable us to see a hidden object
in a random-dot stereogram also apply to how we see discrete objects in the
world. The contrast between the relatively stable configuration of features
in an object such as a car, compared with the variety of its surroundings
as it travels around, seems to be an important part of what leads us to
conceptualise the object as an object [37, Section 5.2]. Any creature that
depends on camouflage for protection—by blending with its background—
must normally stay still. As soon as it moves relative to its surroundings, it
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is likely to stand out as a discrete object.
The idea that information compression may provide a means of discover-

ing ‘natural’ structures in the world—such as the many objects in our visual
world—has been dubbed the ‘DONSVIC’ principle: the discovery of natural
structures via information compression [36, Section 5.2]. Of course, the word
‘natural’ is not precise, but it has enough precision to be a meaningful name
for the kinds of concepts which are the bread-and-butter of our everyday
thinking.

Similar principles may account for how young children come to under-
stand that their first language (or languages) is composed of words (Section
10).

8 Adaptation in the eye of Limulus and run-

length coding

Information compression may also be seen down in the works of vision. Figure
6 shows a recording from a single sensory cell (ommatidium) in the eye of a
horseshoe crab (Limulus polyphemus), first when the background illumination
is low, then when a light is switched on and kept on for a while, and later
switched off—shown by the step function at the bottom of the figure.

As one might expect, the ommatidium fires at a relatively low rate of
about 20 impulses per second even when the illumination is relatively low
(shown at the left of the figure). When the light is switched on, the rate
of firing increases sharply but instead of staying high while the light is on
(as one might expect), it drops back almost immediately to the background
rate. The rate of firing remains at that level until the light is switched off,
at which point it drops sharply and then returns to the background level, a
mirror image of what happened when the light was switched on.

For the main theme of this paper, a point of interest is that the positive
spike when the light is switched on, and the negative spike when the light is
switched off, have the effect of marking boundaries, first between dark and
light, and later between light and dark. In effect, this is a form of run-length
coding (Section 2.3). At the first boundary, the positive spike marks the fact
of the light coming on. As long as the light stays on, there is no need for
that information to be constantly repeated, so there is no need for the rate
of firing to remain at a high level. Likewise, when the light is switched off,
the negative spike marks the transition to darkness and, as before, there is
no need for constant repetition of information about the new low level of
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Figure 6: Variation in the rate of firing of a single ommatidium of the eye of
a horseshoe crab in response to changing levels of illumination. Reproduced
from [18, p. 118.], with permission from the Optical Society of America.
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illumination.5

Another point of interest is that this pattern of responding—adaptation
to constant stimulation—can be explained via the action of inhibitory nerve
fibres that bring the rate of firing back to the background rate when there
is little or no variation in the sensory input [27]. Inhibitory mechanisms are
widespread in the brain [26, p. 45] and it appears that, in general, their role is
to reduce or eliminate redundancy in information, in keeping with the main
theme of this paper.

9 Other examples of adaptation

Adaptation is also evident at the level of conscious awareness. If, for example,
a fan starts working nearby, we may notice the hum at first but then adapt
to the sound and cease to be aware of it. But when the fan stops, we are
likely to notice the new quietness at first but adapt again and stop noticing
it.

Another example is the contrast between how we become aware if some-
thing or someone touches us but we are mostly unaware of how our clothes
touch us in many places all day long. We are sensitive to something new and
different and we are relatively insensitive to things that are repeated.

As with adaptation in the eye of Limulus, these other kinds of adaptation
may be seen as examples of the run-length coding technique for compression
of information.

10 Discovering the segmental structure of lan-

guage

There is evidence that much of the segmental structure of language—words
and phrases—may be discovered via information compression, as described
in the following two subsections.

5It is recognised that this kind of adaptation in eyes is a likely reason for small eye
movements when we are looking at something, including sudden small shifts in position
(‘microsaccades’), drift in the direction of gaze, and tremor [16]. Without those move-
ments, there would be an unvarying image on the retina so that, via adaptation, what we
are looking at would soon disappear.
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10.1 The word structure of natural language

As can be seen in Figure 7, people normally speak in ‘ribbons’ of sound,
without gaps between words or other consistent markers of the boundaries
between words. In the figure—the waveform for a recording of the spoken
phrase “on our website”—it is not obvious where the word “on” ends and the
word “our” begins, and likewise for the words “our” and “website”. Just to
confuse matters, there are three places within the word “website” that look
as if they might be word boundaries.

Figure 7: Waveform for the spoken phrase “On our website” with an alpha-
betic transcription above the waveform and a phonetic transcription below
it. With thanks to Sidney Wood of SWPhonetics (swphonetics.com) for the
figure and for permission to reproduce it.

