
      1 
†The author does not have any degree in the field of physics 

An Interpretation for Quantum Mechanics 
 

                                    Tejas A. Chaudhari, University of Self Learning† 

                                         Email id: tejastalk@gmail.com 
Linked In: www.linkedin.com/in/tejas-chaudhari-b302b9110/ 

                                         Facebook: www.facebook.com/tejas1804 

Abstract: This paper gives interpretation of 

Quantum Mechanics (QM) by redefining the 

theory using 3 new postulates. The first of these 

postulates specifies the underlying structure that 

every massive fundamental particle must possess. 

The mass-Energy equivalence and wave nature of 

matter emerge as a direct consequence. The 

second postulate describes the quantum state of 

particles. Wave function, its conjugate, Born 

interpretation and the Energy-momentum 

operators can be derived from these two 

postulates. The third postulate describes the 

effect of measurement and interaction on the 

wave function. The equations of QM starting 

from Schrödinger’s equation are described. The 

phenomenon of Quantum entanglement and 

Schrödinger’s cat thought experiment are 

described under this interpretation. Finally, the 

origin of spin resulting from the first postulate is 

discussed. 

I. FIRST POSTULATE 

The first postulate is the most consequential of the 

three and forms the backbone of this interpretation. 

It implies that the fundamental particles having 

mass have an internal structure. The statement of 

the postulate is given as  

“Every massive fundamental particle is made up 

of vibrating pair/(s) of massless fundamental 

particles such that in each pair the massless 

particles have equal frequency but are vibrating 

in opposite direction when viewed from the 

classical state of rest frame. ” 

The massless fundamental particles should at least 

have the following properties. 

i. The energy of massless particle must be 

given by 𝐸 = ℎ𝑓 where ℎ is the Planck’s 

constant and f is the frequency of 

vibration. 

ii. The momentum of the particles must be 

given by 𝑝 = ℎ/𝜆  where λ is the 

wavelength. 

iii. 𝑐 = 𝜆𝑓 where 𝑐 is the speed of light in 

vacuum 

Besides these, the massless particles can also have 

additional properties like spin etc. How the spin of 

massive particle is generated from the spin of its 

massless fundamental particles is described in the 

last section of the paper. Also, the pairing up of the 

massless particles can generate internal properties 

such as charge etc. Different pairs of the massless 

particles are separated by these different internal 

properties. Therefore, although a single pair can be 

split into many pairs, they in fact belong to the same 

pair as they have the same internal properties. Figure 

1 gives the illustration of a particle made up of single 

pair of massless fundamental particle. The figure is 

just an illustration because the postulate does not 

concern itself with how the pairing occurs or the 

other details involved.  

The classical state mentioned in definition of the 

postulate refers to the state in which particle’s 

position, momentum and energy are accurately 

defined using a particular frame of reference. In QM, 

however a particle exits in what is called a quantum 

state. The quantum state of a particle is defined in 

the second postulate. The best example of massless 

fundamental particle is a photon. Therefore a pair of 

photons can make a massive particle under this 

postulate. Indeed the electron under this 

interpretation can be taken to be made up of a single 

pair of photons. A single pair because the spin of an 

electron is ℏ/2 (last section). Thus an electron can 

(a)                            (b)                      (c) 

Fig 1(a),(b),(c) Illustrations of underlying structure 

of a massive fundamental particle made up of a 

single pair of massless fundamental particles as seen 

in classical state of rest frame. The three diagrams 

are shown to indicate that there is no preferred 

direction for the vibration. 
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emit a virtual photon because it itself is made up of 

pair of photons. Thus this postulate has fundamental 

consequences for the structure of matter itself. 

However, the main reason for the proposition of this 

postulate is because the massive particle thus 

composed obeys the energy, momentum equations 

of the Einstein’s special theory of relativity and mass 

comes out as an emergent property. To see this, 

consider a particle made up of single pair of photons 

such as in Fig 1. The analysis for particle made up 

of multiple pairs can be done similarly. 

In the rest frame, the massless particles are vibrating 

in opposite direction. So there is no net momentum 

and particle is at rest. But the massless particles have 

same frequency, therefore the rest energy of particle 

is  𝐸 = 2ℎ𝑓𝑜. Now let’s consider the same particle in 

a frame of reference such that it has a velocity �⃗� to 

the right. Let θo and θv be the angles for each photon 

to the direction of �⃗� in the rest frame and the moving 

frame resp. Three cases arise which can be 

discussed. 

Case I: The angle θo for the photons is 0 and π. 

