
First introduction to Projective Toric Varieties

Chapter 1

Projective toric varieties are a type of possibly
singular complex manifolds indexed by easy
combinatorial data having to do with poles and
zeroes of meromorphic functions.

It is maybe easiest to introduce the combinatorial
data first. We start with an abstract lattice of
some rank n which we may take to be just
the set Zn, whose elements we could denote
on paper by columns of length n with integer
entries.

Then any finite set S ⊂ Zn describes a projective
toric variety, if it is not empty.

The easiest way of describing the singular manifold
is to say that S has an “affine structure.” Although
it is not always possible to add elements of S to
obtain other elements of S, it is certainly possible
to determine the truth or falsehood of any additive
equation involving elements of S. Because we won’t
be caring about the choice of origin 0 ⊂ Zn we
will restrict attention to homogeneous equations, such
as the equation a+ b+ c = d+ e+ f among six elements
of S ⊂ Zn. This particular equation is homogenous
of degree three, but any degree is allowed.
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We say that an element x ∈ Zn is in the convex hull of
S if an equation holds such as

x+ x+ x = a+ b+ c

for elements a, b, c ∈ S not necessarily distinct. And
we say that S is convex if it is equal to its convex
hull.

Ordinarily one only considers convex subsets S ⊂ Zn

and if one uses a non-convex subset, the resulting
complex manifold is not called ‘toric’ by convention,
though there is a well-defined process called ‘normalization’
that can be applied to the singular manifold itself
to get back to the one corresponding to the convex hull.

A function h : S → C to the complex numbers is called,
let us say, an affine map if it preserves the affine
structures, where we use multiplication in C. This means
that whenever we have an equation in S like

a+ b+ c = d+ e+ f

we should also have

h(a)h(b)h(c) = h(d)h(e)h(f).
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The projective toric variety corresponding to S is
defined (usually only when S is convex) to be
the equivalence classes of affine maps S → C
which are not identically zero, under the relation
that two maps h, h′ are considered equivalent if
there is a nonzero complex number λ such that

h = λh′ .

Example. If the elements of S are affinely linearly
independent (meaning that if one is considered to be
the origin the others are linearly independent), then
there are no homogeneous equations among elements
of S except tautologies like a+b=b+a etcetera.
This means that the affine maps h : S → C are merely
all functions. Labelling the elements of S as

x0, ..., xm

where m is the dimension of the affine span
of S ⊂ Zn then we see that the projective toric
variety is just all ratios [x0 : ... : xm] which is
the set of points in the projective space Pm of
dimension m.
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Example. The previous example is a little
restrictive if we require S to be convex, because
there are not many convex affinely independent
sets. They are, I think, just the affine bases of
(cosets of) summands of Zn.

However, if we ever expand a convex set S , simply
taking the multiples ks, for s ∈ S where k is a fixed
integer, and take the convex hull, we
are in a situation where any
affine map from the vertex set kS to C extends
uniquely to an affine map from the convex hull.

So the process of expanding S by an integer and taking
the convex hull does not affect the projective toric variety.

And it follows

Example. If S is an affine basis of a summand
of the lattice and k is a nonzero integer, then
the convex hull of kS defines the projective toric
variety which is a projective space.

In a certain sense these are the universal examples,
because when there are relations among elements
of S it just means that some of the
the functions S → C are not allowed, and
we get a closed subset of projective space
insteadof the whole projective space.

For simplicity say S spans Zn affinely.
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The affine maps S → C which send
no element of S to zero extend uniquely
to affine maps

Zn → C×

where C× is the group of nonzero
complex numbers under multiplication.

Instead of modding out by the action of nonzero
scalars, we can equivalently here just
pass to the subset of affine maps sending 0 to 1.
These are just the ordinary group homomorphisms
Zn → C× .

This set is bijective with (C×)n and it is
a group under multiplication. It is called a
“torus” because each factor of C×

contains the unit circle, and a cartesian product of
n copies of a circle is sometimes called an n

dimensional torus.

But here we call the larger group of real
dimension 2n a torus also.

And thus we see that any projective toric
variety contains a torus.
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Example.

Let’s look at the four points in Z2 which have entries
of 0 and 1. These are the four columns of the matrix

(
0 0 1 1
0 1 0 1

).