Given that words are not clearly marked in the speech that young children
hear, how do they get to know that language is composed of words? Learning
to read could provide an answer but it appears that young children develop
an understanding that language is composed of words well before the age
when, normally, they are introduced to reading. Perhaps more to the point
is that there are still, regrettably, many children throughout the world that
are never introduced to reading but, in learning to talk and to understand
speech, they inevitably develop a knowledge of the structure of language,
including words.6

6It has been recognised for some time that skilled speakers of any language have an
ability to create or recognise sentences that are grammatical but new to the world. Chom-
sky’s well-known example of such a sentence is Colorless green ideas sleep furiously. [8,
p. 15], which, when it was first published, was undoubtedly novel. This ability to create
or recognise grammatical but novel sentences implies that knowledge of a language means
knowledge of words as discrete entities that can form novel combinations.
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In keeping with the main theme of this paper, information compression
appears to provide an answer. With computer model MK10 (described in [32]
and earlier publications referenced therein), it has been shown that heuris-
tic search for high levels of information compression can reveal much of the
word structure in an English-language text from which all spaces and punc-
tuation has been removed [36, Section 5.2]. This discovery of word structure
is achieved without the aid of any kind of dictionary or other information
about the structure of English. It is also achieved in “unsupervised” mode,
without the assistance of any kind of “teacher”, or data that is marked as
“wrong”, or the grading of samples from simple to complex (cf. [11]).

It true that there are added complications with speech but it seems likely
that similar principles apply.

Discovering the word structure of language via information compression
is another example of the DONSVIC principle, mentioned in Section 7—
because words are the kinds of ‘natural’ structure which are the subject of
the DONSVIC principle, and because information compression provides a
key to how they may be discovered.

10.2 The phrase structure of natural language

Program MK10, mentioned in Section 10.1, does quite a good job at dis-
covering the phrase structure of unsegmented text in which each word has
been replaced by a symbol representing the grammatical class of the word
[32].7 As before, it works without any prior knowledge of the structure of
English and it works in usupervised mode without the assistance of any kind
of “teacher”, or anything equivalent.

This result suggests that information compression may have a role to play,
not merely in discovering the word structure of language, but more generally
in discovering the grammatical structure of language (next).

11 Grammatical inference

Picking up the last point from the previous subsection, it seems likely that
learning the grammar of a language may also be understood in terms of
information compression. Evidence in support of that expectation comes
from research with two programs designed for grammatical inference:

• Program SNPR, which was developed from program MK10, can dis-
cover plausible grammars from samples of English-like artificial lan-

7This was done by Dr. Isabel Forbes, a person qualified in theoretical linguistics.
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guages [32]. This includes the discovery of segmental structures, classes
of structure, and abstract patterns. Information compression is central
in how the program works.

• Program SP71, one of the main products of the SP programme of
research, achieves results at a similar level to that of SNPR. As before,
information compression is central in how the program works. With
the solution of some residual problems, outlined in [36, Section 3.3],
there seems to be a real possibility that the SP system will be able to
discover plausible grammars from samples of natural language. Also,
it is anticipated that, with further development, the program may be
applied to the learning of non-syntactic “semantic” knowledge, and the
learning of grammars in which syntax and semantics are integrated.

What was the point of developing SP71 when it does no better at gram-
matical inference than program SNPR? The reason is that the SNPR pro-
gram, which was designed to build structures hierarchically, was not com-
patible with the new goal of the SP programme of research: to simplify
and integrate observations and concepts across a broad canvass. What was
needed was a new organising principle that would accommodate hierarchical
structures and several other kinds of structure as well. It turned out that the
SP-multiple-alignment concept, borrowed and adapted from bioinformatics,
was much more promising than the organising principle in the SNPR pro-
gram.

12 Generalisation, the correction of over- and

under-generalisations, and “dirty data”

In connection with the learning of language and other kinds of knowledge,
it appears that information compression provides an elegant solution to two
problems:

• Generalisation. How can we generalise our knowledge without over-
generalising or under-generalising;

• Dirty data. How can we learn correct knowledge despite errors in the
examples we hear;

There is evidence that both these things can be achieved with unsuper-
vised learning via information compression, without the correction of errors
by parents or teachers or anything equivalent. In brief, a grammar that is
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good in terms of information compression is one that generalises without
over-generalising or under-generalising; and such a grammar is also one that
weeds out errors in the data. These things are described more fully in [34,
Section 9.5.3] and [36, Section 5.3]. There is also relevant discussion in [40,
Section V-H and XI-C].