Therefore in the moving frame one photon will be 

blue shifted and other will be red shifted by the 

Doppler Effect for light. The Doppler shift in 

frequency for the photon is given by  

𝑓𝑣 =
𝑓𝑜

𝛾 (1−
𝑣

𝑐
 𝑐𝑜𝑠𝜃𝑣)

                       (1.1) 

And θo and θv are related by  

𝑐𝑜𝑠𝜃𝑣 =
𝑐𝑜𝑠𝜃𝑜+

𝑣

𝑐

1+
𝑣

𝑐
𝑐𝑜𝑠𝜃𝑜

                         (1.2) 

Where  𝛾 = 1/√1 −
𝑣2

𝑐2 . Therefore the frequency of 

blue shifted photon and red shifted will be  

𝑓𝑣 = √
𝑐+𝑣

𝑐−𝑣
 𝑓𝑜   and   𝑓𝑣 = √

𝑐−𝑣

𝑐+𝑣
 𝑓𝑜  resp.           (1.3) 

Therefore, the energy of particle will be  

𝐸 =  √
𝑐+𝑣

𝑐−𝑣
  ℎ𝑓𝑜 + √

𝑐−𝑣

𝑐+𝑣
 ℎ𝑓𝑜                   

= 𝛾2ℎ𝑓𝑜                                      (1.4) 

The momentum of the particle in the direction of �⃗� 

is 

𝑝 =  √
𝑐 + 𝑣

𝑐 − 𝑣
 
ℎ𝑓𝑜

𝑐
− √

𝑐 − 𝑣

𝑐 + 𝑣
 
ℎ𝑓𝑜

𝑐
 

= 𝛾 2ℎ𝑓𝑜𝑣/𝑐2                         (1.5) 

The quantity 2ℎ𝑓𝑜/𝑐2 has the dimension of mass. 

2ℎ𝑓𝑜 is the rest energy of the particle. Therefore by 

defining the rest mass as 

 𝑚 = 2ℎ𝑓𝑜/𝑐2                            (1.6) 

The energy of the particle (1.4) becomes 𝐸 = 𝛾𝑚𝑐2 

and the momentum of particle becomes 𝑝 = 𝛾𝑚𝑣 

thus satisfying the energy momentum formulas of 

the special relativity 

Case II: The angle θo for the photons is π/2 and -π/2. 

By using (1.2), we get for both photons  𝑐𝑜𝑠𝜃𝑣 =

𝑣/𝑐 . Therefore the Doppler shift in frequency for 

both photons is given by 

𝑓𝑣 =
𝑓𝑜

𝛾 (1−
𝑣2

𝑐2.)
  

=  𝛾𝑓𝑜                              (1.7) 

Therefore the energy of particle is given by  

𝐸 = 𝛾2ℎ𝑓𝑜 =  𝛾𝑚𝑐2  and the momentum of particle 

in the direction of �⃗� is given as   

𝑝 =  𝛾
ℎ𝑓𝑜

𝑐

𝑣

𝑐
+ 𝛾

ℎ𝑓𝑜

𝑐

𝑣

𝑐
= 𝛾

2ℎ𝑓𝑜𝑣

𝑐2 =  𝛾𝑚𝑣   (1.8) 

Case III: The general case. The angle θo for the 

photons is θo and θo+π .Using (1.1) and (1.2), the 

Doppler shift in frequency is given by 

𝑓𝑣 = 𝛾𝑓𝑜(1 +
𝑣

𝑐
𝑐𝑜𝑠𝜃𝑜)              (1.9) 

Therefore, the energy of particle will be 

𝐸 = 𝛾ℎ𝑓𝑜 (1 +
𝑣

𝑐
𝑐𝑜𝑠𝜃𝑜) + 𝛾ℎ𝑓𝑜 (1 +

𝑣

𝑐
𝑐𝑜𝑠(𝜃𝑜 +

𝜋)) =  𝛾2ℎ𝑓𝑜 = 𝛾𝑚𝑐2                         (1.10) 

In the last step we made use of (1.6). The momentum 

for single photon in moving frame will be given by 

𝑝𝑝ℎ𝑜𝑡𝑜𝑛 =
𝛾ℎ𝑓𝑜

𝑐
(1 +

𝑣

𝑐
𝑐𝑜𝑠𝜃𝑜)  𝑐𝑜𝑠𝜃𝑣       (1.11) 

By using (1.2) this becomes 

𝑝𝑝ℎ𝑜𝑡𝑜𝑛 =
𝛾ℎ𝑓𝑜

𝑐
(

𝑣

𝑐
+ 𝑐𝑜𝑠𝜃𝑜)                     (1.12) 

Therefore, the momentum of particle will be given 

by 

𝑝 =
𝛾ℎ𝑓𝑜

𝑐
(

𝑣

𝑐
+ 𝑐𝑜𝑠𝜃𝑜) +

𝛾ℎ𝑓𝑜

𝑐
(

𝑣

𝑐
+ cos(𝜃𝑜 + 𝜋)) 

=
𝛾2ℎ𝑓𝑜𝑣

𝑐2 = 𝛾𝑚𝑣                                           (1.13) 
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II. WAVE NATURE OF MATTER 