We call these a, b, c, d and the only nontrivial relation

is

a+ d = b+ c.

We visualize the letters a, b, c, d as the four corner
of a square (with coordinates as given by the columns
w chose),

a b

c d

The various afine functions h merely assign
numbers to a, b, c, d and the affine requirment
together with the nonzero requirement just
means be the entries of a matrix of rank one.

Thus we can see the elements a, b, c, d ∈ S as
ordinary variables, and the arrangement as a square,
the positions we have writen them on the page,
require us to substitute only such numbers as
yield a rank one matrix.
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So the variety is rank one matrices modulo
multiplication by nonzero scalars. And we
see that such a thing is uniquly determined
by just the ratios [a : b] and [a : c] so that
our variety is just the cartesian product of
two copies of one dimensional projective space.

We could have seen this more easily by working
component-by-component. Our set S was after
all only the cartesian product of two copies of
0, 1 ⊂ Z .

However, here we have constructed the same surface
as the solution set of the homogeneous equation
ad = bc and it is a subset of projective three-space.

Note that the square diagram above is uniquely a linear
degeneration of a tetrahedron; the linear degeneration is
the defining constraint for the surface within projective
space.
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Chapter 2 – Divisors

In this section I’ll use define some words
which I won’t end up using, so if something
doesn’t make sense, don’t worry and just keep
reading.

Now let’s talk about divisors. An irreducible
divisor on a complex manifold means a possibly
singular codimension one submanifold
which is not a union of smaller ones.

A divisor means either a finite union of
irreducible divisors, or, more generally,
a finite sequence of irreducible divisors
to which are attached integers.

A meromorphic function on a normal complex
projective variety has a divisor of poles and
zeroes, and by convention we count poles
as being negative zeroes, so that if a meromorphic
function could have only zeroes, its divisor
would have only positive numbers attached
to its irreducible components. But in fact
this never happens. A meromorphic function
without any poles would be defined everywhere
on the complex projective variety, but there
is no such function except constants.

One way around this difficulty is to consider
instead of only functions, rather to consider
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the more general things which are sections of
line bundles. For any locally principal divisor, one
can make a holomorphic line bundle such that
your divisor is exactly equal to the divisor of
zeroes (and poles) of a meromorphic section.

Because you can always multiply a meromorphic
section of a line bundle by a meromorphic function,
then once you can obtain your divisor from a line
bundle, you can equally well obtain any divisor which
differs from your divisor by the divisor of a meromorphic
function.

Divisors coming from meromorphic functions
(meromorphic sections of the trivial bundle) are
called “principal divisors” and two divisors which
differ only by a principal divisor are called
“linearly equivalent.”

One can easily show by this correspondence
that isomorphism types of holomorphic line
bundles are naturally bijective with the a group
of divisors (the locally principal divisors) modulo
principal divisors. If the variety is smooth, all
divisors are locally principal.

Smoothness exercise. Show that the manifold is smooth
if and only if S is convex and each vertex of
the convex hull together with the vertices
connected by an edge form an affine lattice basis.
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Although it is actually easier, because it is
abstract, we won’t here talk about line bundles,
but only about divisors.

If we choose any codimension-one face of our
convex set S, it will of course be a convex
subset on its own, and will define a codimnsion
one subvariety.

The way this works is that a face S0 ⊂ S

corresponds to the classes mod scalars of
affine maps S → C which send all but the
elements of S0 to zero.

Exercise. Show that the set of elements not sent to
zero under any affine map S → C is either empty
or a face of some dimension.

If the codimension one faces of S are F1, ..., Fu then
the divisor in which each Fi is given coefficient −1
is denoted

−F1 − F2 − ...− Fu

and it is called a “canonical divisor” because
it is the divisor of (zeros and) poles of a meromorphic
differential n forms where n is the
dimension of the variety (we call it n consistently
with the superscript in Zn as if S spans affinely
our variety has dimension n).

10



Actually, I’ve used the same letter Fi for the
codimension one face of S as I have for the
corresponding codimension one subset of our
variety – the latter of course is all the affine
maps which are zero except on Fi.

Anyway, with this abuse of notation accepted,
the only divisors we ever have to worry about
are going to be integer linear combinations
of the Fi.

Again, this is something you don’t yet need to know,
but the torus acts on the variety and there are no torus
invariant divisors except linear combinations of the Fi.