This problem of generalising our learning without over- or under-
generalisation applies to the learning of a natural language and also to the
learning of such things as visual images. It appears that the solution out-
lined here has distinct advantages compared with, for example, what appear
to be largely ad hoc solutions that have been proposed for deep learning in
artificial neural networks [40, Section V-H].

13 Perceptual constancies

It has long been recognised that our perceptions are governed by constancies:

• Size constancy. To a large extent, we judge the size of an object to be
constant despite wide variations in the size of its image on the retina
[10, pp. 40-41].

• Lightness constancy. We judge the lightness of an object to be constant
despite wide variations in the intensity of its illumination [10, p. 376].

• Colour constancy. We judge the colour of an object to be constant
despite wide variations in the colour of its illumination [10, p. 402].

These kinds of constancy, and others such as shape constancy and loca-
tion constancy, may each be seen as a means of encoding information eco-
nomically. It is simpler to remember that a particular person is “about my
height” than many different judgements of size, depending on how far away
that person is. In a similar way, it is simpler to remember that a particular
object is “black” or “red” than all the complexity of how its lightness or its
colour changes in different lighting conditions.

14 Mathematics

A discussion of mathematics may seem out of place in a paper about
BICMUP but maths and computing are both products of the human in-
tellect so, for that reason, a consideration of their organisation and workings
is relevant to the matter in hand.
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In [41] it has been argued that mathematics may be seen as a set of
techniques for the compression of information, and their application. In case
this seems implausible:

• An equation like Albert Einstein’s E = mc2 may be seen as a very com-
pressed representation of what may be a very large set of data points
relating energy (E) and mass (m), with the speed of light (c) as a con-
stant. Similar things may be said about such well-known equations as
s = (gt2)/2 (Newton’s second law of motion), a2 + b2 = c2 (Pythago-
ras’s equation), PV = k (Boyle’s law), and F = q(E + v × B) (the
charged-particle equation).

• The first three of the basic techniques for information compression out-
lined in Section 2.3 may be seen at work in mathematical notations.
For example: multiplication as repeated edition may be seen as an
example of run-length coding;

Owing to the close connections between logic and mathematics, and be-
tween computing and mathematics, it seems likely that similar principles
apply in logic and in computing.

15 The SP system and its empirical support

as evidence for BICMUP

Empirical support for the SP system, viewed as a theory of human intel-
ligence, is largely independent of the kind of direct empirical support for
BICMUP described in the body of this paper. Thus empirical support for
the SP theory provides additional empirical support for BICMUP.

As outlined in Appendix A, the SP system has strengths in three main
aspects of human intelligence: versatility in the representation of diverse
kinds of knowledge, versatility in diverse aspects of intelligence, and the kind
of seamless integration of diverse kinds of knowledge and diverse aspects of
intelligence, in any combination, which appears to be necessary to model the
fluidity, versatility, and adaptability of human intelligence.

This versatility in aspects of human intelligence provides empirical sup-
port for the SP system as a theory of human intelligence, including its central
organising principles: SP-multiple-alignment and information compression.
Thus the SP system and its empirical support provides indirect but powerful
empirical support for BICMUP.
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16 Some apparent contradictions and how

they may be resolved

The idea that information compression is fundamental in human learning,
perception and cognition (BICMUP), and also in AI, mainstream computing,
and mathematics (aspects of the SP theory besides human cognition), seems
to be contradicted by:

• The productivity of the human brain and the ways in which computers
and mathematics may be used to create redundant copies of information
as well as to compress information;

• The fact that redundancy in information is often useful in both the
storage and processing of information;

• A less direct challenge to BICMUP and the SP theory is persuasive
evidence, described by Gary Marcus [14], that in many respects, the
human mind is a kluge, meaning “a clumsy or inelegant—yet surpris-
ingly effective—solution to a problem” (ibid., p 2).

• The fact that certain kinds of redundancy are difficult or impossible
for people to detect and exploit.

These apparent contradictions and how they may be resolved are dis-
cussed in Appendix C.

17 Conclusion

This paper presents evidence for the idea, referred to as “BICMUP”, that
much of human learning, perception, and thinking, and the workings of ner-
vous systems, may be understood as compression of information.

As background to the main body of the paper: the SP theory of intelli-
gence is introduced, with information compression as its unifying theme; it is
often useful to view information compression as a process of finding patterns
that match each other and merging or “unifying” multiple instances of a pat-
tern to make one, and there are five main variants of that principle; it has
been recognised for some time that there is an intimate connection between
information compression and concepts of prediction and probability.