The de Broglie hypothesis of the wave nature of 

matter can also be justified with the help of first 

postulate. As the massive fundamental particle itself 

is made up of pairs of massless fundamental 

particles having frequency and wavelength such as 

photons, the particle itself will also have frequency 

and wavelength as a result of it. Therefore when the 

particle is viewed in a classical state, the energy of 

the massive particle is given by 

𝐸 = ∑ (ℎ𝑓1𝑝𝑎𝑖𝑟 + ℎ𝑓2𝑝𝑎𝑖𝑟)𝑝𝑎𝑖𝑟𝑠                 (2.1) 

Where 𝑓1𝑝𝑎𝑖𝑟 and 𝑓2𝑝𝑎𝑖𝑟 are the frequencies of the 

two massless fundamental particles in a pair and the 

summation is carried out for all the pairs in the 

particle. Therefore, the particle has an effective 

frequency 𝑓𝑚𝑎𝑡𝑡𝑒𝑟  such that the energy of particle 

𝐸 = ℎ𝑓𝑚𝑎𝑡𝑡𝑒𝑟                                              (2.2) 

and  𝑓𝑚𝑎𝑡𝑡𝑒𝑟 = ∑ (𝑓1𝑝𝑎𝑖𝑟 + 𝑓2𝑝𝑎𝑖𝑟)𝑝𝑎𝑖𝑟𝑠               (2.3)  

Similarly, the momentum of the particle is 

        𝑝 = ∑ (ℎ/𝜆1𝑝𝑎𝑖𝑟 + ℎ/𝜆2𝑝𝑎𝑖𝑟)𝑝𝑎𝑖𝑟𝑠               (2.4) 

𝜆1𝑝𝑎𝑖𝑟 and 𝜆2𝑝𝑎𝑖𝑟 are the wavelengths of the two 

massless fundamental particles in a pair. So in terms 

of an effective wavelength 𝜆𝑚𝑎𝑡𝑡𝑒𝑟 , the momentum 

is 

      𝑝 = ℎ/𝜆𝑚𝑎𝑡𝑡𝑒𝑟                                                (2.5)  

1

�⃗⃗⃗�𝑚𝑎𝑡𝑡𝑒𝑟
= ∑ (

1

�⃗⃗⃗�1𝑝𝑎𝑖𝑟
+

1

�⃗⃗⃗�2𝑝𝑎𝑖𝑟
)𝑝𝑎𝑖𝑟𝑠                        (2.6) 

   

III. SECOND POSTULATE 

In QM, a particle exists in what is known as a 

quantum state rather than a classical state. So it is 

important to understand what exactly a quantum 

state is and it’s relation to the classical states so as to 

be able to define the concepts like the wave function 

used to describe particles in QM. The second 

postulate does exactly that. The statement of the 

postulate can be given as 

“A quantum state is a collection of classical states 

with the probability attached to each classical 

state of the quantum state actually being that 

classical state.” 

A mathematical quantity that describes the quantum 

state is known as the wave function. Using first and 

second postulate we can define a wave function, its 

conjugate, Born interpretation and the operators of 

energy momentum. To do so, let’s first imagine a 

function 𝜙(𝒙, 𝑡) that describes a classical state and 

also the probability associated with it. In order to 

describe probability,  𝜙(𝒙, 𝑡) need not give 

probability but a quantity related to it. As it will turn 

out, it will be the probability amplitude. Therefore 

𝜙(𝒙𝒂, 𝑡𝑎) describes that at time 𝑡𝑎 the particle is at 

position 𝒙𝒂 and also a measure related to the 

probability of classical state. Now let that classical 

state evolve into 𝜙(𝒙𝒃, 𝑡𝑏) at time 𝑡𝑏. Now 𝜙(𝒙, 𝑡) 

must satisfy certain conditions 

i) 𝜙(𝒙, 𝑡) must be periodic as the particle has a 

frequency associated with it 

 

ii) 𝜙(𝒙, 𝑡) must not depend upon the internal 

structure of the particle i.e. the number of pairs of 

massless fundamental particles contained in the 

particle. 

  

iii) The evolution from 𝜙(𝒙𝒂, 𝑡𝑎) to 𝜙(𝒙𝒃, 𝑡𝑏) must 

be dependent on the path taken by the particle from 

𝒙𝒂 to 𝒙𝒃. 

 

iv) It must take into account Lorentz transformations 

so that it can be described in any inertial frame of 

reference. 