And every divisor is linearly equivalent to a
torus invariant divisor.

And this means we won’t go wrong if we just pretend
that there are no divisors except which we make by
assigning integers to the faces of S.

If we view S or perhaps its real convex hull as a
cell complex, then what we are talking about
is exactly a cellular n− 1 chain.

Let me give you the next thing to visualize without
explaining it. What I want you to visualize is that
instead of assinging integers to the faces of S, we
are going to move the faces in and out.
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If you think of the faces as infinite hyperplanes
in Zn, then as these hyperplanes are translated from
one position to another in Rn , they collide at certain
times with points of Zn. Or, if we think of the
hyperplanes as just being subsets of Zn, the translates
actually are cosets of Zn modulo whichever translate
contains 0, and the cosets are elements of an infinite
cyclic quotient group.

Whenever I speak of ‘how far to move’ a face
of S I am going to mean using counting in the
infinite cyclic quotient group that has to do with
that face.

Now, it is best to start by choosing an element of S to
be the origin of the lattice, and having our movable
hyperplanes F1, ..., Fu chosen as being the ones meeting
at the origin. To construct S, we will move each
one in the originally chosen direction (outward) some
number of steps. This gives a positive integer to assign
to each Fi , and if we call these integers e1, ..., eu
then we will write down the divisor e1F1 + ...+ euFu

This is an effective divisor because all ei are positive.
The hyperplanes Fi each moved out ei steps provide
the faces of the convex set S. This choice of the ei,
or any other which defines a finite subset of the lattice
defining the same projective variety, makes
e1F1 + ...+ euFu be a very ample divisor.
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I should have said this earlier, but if we choose any
two points of Zn , say x, y, then for each point h
of our variety, the ratio h(x)/h(y) is well defined
as long as h(y) 6= 0.

It is convenient to take y to be the origin in Zn and
then if you recall when we restrict h to the torus
as no element is sent to zero, instead of reducing modulo
scalar multiplication it is better to assume h(0) = 1.
Then our chosen element x ∈ Zn corresponds to the
function

h 7→ h(x)

and this is something very familiar. For, just
as the torus is group homomorphisms Zn → C×

we can recover the group Zn as analytic group
homomorphisms (C×)n → C× .

Each lattice element x ∈ Zn already corresponds to
an analytic function on the torus, and one which is
a group homomorphism (a “character” of the torus).

And when we take y to be the origin of Zn the function
sending h to the well defined ratio h(x)/h(y) , when
we restrict to the torus in our variety, is nothing but
x itself, viewed as a character of the torus.
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Now I am going to just state something, without
getting us lost in any details. I said already that the
convex polyhedron we started with, because we needed
to move the faces out in order that it should have
any volume at all, has positive integers assigned to its
faces. The particular integers depended on a choice
of origin of the lattice.

With respect to the same origin, all the lattice
points contained in the polyhedron correspond to particular
meromorphic functions, and being inside the polyhedron
(or on the boundary) means that all of these functions
have poles no worse than the prescribed divisor

e1F1 + ...+ euFu

This means that we can reinterpret our chosen convex
set S as being the torus characters which have divisor
of poles no worse than as prescribed by that divisor.

Now, each lattice point q also has a principal divisor.
The origin of the lattice has the divisor zero. Starting
with all the hyperplanes in Zn intersecting
at the origin, if we choose any other lattice point q, the
number of steps (with outwards counting positively)
each face has to move so that all meet at
the point q, counting steps in the infinite
cyclic quotient group modulo that hyperplane,
defines a divisor a1F1 + ...+ auFu, and this is
the divisor of zeroes and poles of q.
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The fact that not all of the ai can be positive
corresponds to the fact that the point q
has no volume, so not all Fi can be moved outwards
if they are all to meet at one point.
Changing the origin, or equivalently translating our
convex polyhedron, then modifies our effective divisor

e1F1 + ...+ euFu

by adding to it all possible principal divisors.

To say that we do not care about translating
our polyhedron is the same as saying that
we don’t care about the divisor, only the
divisor class.

And we see that the divisor class group
is spanned by the Fi as an abelian
group, with n linearly independent
relations coming from translation. So
it is an abelian group of rank u− n,
the number of faces of S minus
the rank of the lattice which S spans.
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Now, I have cheated a bit because in defining
linearly equivalent divisors one is suposed to
use principal divisors coming from arbitrary
meromorphic functions, here we only used
torus invariant principal divisors. But, that
is OK because if a difference of torus invariant
divisors is principal it is certainly a principal
torus invariant divisor.

Example.

Consider the four elements of Z2 which are the
columns of the matrix

(
0 1 0 1
0 0 2 1

).

The slanted face connecting the last
two points has coefficient 2, the ones containing 0
have coefficient 0, the remaining one has coefficient
one. This is because the slanted
face mets latice points if it is to be
translated to the origin.

An example of a principal divisor is the difference
of the two vertical edges minus the slanted edge.
This is the divisor of the lattice point (1, 0) .
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Exercise. For convex sets spaning Zn show
that a torus equivariant map from one projective toric
variety to another amounts to saying that after expand-
ing the first convex set by an integer multiple and taking
the convex hull again, it is a union of tanslates
of the other.

Since the convex set in the previous example already is
a union of three vertical line segments, then there is
a map from this complex projective surface to the
projective line (Rieman sphere).

That map is in fact a fiber bundle map,
and our surface is a fiber bundle of the Riemann
shpere over the Rieman sphere. It is the
Hirzebruch surface, also called a scroll.

There is a ring called the Chow ring which is
a historical precursor to the cohomology
(and for smooth projective toric varieties is
the commutative ring is the even dimensional part of
integer cohomology).

Here we could define it by saying that
it is a graded ring which is Z in degree 0.
In degree 1 it is spanned by the Fi modulo
the n linear relations.
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Then we say that the ring multiplication
comes from intersection, and the ring in
degree i is spanned by codimension i faces.
More precisely, if two faces f, g intersect
transversely the product fg is the intersection,
and if they do not, relations in the divisor class
group are used to arrange that they do.

Ampleness, Local Principality

We started with a finite set S containing an origin of
the lattice, and interpreted the linear combination
e1F1 + ...+ euFu to mean that we have moved
each Fi outwards by ei steps so that the Fi

define the convex hull of S. Note that if we replace
each ei by the same multiple λei
where λ is a positive integer, it will define
the convex hull of the equivalent set λS.

There is a definition that is not very relevant for
toric varieties, a divisor D is called ample
if some positive integer multiple λD is
very ample. In view of the statement above,

Observation A divisor on a toric variety is
ample if and only if it is very ample.
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Let’s give an explicit criterion of ampleness. Assuming
that two finite sets S, T both span the same lattice
Zn, the projective varieties defined by S and T
are the same if and only if some expansion λS
of S by a positive integer λ is a union of
translates of T and vice-versa. Thus when S is convex,
a divisor a1F1 + ...+ auFu is ample (=very ample)
if and only if for some positive integer λ
the set of points enclosed in what we call
we call λa1F1 + ...+ λauFu is a union
of translates of S. Thus

Fact. A divisor D is (very) ample if and
only if the convex hull of the set of torus characters
with poles no worse than D is combinatorially equivalent
to the convex hull of S, with corresponding faces of all
dimensions parallel.

Let’s now give a description of the local defining
equations of each divisor Fi as a codimension one
subset of our variety.

If we choose a vertex of S then a corresponding
open subset of the variety (it is covered by such
open sets) consists of the affine maps S → C
sending this vertex to 1 ∈ C. Those points
belonging to Fi are as we said just those
affine maps sending the points of S which
are enclosed in the polyhedron which we visualize
as e1F1 + ...+ (ei − 1)Fi + ...+ Fu to zero.
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If the chosen vertex does not belong to Fi this
will be empty; while if the the chosen vertex does
belong to Fi it will be those affine maps which
not only send the chosen vertex to 1 but also send
those points of S which do not belong to the face
Fi. to zero. That is, if we view our chosen vertex
as the origin of the lattice, we are talking about monoid
homomorphisms from the lattice span of S to C×

which send the monomial ideal spanned by the elements
of S which are not in Fi to zero.

To say that the divisor Fi is locally principal is to
say that for each choice of vertex (or equivalently for
choice of an element of S) this monomial ideal is locally
principal.

For each vertex, the ideal is generated by
a single element if the divisor Fi

restricts to an actual principal divisor on the open
subset corresponding to each vertex. If S is convex
and ei sufficiently large, this is the same as
saying that the combinatorial type of S – that is,
the combinatorial type of the polyhedron defined
by the expression e1F1 + ...+ euFu – is the
same as the combinatorial type of the polyhedron defined
by the expression e1F1 + ...+ (ei − 1)Fi + ...+ Fu.
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And that is equivalent to ampleness (and also then to
very ampleness) of that divisor.

Let’s write that down. Suppose that S is convex. Then

Fact: For each i, the following are equivalent

i) The defining ideal of the subvariety where Fi

meets the affine open subset corresponding to each
vertex of S is not only locally principal, but actually
principal.

ii) for some (equivalently all) ample divisors H there is
a positive integer λ such that λH − Fi is ample.

If the manifold is smooth then the monoid spanned
by S when each vertex is viewed as the origin is
just a free commutative monoid on n generators,
and every locally free ideal is free.

This shows that when the manifold is smooth
with initially chosen very ample divisor
e1F1 + ...+ euFu, after we multiply
all ei by the same number λ
to make them large enough then for each i
the divisor e1F1 + ...+ (ei − 1)Fi + ...+ Fu remains
very ample.
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Arguing analagously for a divisor which is not just
a single face,

Proposition. Let H be a an ample divisor
on a smooth projective toric variety, and D any
divisor. Then there is a (positive) number
λ such that λH +D is ample.

For varieties which are not toric (even if they are
still assumed to be smooth) this is false.

In the special case when we take a1, ..., au to
be positive integers, and e1F1 + ...+ euFu

our original very ample divisor, as long as
λ is large enough, what we see is
that the combinatorial type of the
convex hull of the set of of torus charac-
ters with poles no worse than
(λe1 − a1)F1 + ...+ (λeu − au)Fu is the same as
the the combinatorial type of
the convex hull of the original set S
of torus characters with poles no worse than
e1F1 + ...+ euFu. And the former is a
polyhedron contained in the expansion of
the latter by the number λ, resulting
from expanding by λ, then moving
the face which we call Fi inwards by
ai steps in the cyclic quotient group Zu/Fi.
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When the variety is not smooth (when S
contains vertices not part of an affine lattice
basis in the boundary) there can be a change of
of combinatorial type between one of the
one of the polyhedra and the other. It corresponds
to a blowing down if an integer expansion of the
first polyhedron happens to be a union of lattice
translates of the second, and a blowing up if an integer
expansion of the second polyhedron happens to be
a union of lattice translates of the first.

Note that the smaller polyhedron is not degenerate
since we chose the ei to be large compared to the ai.

The edges span the n− 1 degree term
of the Chow ring, and the multiplication of the
divisor a1F1 + ...+ auFu with an edge Y is an
element of the n degree term, which is naturally
isommorphic to the ordinary integers, spanned
by the class of any point of the variety.

The integer which corresponds to the product
a1F1Y + ...+ auFuY is the the number of lattice
points (=torus characters) in Y as an edge
of the original polyhedron, minus the number of
lattice points in the corresponding edge of the
smaller polyhedron.

That number can be positive or negative.
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Example.

The root system of type A2 (using the centerless
model of the group so that the torus is not artificially
extended) is made starting with an affine basis of
the two-dimensional lattice of characters, and
making a hexagon from six such triangles using
reflections. Once we double the size of the hexagon
each edge contains three lattice points, while
if moved inwards one step contains four.
Although the product of two consecutive
edges is 1, because they meet at one point
(either thinking about them as edges of the hexagon
or as projective lines in a variety they meet at the
same point), the self-intersection of the
projective line corresponding to each edge is
3− 4 = −1. We also see from how we can move in
three disjoint edges two different ways to make
two different triangles that we can blow down three
non-intersecting projective lines two different ways
to obtain the projective plane. The resulting
birational transformation of the projective plane
is called the quadratic transform.
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Example. Let’s return to the example where we start
with S the set of points of Z2 which are the
columns of the matrix(

0 1 0 1
0 0 2 1

)
.

The convex hull includes also the point (0, 1).
The four codimension-one faces are labelled
A,B,C,D. Calling the complex manifold M, it is
nonsingular since the triangle where A and B

meet is a lattice basis. It follows that
the Chow ring is Z ⊕H2(M,Z) ⊕H4(M,Z), and let us
calculate it.

The commutative group H2(M,Z) is spanned
by A,B,C,D with two relations coming from
translation. If the face B is moved outward (to
the left) while the face D is moved
inward (to the right) the diagram is
congruent to the same diagram if the
face A had been moved outward (upward)
to the next coset in the lattice. Thus
leftward translation in the lattice gives
the relation

B −D = A

in the Cohomlogy
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group. Upward translation gives

A = C.

The pairwise intersections of adjacent faces
are four actual points of the manifold which
we might label AB,BC,CD,DA. Because
of the two relations we can replace A by
C. Since A and C are disjoint this
implies that in the Chow ring 0 = A2. And
we can replace B by C +D. Then the four
points become C(C +D), (C +D)C,CD,DC.
All of these are equal since C2 = 0. We
knew anyway that H4(M,Z) = Z
and any point is Poincare dual to the
fundamental class.

The elements C,D map to a basis of H2

and the product CD is a basis of H4.

We see from the diagram that D2 = −1
because when the face D is moved inwards
it becomes one bit longer. Here the number −1
denotes minus the fundamental class of M .
This also can be derived from the relation D = B − A
as then D2 = DB −DA and the first term is
zero while the second term is −1.
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Chapter 3 – Fourier series

Recall that I mentioned that if F1, ..., Fm are
the faces of a convex lattice polyhedron then any
divisor is equivalent to one of the type a1F1 + ...+ amFm

for a1, ..., am integers. If the ai are positive
so one may speak of the the polyhedron described-
described by the symbol a1F1 + ...+ amFm, then
the set of lattice points in the interior are the
torus characters with poles no worse than
a1F1 + ...+ amFm

In fact, the vector space of all meromorphic
functions on the projective variety with poles
no worse than a1F1 + ...+ amFm is described by
this set of characters. That is, it is the finite
dimensional vector space with torus action which is
the direct sum of a one-dimensional representation
(with multiplicity one) with character each interior
lattice point.

A way of understanding this is to first note that
just because the variety is projective, the vector
space must be finite-dimensional (the finite-
dimensionality can be taken to be a definition
of what it means for a variety to be projective,
by the way, and the condition once verified for
the powers of any ample divisor holds for every
divisor).
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And then because the torus action preserves the
finite-dimensional space it decomposes
into one dimensional representations; and these
can have no multiplicity larger than one as the whole
function field has no component of multiplicity larger
than one.

The relation between the one dimensional
representations and their characters is exactly the
one which occurs in Fourier theory, and one could
create a projective toric variety by starting with an
infinite Fourier series in several variables, and
putting bounds on the characters to describe a finite
subset. The convex hull of this set arises naturally
then, and is associated to a projective toric variety
with an ample divisor (polarization), and the space of
corresponding Fourier series is the space of meromorphic
functions with poles no worse than the chosen ample di-
visor.

Such a bounding process is done in the classical way that
one obtains number-theoretic approximations of spectral
frequencies of the atoms, and there one also considers
differential forms (as one can do of course for toric
projective varieties in general).

In that case the projective variety is not toric and
so the restriction is not as simple as bounding an area
in a lattice. Its geometry in any case is not related
to the physical world; but is caused by choices which
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one makes in order to simplify the physical world; for
example choices of what are called ‘electron con-
figurations.’

Yet, it is needed to know the geometry of one’s own
choices before one can use coordinates to describe the
natural world. For, it is a projection of infinite series
onto finite series which leads to being able to write
calculations in a finite amount of time; and typically the
projection requires an assumption of a Hilbert space
structure or bilinear form. In general one can consider
projective geometry to be the ‘finitization’ of infinite
series in analysis, and the issue is that one does not
usually only want to know the exact value of a quantity,
for instance at one time and one purported ‘point’ of
space. Rather one wants to understand things more like
ideas; as one contemplates a picture of subtle complexity
it is not only that one wants to know, where exactly is
this ant orthat grain of dust, but more meaningful things.

The passage from an infinite calculation
to a finite calculation must it seems be done based on
intuition only, and the geometry of the choice which one
has made does reflect something which is internal to the
observer, only. In that sense, projective geometry
constitutes introspection rather than observation;
and yet without introspection, observation of nature
and then action amount to recklessness.
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