Research related to BICMUP was developed by such people as Fred At-
tneave and Horace Barlow in the 1950s and later. At about the same time and
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largely independently, related research, with an emphasis on issues in math-
ematics and computing, was developed by such people as Ray Solomonoff,
Gregory Chaitin, and Andrei Kolmogorov.

As with artificial systems, information compression can mean selective
advantages for animals: in the efficient storage and transmission of informa-
tion; in being able to make predictions about sources of food, where there
may be dangers, and so on; and in corresponding savings in energy.

Some aspects of information compression and its benefits are so much
embedded in our everyday thinking that they are easily overlooked: most
nouns, verbs and adjectives may be seen as short codes for relatively complex
concepts; we frequently create shorthands for relatively long expressions; if
we blink or otherwise close our eyes for a moment, we normally compress the
before and after views by merging them into a single percept; In recognising
something after a longer period, we are, in effect, compressing the sensory
information by merging it with information that we have stored.

Quite independently of interesting issues related to depth perception, the
fact that, normally, we see a single image when we are viewing something
with two eyes, suggests that we are compressing sensory data by merging
the two retinal images to make one. The fact that people see the central
figure in random-dot stereograms proves that they are indeed merging the
two random-dot images. This is because the central figure is not present in
either of the random-dot images individually—it can only be seen by unifying
them.

Similar principles apply in the way the boundaries of a visual object can
be seen most clearly when the object moves in relation to its background.

Information compression may be seen at a “low” level in the workings of a
sensory unit or ommatidium in the eye of Limulus, the horseshoe crab. Here,
there is a medium-level rate of firing when illumination is constant, with a
sharp upswing when a light is switched on, and a downswing when the light
is switched off. These swings have the effect of marking the boundaries of a
period of uniform illumination, in accordance with the principle of run-length
coding. Similar principles of adaptation apply at the level of consciousness
in one’s responses to sounds or things that may touch one’s skin.

A computer model of the unsupervised learning of segmental structure in
language, with a central role for information compression, produces results
that suggest that information compression is a key principle in the unsuper-
vised discovery of segmental structures, both at the level of words and of
phrases.

Likewise, computer models for learning the syntax of English-like artificial
languages, with central roles for information compression, produce results
that suggest that information compression is a key principle in the unsu-
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pervised learning of syntax, including the learning of segmental structures,
classes of structure, and abstract patterns.

It seems likely that these principles will generalise to natural languages.
Information compression may be seen in the perceptual constancies, in-

cluding size constancy, lightness constancy, and colour constancy.
In another paper, it has been argued that mathematics may be seen to be

a set of techniques for the compression of information, and their application.
Since mathematics is a product of the human intellect, the evidence and
conclusions of this paper provides further support for BICMUP.

Since information compression is central in the workings of the SP system,
and since it is successful in modelling several aspects of human intelligence,
the system provides indirect but quite strong support for BICMUP.

Four possible objections to BICMUP and the SP theory are outlined in
Section 16 but it appears that there are good answers to all three of these
objections, as described in Appendix C.

A Outline of the SP system

As noted in Section 2.2, the SP theory of intelligence, and its realisation in
the SP computer model, is a unique attempt to simplify and integrate obser-
vations and concepts across a broad canvass, with information compression
as a unifying theme.

The name “SP” is short for Simplicity and Power. This is because (loss-
less) information compression is central in the workings of the SP system,
and information compression may be seen to be a process of maximising
the simplicity of a body of information, I, by extracting redundancy from I,
whilst retaining as much as possible of its non-redundant descriptive power.

The SP theory is described most fully in [34] and more briefly in [36].
Details of other publications in this programme of research may found, most
with download links, on www.cognitionresearch.org/sp.htm. Some of them
are referenced elsewhere in this paper.

The SP theory is conceived as a brain-like system that receives New in-
formation via its senses and stores some or all of it, in compressed form, as
Old information.

In the SP system, all kinds of knowledge are stored as arrays of atomic
symbols called patterns. At present, the SP computer model works only with
one-dimensional patterns but it is envisaged that it will be generalised to
work with two-dimensional patterns, in addition to 1D patterns.
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A.1 SP-multiple-alignment

A key idea in the SP system is the concept of SP-multiple-alignment borrowed
and adapted from the concept of multiple alignment in bioinformatics. An
example of a multiple alignment from bioinformatics is shown in Figure 8.
Here, five DNA sequences have been arranged in rows and, by judicious
“stretching” of sequences in a computer, matching symbols have brought
into line. A “good” multiple alignment is one with a relatively large number
of matching symbols.

G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 8: A ‘good’ multiple alignment amongst five DNA sequences. Repro-
duced with permission from Figure 3.1 in [34].

It turns out that, in most cases, there is an astronomically large number
of possible multiple alignments. This means that, in creating good multiple
alignments, heuristic techniques must be used, building each multiple align-
ment in stages and, at each stage, selecting only the best multiple alignments
for further processing.

In the SP system, the SP-multiple-alignment concept has been adapted
so that one or more of the patterns (normally only one) is a New pattern
and the rest are Old patterns, and the system is designed to create SP-
multiple-alignments that enable the New pattern (or patterns) to be encoded
economically in terms of the Old patterns.

At the heart of the concept of SP-multiple-alignment is the idea that
we may identify repetition or redundancy in information by searching for
patterns that match each other, and that we may reduce that redundancy
and thus compress information by merging or unifying two or more matching
patterns to make one. This idea—information compression via the matching
and unification of patterns—may be referred to in brief as “ICMUP”. Variants
of ICMUP are described in Section 2.3.

As with the creation of multiple alignments in bioinformatics, heuristic
techniques are needed for the creation of SP-multiple-alignment. With this
kind of technique, it is normally not possible guarantee that the best possible
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multiple alignment has been found. We must be content with the creation
of SP-multiple-alignments that are “reasonably good”.

A.2 Strengths of the SP system

It turns out that the SP system, with SP-multiple-alignment at centre-stage,
is a versatile means of representing diverse kinds of knowledge—such as the
syntax of natural languages, class-inclusion hierarchies, part-whole hierar-
chies, and more. And the SP system is a versatile means of modelling di-
verse aspects of intelligence—such as unsupervised learning, the processing
natural language, pattern recognition, several kinds of reasoning, and more.
With tasks like pattern recognition, it has human-like abilities to recognise
patterns despite errors of omission, commission, and substitution.

Because these things all flow from one relatively simple framework—SP-
multiple-alignment—there is potential for the seamless integration of diverse
kinds of knowledge and diverse aspects of intelligence, in any combination.
That kind of seamless integration appears to be essential for modelling the
fluidity, versatility, and adaptability of human intelligence. The SP-multiple-
alignment concept has potential to be as significant for understanding human-
level intelligence as is DNA for biological sciences. SP-multiple-alignment
could be the “double helix” of intelligence.

A.3 SP-neural

The abstract concepts in the SP system may be mapped into groupings of
neurons and their interconnections in a version of the SP theory called SP-
neural [39].

A.4 Potential benefits and applications of the SP sys-
tem

Potential benefits and applications of the SP system include: helping to
solve nine problems with big data; helping to develop human-like intelli-
gence in autonomous robots; understanding natural vision and the devel-
opment of computer vision; medical diagnosis; and the SP system as an
intelligent database. Papers about these areas of application may be found
on www.cognitionresearch.org/sp.htm. Other potential benefits and applica-
tions are described in [38].
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B Barlow’s change of view about the signif-

icance of information compression, with

comments

As noted in Section 3, Horace Barlow, in a paper published in 2001 [5],
argued that “... the [compression] idea was right in drawing attention to
the importance of redundancy in sensory messages ... but it was wrong in
emphasizing the main technical use for redundancy, which is compressive
coding.” (ibid. p. 242).

As mentioned before, it seems to me that, while there are some valid
points in what Barlow says in support of his new position, his overall conclu-
sions are wrong. His main arguments follow, with my comments after each
one, flagged with “JGW”.

1. “It is important to realize that redundancy is not something useless
that can be stripped off and ignored. An animal must identify what
is redundant in its sensory messages, for this can tell it about struc-
ture and statistical regularity in its environment that are important for
its survival.” [5, p. 243], and “It is ... knowledge and recognition of
... redundancy, not its reduction, that matters.” [5, p. 244].

JGW: It seems to me that the error here is to assume that
compression of information means the elimination of redundant
patterns. On the contrary, lossless compression of something
like ‘tabletabletabletabletable’ means retaining one instance of
‘table’ with a record of the number of occurrence, or something equiv-
alent. Knowledge of the frequency of occurrence of any pattern may
serve in the calculation of probabilities, something that has been worked
out in detail in the SP system ([34, Section 3.7], [36, Section 4.4]).

In general, compression of information is entirely compatible with a
knowledge of redundant patterns and what they can say about statis-
tical regularity in a creature’s environment that is important for its
survival.

2. “Redundancy is mainly useful for error avoidance and correction” [5,
p. 244]. This heading in [5] appears to be a relatively strong point in
support of Barlow’s new position, but he writes: “Since it is certainly
true that sensory transducers and neural communication channels in-
troduce noise, this is likely to be important in the brain, but the cor-
rection of such internally generated errors is a separate problem, and
it will not be considered further here.” [5, p. 244].
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JGW: Redundancy can certainly be useful in the avoidance or correc-
tion of errors. But that does not invalidate BICMUP. As noted in
Appendix C.2, the SP system, which is dedicated to the compression
of information, will not work properly in such tasks as parsing, pattern
recognition and grammatical inference, unless there are redundancies
in its raw data. For that reason, it needs those redundancies in order to
correct errors of omission, commission, and substitution, as described
in [34, Section 6.2], [35, Section 2.2.2], and [36, Section 6.2].

3. Following the remark that “This is the point on which my own opinion
has changed most, partly in response to criticism, partly in response to
new facts that have emerged.” [5, p. 244], Barlow writes:

“Originally both Attneave and I strongly emphasized the
economy that could be achieved by recoding sensory mes-
sages to take advantage of their redundancy, but two points
have become clear since those early days. First, anatomical
evidence shows that there are very many more neurons at
higher levels in the brain, suggesting that redundancy does
not decrease, but actually increases. Second, the obvious
forms of compressed, non-redundant, representation would
not be at all suitable for the kinds of task that brains have
to perform with the information represented; ...” [5, pp. 244–
245].

and

“I think one has to recognize that the information capacity
of the higher representations is likely to be greater than that
of the representation in the retina or optic nerve. If this is so,
redundancy must increase, not decrease, because information
cannot be created.” [5, p. 245].

JGW: It seems to me that there are two errors here:

• The likelihood that there are “very many more neurons at higher
levels in the brain [than at the sensory levels]” and that “the
information capacity of the higher representations is likely to be
greater than that of the representation in the retina or optic nerve”
does not in any way invalidate BICMUP.

It seems likely that many of the neurons at higher levels are con-
cerned with the storage of one’s accumulated knowledge over the
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period from one’s birth to one’s current age ([34, Chapter 11], [39,
Section 4]). By contrast, neurons at the sensory level would be
concerned only with the processing of sensory information at any
one time.

Although knowledge in one’s long-term memory stores is likely to
be highly compressed and only a partial record of one’s experi-
ences, it is likely, for most of one’s life except early childhood, to
be very much larger than the sensory information one is process-
ing at any one time. Hence, it should be no surprise to find many
more neurons at higher levels than at the sensory level.

• For reasons given under point 4, there seem to be errors in
the proposition that “the obvious forms of compressed, non-
redundant, representation would not be at all suitable for the
kinds of task that brains have to perform with the information
represented.”

4. Under the heading “Compressed representations are unsuitable for the
brain”, Barlow writes:

“The typical result of a redundancy-reducing code would be
to produce a distributed representation of the sensory in-
put with a high activity ratio, in which many neurons are
active simultaneously, and with high and nearly equal fre-
quencies. It can be shown that, for one of the operations
that is most essential in order to perform brain-like tasks,
such high activity-ratio distributed representations are not
only inconvenient, but also grossly inefficient from a statisti-
cal viewpoint ...” [5, p. 245].

JGW: It is not clear why Barlow should assume that we store knowledge
in a distributed representation or why such a representation should
necessarily be inefficient:

• With regard to the second point, it is true that deep learning in
artificial neural networks [22], with their distributed representa-
tions, are often hungry for computing resources. But otherwise
they are quite successful with certain kinds of task, and there
appears to be scope for increasing their efficiencies [7].

• But the SP system demonstrates that localist representations with
such things as class-inclusion hierarchies and part-whole hierar-
chies are efficient and effective in a variety of kinds of task (see,
for example, [34] and [36]), and they are biologically plausible [39].
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C Some apparent contradictions of BICMUP

and the SP theory, and how they may be

resolved

The three subsections here discuss the apparent contradictions to BICMUP
and the SP theory mentioned in Section 16, and how they may be resolved.

C.1 The creation of redundancy via information com-
pression: “decompression by compression”

The idea that information may be decompressed by compressing
information—“decompression by compression”—seems paradoxical at first
sight. Examples described here may help to show why the paradox is more
apparent than real.

C.1.1 A simple example of “decompression by compression”

The chunking-with-codes idea mentioned in Section 2.3 provides a simple
example of decompression by compression. If, for example, a document con-
tains many instances of the expression “Treaty on the Functioning of the
European Union” we may shorten it by giving that expression a relatively
short name or code like “TFEU” and then replacing most instances of the
long expression with its short code.

This achieves compression of information because, in effect, multiple in-
stances of “Treaty on the Functioning of the European Union” have been
matched with each other and unified.

We can reverse the process and thus decompress the document by search-
ing for instances of “TFEU” and replacing each one with “Treaty on the
Functioning of the European Union”. But to achieve that result, the search
pattern, “TFEU”, needs to be matched and unified with each instance of
“TFEU” in the document. And that process of matching and unification is
itself, in effect, a process of compressing information. Hence, decompression
of information has been achieved via information compression.

C.1.2 Creating redundancy via information compression

With a computer, it is very easy to create information containing large
amounts of redundancy and to do it by a process which may itself be seen to
entail the compression of information.
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We can, for example, make a ‘call’ to the function defined in Figure 9,
using the pattern ‘oranges and lemons(100)’. The effect of that call is to
print out a highly redundant sequence containing 100 copies of the expression
“Oranges and lemons, Say the bells of St. Clement’s; ”.

void oranges_and_lemons(int x)

{

printf("Oranges and lemons, Say the bells of St. Clement’s; ");

if (x > 1) oranges_and_lemons(x - 1) ;

}.

Figure 9: A simple recursive function showing how, via computing, it is
possible to create repeated (redundant) copies of “Oranges and lemons, Say
the bells of St. Clement’s; ”.

Taking things step by step, this works as follows:

1. The pattern ‘oranges and lemons(100)’ is matched with the pattern
‘void oranges and lemons(int x)’ in the first line of the function.

2. The two instances of ‘oranges and lemons’ are unified and the value
100 is assigned to the variable x. The assignment may also be un-
derstood in terms of the matching and unification of patterns but the
details would be a distraction from the main point here.

3. The instruction ‘printf("Oranges and lemons, Say the bells of

St. Clement’s; ");’ in the function has the effect of printing out
‘Oranges and lemons, Say the bells of St. Clement’s; ’.

4. Then if x > 1, the instruction ‘oranges and lemons(x - 1)’ has the
effect of calling the function again but this time with 99 as the value of x
(because of the instruction x−1 in the pattern ‘oranges and lemons(x

- 1)’, meaning that 1 is to be subtracted from the current value of x).

5. Much as with the first call to the function, the pattern
‘oranges and lemons(99)’ is matched with the pattern ‘void
oranges and lemons(int x)’ in the first line of the function.

6. Much as before, the two instances of ‘oranges and lemons’ are unified
and the value 99 is assigned to the variable x.

7. This cycle continues until the value of x is 0.
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Where does compression of information come in? It happens mainly when
one copy of ‘oranges and lemons’ is matched and unified with another copy
so that, in effect, two copies are reduced to one.

There is more about recursion at the end of Appendix C.1.3, next.

C.1.3 Decompression by compression in the SP system

How the SP system may achieve decompression by compression is described
in [34, Section 3.8] and [36, Section 4.5].

There are two important points here:

• Decompression of a body of information I, may be achieved by a process
which is exactly the same as the process that achieved the original
compression of I: there is no modification to the program of any kind.

All that is needed to achieve decompression is to ensure that there is
some residual redundancy in the compressed version of I, so that the
program has something to work on, as noted in Appendix B.

• The SP computer model is entirely devoted to compression of informa-
tion, without any special provision for decompression of information.

Those two things establish that it is indeed possible to achieve decompression
by compression, meaning that, in that idea, there is really no paradox or
contradiction.

With regard to the example with recursion discussed in Appendix C.1.2,
readers may find it useful to examine examples of recursion with the SP
system, described in [34, Sections 4.3.2.1 and 5.3], [37, Section 3.3], and [39,
Section 7]. In all these examples, recursion is driven by a process which is
unambiguously devoted to the compression of information.

C.2 Redundancy is often useful in the storage and pro-
cessing of information

The fact that redundancy—repetition of information—is often useful in both
the storage and processing of information is the second apparent contradic-
tion to BICMUP and the SP theory. Here are some examples:

• With any kind of database, it is normal practice to maintain one or
more backup copies as a safeguard against catastrophic loss of the data.
Each backup copy represents redundancy in the system.
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• With information on the internet, it is common practice to maintain
two or more ‘mirror’ copies in different places to minimise transmission
times and to spread processing loads across two or more sites, thus
reducing the chance of overload at any one site. Again, each mirror
copy represents redundancy in the system.

• Redundancies in natural language can be a very useful aid to the com-
prehension of speech in noisy conditions.

• It is normal practice to add redundancies to electronic messages, in the
form of additional bits of information together with checksums, and also
by repeating the transmission of any part of a message that has become
corrupted. These things help to safeguard messages against accidental
errors caused by such things as birds flying across transmission beams,
or electronic noise in the system, and so on.

These kinds of uses of redundancy may seem to conflict with the idea that
information compression—which means reducing redundancy—is fundamen-
tal in computing and cognition. However, the two things are largely indepen-
dent. For example: “... it is entirely possible for a database to be designed
to minimise internal redundancies and, at the same time, for redundancies
to be used in backup copies or mirror copies of the database ... Paradoxical
as it may sound, knowledge can be compressed and redundant at the same
time.” [34, Section 2.3.7].

Also, the SP system, which is dedicated to the compression of informa-
tion, will not work properly with totally random information containing no
redundancy. It needs redundancy in its raw data in order to achieve such
things as the parsing of natural language, pattern recognition, and grammat-
ical inference, and, in those and other areas, it needs redundancy in its data
for the correction of errors of omission, commission, and substitution.

C.3 The human mind as a kluge

As mentioned in Section 16, Gary Marcus has described persuasive evidence
that, in many respects, the human mind is a kluge. To illustrate the point,
here is a sample of what Marcus says:

“Our memory is both spectacular and a constant source of disap-
pointment: we recognize photos from our high school year-books
decades later—yet find it impossible to remember what we had
for breakfast yesterday. Our memory is also prone to distortion,
conflation, and simple failure. We can know a word but not be
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able to remember it when we need it ... or we can learn some-
thing valuable ... and promptly forget it. The average high school
student spends four years memorising dates, names, and places,
drill after drill, and yet a significant number of teenagers can’t
even identify the century in which World War I took place.” [14,
p. 18], emphasis as in the original.

Clearly, human memory is, in some respects, much less effective than
a computer disk drive or even a book. And it seems likely that at least
part of the reason for this and other shortcomings of the human mind is that
“Evolution [by natural selection] tends to work with what is already in place,
making modifications rather than starting from scratch.” and “piling new
systems on top of old ones” [14, p. 12].

Superficially, this and other evidence in [14] seems to undermine the idea
that there is some grand unifying principle—such as information compression
via SP-multiple-alignment—that governs the organisation and workings of
the human mind.

Perhaps, as Marvin Minsky suggested, “each [human] mind is made of
many smaller processes” called agents each one of which “can only do some
simple thing that needs no mind or thought at all. Yet when we join these
agents in societies—in certain very special ways—this leads to true intelli-
gence.” [17, p. 17].

In answer to these points:

• The evidence that Marcus presents is persuasive: it is difficult to deny
that, in certain respects, the human mind is a kluge. And evolution
by natural selection provides a plausible explanation for anomalies and
inconsistencies in the workings of the human mind.

• But those conclusions are entirely compatible with BICMUP (sup-
ported by evidence presented in this paper), and the SP theory as
a theory of mind (supported by evidence presented in [34, 36, 39] and
elsewhere). As Marcus says:

“I don’t mean to chuck the baby along with its bath—or
even to suggest that kluges outnumber more beneficial adap-
tations. The biologist Leslie Orgel once wrote that ‘Mother
Nature is smarter than you are,’ and most of the time it is.”
[14, p. 16].

although Marcus warns that in comparisons between artificial systems
and natural ones, nature does not always come out on top.
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In general it seems that, despite the evidence for kluges in the human
mind, there can be powerful organising principles too. Since BICMUP and
the SP theory are well supported by evidence, they are likely to provide useful
insights into the nature of human intelligence, alongside an understanding
that there are likely to be kluge-related anomalies and inconsistencies too.

Minsky’s counsel of despair—“The power of intelligence stems from our
vast diversity, not from any single, perfect principle.” [17, p. 308]—is prob-
ably too strong. It is likely that there is at least one unifying principle for
human-level intelligence, and there may be more. And it is likely that, with
people, any such principle or principles operates alongside the somewhat
haphazard influences of evolution by natural selection.

C.4 Some kinds of redundancy are difficult or impos-
sible for people to detect and exploit

There is no doubt that people are imperfect in their abilities to detect and
exploit redundancy. For example:

“... a grid in which pixels encoded the binary expansion of π
would, of course, have a very simple description, but this struc-
ture would not be identified by the perceptual system; the grid
would, instead, appear completely unstructured.” [6, p. 578].

At first sight, this shortfall in our abilities seems to undermine the idea
that information compression is a unifying principle in the workings of brains
and nervous systems. But that idea does not imply that brains and nervous
systems are perfect compressors of information. Indeed, it appears that with
all but the smallest or most regular bodies of information, it is necessary to
use heuristic techniques for compression of the information and that these
cannot guarantee that the best possible result has been found (Section A.1).
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