In order to satisfy above conditions we can describe 

the evolution of 𝜙(𝒙𝒂, 𝑡𝑎) into  𝜙(𝒙𝒃, 𝑡𝑏) as 

𝜙(𝒙𝒃, 𝑡𝑏) = 𝑒
𝑖 ∫ 𝑝𝑢𝑑𝑥𝑢𝒙𝒃,𝑡𝑏

𝒙𝒂,𝑡𝑎
ℏ  𝜙(𝒙𝒂, 𝑡𝑎)    (3.1) 

Where the integral is carried out on the path 

traversed from (𝒙𝒂, 𝑡𝑎) to(𝒙𝒃, 𝑡𝑏).  𝑝𝜇 is energy 

momentum four vector {𝐸/𝑐, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧} and 𝑥𝜇 is 

position four vector {𝑐𝑡, 𝑥, 𝑦, 𝑧}. Two choices of 

metric signature (+,-,-,-) and (-,+,+,+) are available 

for use. The theory must be independent of a 

particular choice of metric signature. Let’s assign a 

metric signature of (-,+,+,+) to 𝜙(𝒙, 𝑡). Then by 

(3.1) we can see that if we use the other metric 

signature, the function associated with it will be 

complex conjugate i.e. 𝜙 ⃰ (𝒙, 𝑡). In order to derive 

energy momentum operators we observe, 

𝜙(𝒙 + 𝜹𝒙, 𝑡 + 𝛿𝑡) = 𝑒
𝑖 𝑝𝜇𝛿𝑥𝜇

ℏ  𝜙(𝒙, 𝑡)          (3.2) 

∴  𝜙(𝒙, 𝑡) + ∑ 𝛿𝑥𝑘3
𝑘=1  

𝜕𝜙(𝒙,𝑡)

𝜕𝑥𝑘 + 𝛿𝑡
𝜕𝜙(𝒙,𝑡)

𝜕𝑡
 =

𝑒
𝑖 𝑝𝜇𝛿𝑥𝜇

ℏ  𝜙(𝒙, 𝑡)                                                  (3.3) 

repeated Greek indices are summed from 0 to 3 as 

per Einstein summation. Differentiating (3.3) by  

𝛿𝑥𝑘 or 𝛿𝑡 we get, 

𝜕𝜙(𝒙, 𝑡)

𝜕𝑥𝑘
=

𝑖

ℏ
𝑝𝑘𝜙(𝒙, 𝑡) 𝑎𝑛𝑑  
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𝜕𝜙(𝒙, 𝑡)

𝜕𝑡
=

−𝑖

ℏ
𝐸𝜙(𝒙, 𝑡) 

∴ 𝑝𝑘𝜙(𝒙, 𝑡) = −𝑖ℏ
𝜕𝜙(𝒙, 𝑡)

𝜕𝑥𝑘
 𝑎𝑛𝑑  

𝐸𝜙(𝒙, 𝑡) = 𝑖ℏ
𝜕𝜙(𝒙, 𝑡)

𝜕𝑡
 

   (3.4) 

If we use 𝜙 ⃰ (𝒙, 𝑡), we get  

𝑝𝑘�⃰� (𝒙, 𝑡) = 𝑖ℏ
𝜕𝜙 ⃰ (𝒙, 𝑡)

𝜕𝑥𝑘
 𝑎𝑛𝑑 

 𝐸𝜙 ⃰ (𝒙, 𝑡) = −𝑖ℏ
𝜕𝜙 ⃰(𝒙, 𝑡)

𝜕𝑡
 

(3.5) 

By using the second postulate we can define the 

wave function 𝜓(𝒙, 𝑡) associated with the quantum 

state as 

𝜓(𝒙, 𝑡) = ∑ 𝜙(𝒙, 𝑡)𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠                 (3.6) 

and complex conjugate of wave function �⃰� (𝒙, 𝑡) as 

    �⃰� (𝒙, 𝑡) =  ∑ 𝜙∗(𝒙, 𝑡)𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠            (3.7) 

The summation is carried out for all classical states 

in which the particle is at position 𝒙 at time t. For 

multiple component wave function such as spinor 

etc. the complex conjugate of wave function is 

replaced by its Hermitian conjugate 𝜓†(𝒙, 𝑡). By 

(3.4) we can conclude that the operator for 

momentum is  

�̂�𝑘  = −𝑖ℏ
𝜕

𝜕𝑥𝑘                                                   (3.8) 

and operator for energy is 

 �̂� = 𝑖ℏ
𝜕

𝜕𝑡
 .                                                        (3.9) 

If we had associated metric signature (+,-,-,-) with 

𝜙(𝒙, 𝑡) instead, we would have had operator for 

momentum as �̂�𝑘  = 𝑖ℏ
𝜕

𝜕𝑥𝑘
 and operator for energy as 

�̂� = −𝑖ℏ
𝜕

𝜕𝑡
 . Both the choices for operators are 

equivalent but we will use the first one as it has been 

used conventionally. We also observe from (3.4), 

(3.8) & (3.9) that operators operating on classical 

state function give eigenvalue as the result with the 

classical state function being the eigenfunction. The 

eigenvalue obtained has to be real because it is 

associated with a physical quantity such as 

momentum or energy. We also notice from (3.4) and 

(3.5) that, for an operator �̂� 

𝜙 ⃰ (𝒙, 𝑡)(�̂�𝜙(𝒙, 𝑡)) = (𝐴 ⃰̂ 𝜙 ⃰ (𝒙, 𝑡)) 𝜙(𝒙, 𝑡) 

(3.10) 

∴ ∑ 𝜙 ⃰ (𝒙, 𝑡)(�̂�𝜙(𝒙, 𝑡))

𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠

= ∑ (𝐴 ⃰̂ 𝜙 ⃰ (𝒙, 𝑡)) 𝜙(𝒙, 𝑡)

𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠

 

∴  𝜓 ⃰ (𝒙, 𝑡) (�̂�𝜓(𝒙, 𝑡)) = (𝐴 ⃰̂ 𝜓 ⃰ (𝒙, 𝑡)) 𝜓(𝒙, 𝑡) 

(3.11) 

The summation is carried out for all classical states 

in which the particle is at position 𝒙 at time t. Again 

for a multicomponent wave function 𝜓(𝒙, 𝑡), (3.11) 

becomes 

𝜓†(𝒙, 𝑡)(�̂�𝜓(𝒙, 𝑡)) = (𝜓†(𝒙, 𝑡)�̂�
†

) 𝜓(𝒙, 𝑡) 

(3.12) 

Putting (3.12) in modified bra-ket notation 

< 𝜓(𝒙, 𝑡)|�̂�𝜓(𝒙, 𝑡) >=< �̂�𝜓(𝒙, 𝑡)|𝜓(𝒙, 𝑡) > 

(3.13) 

Thus the operators must be self adjoint. For 

operators being matrices of finite dimensions, this 

reduces to the condition that operators must be 

Hermitian. The average value for an operator 

operating on wave function will be the summation 

of all eigenvalues for all classical states throughout 

the space with probability density for each classical 

state. Probability density because the summation is 

carried out for all points in the space. The probability 

density at any point (𝒙, 𝑡) has to be positive, 

therefore cannot be given by 𝜓(𝒙, 𝑡)𝑜𝑟 𝜓†(𝒙, 𝑡). 

But the quantity 𝜓†(𝒙, 𝑡) 𝜓(𝒙, 𝑡) is positive for 

every point in space and therefore must be the 

probability density of finding particle at (𝒙, 𝑡). 

Therefore the average value for an operator  �̂� is 

given as 

∫ 𝜓†(𝒙, 𝑡)(�̂� 𝜓(𝒙, 𝑡))𝑑3𝑥  ≡

 ∫(𝜓†(𝒙, 𝑡)�̂�†) 𝜓(𝒙, 𝑡)𝑑3𝑥                                       (3.14) 

with probability of finding particle in all of space 1. 

∫ 𝜓†(𝒙, 𝑡)𝜓(𝒙, 𝑡)𝑑3𝑥 = 1                                     (3.15) 

Thus the Born probability interpretation is also 

obtained. In the presence of electromagnetic field, 

the momentum of the particle 𝑝𝑖  in (3.1) must be 

replaced by canonical conjugate momentum 𝑝𝑖 +
𝑞

𝑐
𝐴𝑖(𝒙, 𝑡) and correspondingly 𝑝0 must be replaced 

by  𝑝0 +
𝑞

𝑐
𝑉(𝒙, t) . Therefore, in the presence of EM 

field, (3.1) becomes  
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𝜙(𝒙𝒃, 𝑡𝑏) = 𝑒
𝑖 ∫ (𝑝𝑢+

𝑞
𝑐

𝐴𝑢)𝑑𝑥𝑢𝒙𝒃,𝑡𝑏
𝒙𝒂,𝑡𝑎

ℏ  𝜙(𝒙𝒂, 𝑡𝑎) 
(3.16) 

where 𝐴𝜇 = {𝑉, 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧}. Therefore, in such a 

case the operator for momentum of the particle is 

 �̂�𝑘 −
𝑞

𝑐
𝐴𝑘  = −𝑖ℏ

𝜕

𝜕𝑥𝑘 −
𝑞

𝑐
 𝐴𝑘(𝒙, 𝑡)          (3.17) 

and the operator for energy of the particle becomes 

�̂� − 𝑞𝑉 = 𝑖ℏ
𝜕

𝜕𝑡
− 𝑞𝑉(𝒙, 𝑡)                               (3.18)  

In (3.16), if  ∫(𝑝𝑢 +
𝑞

𝑐
𝐴𝑢)𝑑𝑥𝑢 = 𝑛ℎ , then in such a 

case 𝜙(𝒙𝒃, 𝑡𝑏) = 𝜙(𝒙𝒂, 𝑡𝑎). Here 𝑛 can be any 

integer. This result may be used to find connection 

between the old quantum theory and modern 

quantum mechanics. Further analysis is needed in 

this regard. 

IV. EQUATIONS OF QM 

Before discussing the third postulate, the equations 

of QM are discussed in this section starting from the 

Schrödinger’s equation. Taking (3.17) and (3.18) 

into account, the Schrödinger’s equation becomes in 

operator form 

 [
1

2𝑚
(�̂� −

𝑞

𝑐
�̂�)

2
+ 𝑞�̂�] 𝜓 = �̂�𝜓                  (4.1) 

Explicitly writing out the operators, the equation 

becomes 

[
1

2𝑚
(−𝑖ℏ∇ −

𝑞

𝑐
𝐴(𝒙, 𝑡))

2

+ 𝑞𝑉(𝒙, 𝑡)] 𝜓(𝒙, 𝑡) =

𝑖ℏ
𝜕

𝜕𝑡
 𝜓(𝒙, 𝑡)                                                               (4.2)  

The equation gives out the classical relation of 

kinetic energy plus the potential energy is equal to 

the total energy of the particle in classical state. This 

relation is satisfied for every classical state at any 

point in space and therefore for the wave function 

𝜓(𝒙, 𝑡) as well using the second postulate. When 

solving this equation for an electron in the hydrogen 

atom, one must keep in mind that the vector potential  

𝐴(𝒙, 𝑡) cannot be ignored. This will become more 

apparent later when relativistic spin ½ equation 

other than the Dirac equation is discussed. 

Therefore, using the reduced mass for the electron 

and neglecting the vector potential 𝐴(𝒙, 𝑡) for 

solving the hydrogen atom is an approximation at 

best. The Schrödinger’s equation does not take into 

account the spin of the electron or special relativity. 

The equation that takes into account the spin of 

electron while not taking into account special 

relativity is the Pauli equation which is given in 

operator form as 

[
1

2𝑚
(𝝈. (�̂� −

𝑞

𝑐
�̂�))

2

+ 𝑞�̂�] 𝜓 = �̂�𝜓                (4.3) 

where 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) are the Pauli matrices. 

Explicitly writing out the operators, the equation 

becomes 

[
1

2𝑚
(𝝈. (−𝑖ℏ∇ −

𝑞

𝑐
𝐴(𝒙, 𝑡)))

2

+

𝑞𝑉(𝒙, 𝑡)] 𝜓(𝒙, 𝑡) = 𝑖ℏ
𝜕

𝜕𝑡
 𝜓(𝒙, 𝑡)                            (4.4)  

Here 𝜓(𝒙, 𝑡) has two components and hence is a 

spinor. The equation works because for every 

classical state 𝝈. (𝑖ℏ∇ −
𝑞

𝑐
𝐴(𝒙, 𝑡)) gives magnitude 

of momentum along with + or – sign depending 

upon the spin in the direction of momentum. This is 

squared and thus gives again the classical relation of 

kinetic energy + potential energy = total energy for 

the classical state. This is valid for every classical 

state and thus for the wave function 𝜓(𝒙, 𝑡). Again 

while solving this equation for an electron in 

hydrogen atom, the vector potential 𝐴(𝒙, 𝑡) cannot 

be ignored. 

The equation that takes into account special 

relativity but not the spin of an electron is the Klein-

Gordon equation which in operator form is 

 [(�̂� − 𝑞�̂�)
2

− (�̂� −
𝑞

𝑐
�̂�)

2
𝑐2] 𝜓 = 𝑚2𝑐4𝜓  

 (4.5) 

Explicitly writing out the operators, the equation 

becomes 

[
1

𝑐2 (𝑖ℏ
𝜕

𝜕𝑡
− 𝑞𝑉(𝒙, 𝑡))

2

− (−𝑖ℏ∇ −

𝑞

𝑐
𝐴(𝒙, 𝑡))

2

]  𝜓(𝒙, 𝑡) = 𝑚2𝑐2 𝜓(𝒙, 𝑡)               (4.6)  

The equation gives out the relation of special 

relativity E2 –p2c2 = m2c4 for every classical state and 

thus is valid for the wave function as well. The 

equation does not take into account the spin of 

electron. Building upon these equations we can 

describe an equation which takes into account, the 

spin of electron and special relativity. This equation 

is different from the Dirac equation and in operator 

form can be given as 
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 [(�̂� − 𝑞�̂�)
2

− (𝑐𝝈. (�̂� −
𝑞

𝑐
�̂�))

2

] 𝜓 = 𝑚2𝑐4𝜓                                                            

(4.7) 

Explicitly writing out the operators, the equation 

becomes 

[
1

𝑐2 (𝑖ℏ
𝜕

𝜕𝑡
− 𝑞𝑉(𝒙, 𝑡))

2

− (𝝈. (−𝑖ℏ∇ −

𝑞

𝑐
𝐴(𝒙, 𝑡)))

2

]  𝜓(𝒙, 𝑡) = 𝑚2𝑐2 𝜓(𝒙, 𝑡)              (4.8) 

Here 𝜓(𝒙, 𝑡) has two components and hence is a 

spinor. The equation works because for every 

classical state 𝝈. (𝑖ℏ∇ −
𝑞

𝑐
𝐴(𝒙, 𝑡)) gives magnitude 

of momentum along with + or – sign depending 

upon the spin in the direction of momentum. This is 

squared and thus again the relation E2 –p2c2 = m2c4 is 

obtained for every classical state and thus is valid for 

the wave function 𝜓(𝒙, 𝑡). Here it is extremely 

important to note that while solving this equation for 

an electron in hydrogen atom, the vector potential  

𝐴(𝒙, 𝑡) cannot be ignored and it is obvious that 

ignoring it will not yield the fine structure of 

hydrogen atom. 

V. THIRD POSTULATE 

The third postulate deals with the change in quantum 

state of the particle as a result of an external 

interaction with the particle. External interaction is a 

broad term and measurements made on the particle 

are in fact a subset of this term. The statement of the 

postulate is given as 

“Any external interaction with the particle 

changes instantaneously its quantum state by 

addition or removal of its classical states and then 

by redistributing the probabilities to the classical 

states based on boundary conditions.”  

Thus all the three postulates necessary for the 

interpretation have been defined. A measurement 

carried out on the quantum system can be regarded 

as a type of external interaction usually associated 

with reduction in the number of classical states so as 

to yield a certain value for physical quantity 

associated with the measurement. This interpretation 

does away with the concept of objective reality 

which is central to the Copenhagen interpretation 

and thus gives a rational and consistent explanation 

for phenomenon related to QM. This will become 

clearer, when the phenomenon of Quantum 

Entanglement and the thought experiment of 

Schrödinger’s cat are discussed under this 

interpretation. The third postulate does not violate 

the special theory of relativity because the classical 

states of a quantum state follow the rules of special 

relativity. In the classical state, the particle cannot 

travel faster than light. However there is no 

limitation by the special theory of relativity that the 

quantum state cannot add or remove classical states 

instantaneously in case of an external interaction and 

then redistribute the probabilities among the 

classical states.  

A. Quantum Entanglement 

The phenomenon of entanglement of spin of the two 

particles such that, the spin of the particles when 

measured in a particular direction have opposite 

values is discussed here under this interpretation. Let 

each of the particle have two possible spin states up 

|↑ >  and down |↓ >. Now after the entanglement of 

the two particles, the possible observable states are 

spin up for the first particle and spin down for the 

second | ↑,↓ > and vice versa |↓,↑ > . When the spin 

of the particles is not measured, the quantum state of 

the two particles contain two classical state | ↑,↓ > 

and  |↓,↑ > each having ½ probability. When the 

measurement of spin is carried out on let’s say the 

first particle, then by the third postulate, only that 

classical state remains in which the second particle 

has spin opposite to the measured spin of the first 

particle. The other classical state is removed 

immediately and the probability of one gets assigned 

to the remaining classical state. Therefore, if the first 

particle is measured out to be |↑ > , then the quantum 

state immediately becomes | ↑,↓ > and if the first 

particle is measured to be |↓ >, then the quantum 

state immediately becomes |↓,↑ >. Thus the 

phenomenon of entanglement in which the 

measurement of spin of one particle causes the spin 

of the other particle to be in opposite direction 

instantaneously is explained. The particles may be 

separated by large distances. This does not change 

the outcome. 

B. Schrödinger’s cat  

Schrödinger’s cat is a thought experiment in which 

a cat, a radioactive source and a vial of poison are 

placed inside a closed box. Also present is a detector 

which detects radioactivity and a hammer. So even 

if a single nucleus decays, the detector detects it, 

causing the hammer to break the vial, thus releasing 

the poison and killing the cat. Let’s say over the 

period of an hour, there is a ½ probability that one 

of the atoms decays and therefore ½ that no decay 

takes place. Thus under the Copenhagen 

interpretation when the box is closed, the radioactive 

source exits in a superposition of two states, one in 

which decay takes place and other in which no decay 

takes place. Therefore the cat exits in a superposition 
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state of living and dead when the box is closed. Only 

when the box is opened, the wave function of 

radioactive source collapses and the cat becomes 

alive or dead.  This is a paradox as the cat cannot be 

simultaneously alive and dead at the same time 

inside the box. This paradox is a result of objective 

reality of the Copenhagen interpretation in which an 

observation causes the wave function to collapse. 

The interpretation given in this paper does away 

with the concept of objective reality. Under this 

interpretation, a radioactive source is indeed initially 

in a quantum state with two classical states, one in 

which decay takes place and other in which no decay 

takes place. However, the radioactive detector plays 

the role of an external interaction on the quantum 

state. The radioactive detector is continuously 

detecting for the decay. So at any instant, when the 

detector does not detect a decay, then by the third 

postulate the classical state in which decay takes 

place is removed from quantum state and the cat 

remains alive for that instant. Due to the 

radioactivity of the source, again in the next instant 

the quantum state for the source starts as 

superposition of two classical states until again 

being modified by the interaction with the detector.  

Therefore, if a decay is detected by the detector then 

by the third postulate, the classical state in which no 

decay takes place is removed immediately from the 

quantum state. The cat dies in this scenario and 

exists only as a dead cat. Otherwise, the cat remains 

alive. Thus, when the box is opened, the observer 

observes the dead cat if the cat is dead or alive cat if 

the cat is alive.  The outcome does not depend upon 

the act of conscious observation by the observer, 

thus eliminating the concept of objective reality. 

Before opening the box, it can be said that there is a 

½ probability for cat being dead or cat being alive. 

But the cat is never in superposition of being alive 

and dead at the same time because of the interaction 

with radioactive detector changing the quantum state 

of the radioactive source continuously and thus 

resolving the paradox.  

VI. SPIN 

This section establishes a procedure by which a 

massive fundamental particle composed of pairs of 

massless fundamental particles according to the first 

postulate acquires the value of its spin.  For the 

massive particle to have spin, its constituent 

massless particles must have their own spin. In the 

discussion carried out in this section, we will use 

photons having spin of ℏ for the massless particles. 

First, the resulting spin states with their values have 

to be calculated for each pair of photons in the 

massive particle. Each photon has a spin of +ℏ 

represented here with ℏ|↑ >  or -ℏ represented here 

with ℏ|↓ > in the direction of their momentum. Each 

spin state has probability ½ with it. For a pair of 

photons, the resulting spin states are given as 

i) 
1

4
. (ℏ|↑ >⊕ ℏ| ↑ >) = ℏ/2 | ↑ > . The probability 

of both photons having spin +ℏ multiplied with the 

special addition of those two states. This results in 

state having spin +ℏ/2.  

ii) 
1

4
. (ℏ|↓ >⊕ ℏ| ↓ >) = ℏ/2 | ↓>.  The probability 

of both photons having spin -ℏ multiplied with the 

addition of those two states. This results in state 

having spin -ℏ/2 

iii) The null state produced by two other possibilities 

is not counted as a state. 
1

4
. (ℏ|↑ >⊕ ℏ| ↓ >) = 0 

and 
1

 4
. (ℏ|↓ >⊕ ℏ| ↑ >) = 0. 

Thus only two resulting states are produced + ℏ/2 

and -ℏ/2.The photon pair can also have entanglement 

condition in which spin of both photons is always 

opposite. The resulting pair will have no spin state 

because 

1

2
. (ℏ|↑ >⊕ ℏ| ↓ >) = 0 & 

1

 2
. (ℏ|↓ >⊕ ℏ| ↑ >) =

0. The photon pair can also have entanglement 

condition in which spin of both photons is always 

same. The resulting pair will have two spin states 

i) 
1

2
. (ℏ|↑ >⊕ ℏ| ↑ >) = ℏ | ↑ >. A spin state of +ℏ 

ii) 
1

2
. (ℏ|↓ >⊕ ℏ| ↓ >) = ℏ | ↓>. A spin state of -ℏ 

Thus the resulting spin states for each photon pair 

are calculated. Then the vector addition is carried 

out for spin states of different pairs taking one spin 

state from each pair. The resulting spin states from 

all the possible combinations are the spin states of 

the massive particle. As vector addition is carried 

out, the zero spin state |0> is also included here. 

Then equal probability is assigned to each resulting 

spin state of the particle, resulting in the final spin 

states along with their probability of the particle. 

For example, a particle with single pair with no 

entanglement condition will have resulting states 

+ℏ/2 and -ℏ/2. As there is no other pair, the states are 

assigned probability of 1/2 each and particle also has 

spin states +ℏ/2 and -ℏ/2 with probability of 1/2 

each. For a particle with two pairs each having spin 

states +ℏ/2 and -ℏ/2, the resulting spin states for the 

particle will be +ℏ, 0, -ℏ with probability 1/3 for 

each. For a particle with single pair of photons with 

entanglement condition with states +ℏ and -ℏ, the 

resulting spin states for massive particle will be +ℏ 

and -ℏ with 1/2 probability for each. There can also 
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be entanglement conditions between spin states of 

different pairs. For example, consider 3 pairs each 

having spin states +ℏ/2 & -ℏ/2.There can be 

entanglement conditions such that two of the three 

pairs always have opposite spin states. In such a case 

when the vector addition for the states will be carried 

out the result will be only two spin states +ℏ/2 & -

ℏ/2 with 1/2 probability for each. Thus many 

different conditions are possible for the spin even 

with same number of pairs in the massive particle. 

The spin of any massive fundamental particle can be 

calculated once its internal composition and the 

conditions associated are known. From this 

discussion and by postulating that each pair of 

photons in a massive particle gives rise to an 

elementary charge of either +e or –e, it can be said 

that the electron having a charge of –e and spin of 

ℏ/2 is made out of single pair of photons under this 

interpretation. Photons because the electron interacts 

via the electromagnetic force by emission of virtual 

photons in the standard model. The same cannot be 

said for muon or tau lepton because they disintegrate 

into other fundamental particles by means of weak 

interaction. 

 


