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Abstract

Aim of this article is to find the maximum and minimum solution of the
fuzzy neutrosophic soft relational equation xA = b and Ax = b, where x and b
are fuzzy neutrosophic soft vector and A is a fuzzy neutrosophic soft matrix.
Whenever A is singular we can not find A−1. In that case we can use g-
inverse to get the solution of the above relational equation. Further, using this
concept maximum and minimum g-inverse of fuzzy neutrosophic soft matrix
are obtained.
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1 Introduction

Most of our real life problems in Medical Science, Engineering, Management,
Environment and Social Sciences often involve data which are not necessarily crisp,
precise and deterministic in character due to various uncertainties associated with
these problems. Such uncertainties are usually being handled with the help of the
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topics like probability, fuzzy sets, interval Mathematics and rough sets etc., Intu-
itionistic fuzzy sets introduced by Atanassov [3] is appropriate for such a situation.
The intuitionistic fuzzy sets can only handle the incomplete information considering
both the truth membership and falsity membership. It does not handle the inde-
terminate and inconsistent information which exists in belief system. Smarandache
[13] announced and evinced the concept of neutrosophic set which is a Mathematical
tool for handling problems involving imprecise, indeterminacy and inconsistent data.
The neutrosophic components T,I, F which represents the membership, indetermi-
nancy, and non-membership values respectively, where ]−0, 1+[ is the non-standard
unit interval, and thus one defines the neutrosophic set.

For example the Schrodinger’s cat theory says that basically the quantum state of
a photon can basically be in more than one place at the same time, which translated
to the neutrosophic set which means an element (quantum state) belongs and does
not belong to a set (one place) at the same time; or an element (quantum state)
belongs to two different sets(two different places) in the same time. Diletheism is
the view that some statements can be both true and false simultaneously. More pre-
cisely, it is belief that there can be true statement whose negation is also true. Such
statement are called true contradiction, diletheia or nondualism. ” All statements are
true” is a false statement. The above example of true contradictions that dialetheists
accept. Neutrosophic set, like dialetheism, can describe paradoxist elements, Neu-
trosophic set (paradoxist element)=(1,1,1), while intuitionistic fuzzy logic can not
describe a paradox because the sum of components should be 1 in intuitionistic fuzzy
set.

In neutrosophic set there is no restriction on T,I,F other than they are subsets of
]−0, 1+[, thus
−0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3+

Neutrosophic sets and logic are the foundations for many theories which are more
general than their classical counterparts in fuzzy, intuitionistic fuzzy, paraconsistent
set, dialetheist set, paradoxist set and tautological set.

In 1999, Molodtsov [9] initiated the novel concept of soft set theory which is a
completely new approach for modeling vagueness and uncertainty. In [7] Maji et
al., initiated the concept of fuzzy soft sets with some properties regarding fuzzy soft
union, intersection, complement of fuzzy soft set. Moreover in [8, 11] Maji et al.,
extended soft sets to intuitionistic fuzzy soft sets and neutrosophic soft sets.

One of the important theory of Mathematics which has a vast application in
Science and Engineering is the theory of matrices. Let A be a square matrix of full
rank. Then, there exists a matrix X such that AX = XA = I. This X is called the
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inverse of A and is denoted by A−1. Suppose A is not a matrix of full rank or it is
a rectangular matrix, in such a case inverse does not exists. Need felt in numerous
areas of applied Mathematics for some kind of partial inverse of a matrix which
is singular or even rectangular, such inverse are called generalized inverse. Solving
fuzzy matrix equation of the type xA = b where x = (x11, x12, x1m), b = (b11, b12, b1n)
and A is a fuzzy matrix of order m × n is of great interest in various fields. We
say xA = b is comptiable, if there exists a solution for xA = b and in this case we
write max

j
min(x1j, ajk) = b1k for all j ∈ Im and k ∈ In, where In is an index set,

i = 1, 2, ..., n. Ω1(A, b) represents the set of all solutions of xA = b.
The authors extend this concept into fuzzy neutrosophic soft matrix. The fuzzy

neutrosophic soft matrix equation is of the form xA = b,.....(1)
where x = ⟨xT11, xI11, xF11⟩...⟨xT1m, xI1m, xF1m⟩, b = ⟨bT11, bI11, bF11⟩...⟨bT1n, bI1n, bF1n⟩ and A is a
fuzzy neutrosophic soft matrix of order m×n. The equation xA = b is compatible if
there exist a solution for xA = b and in this case we write
max
j
min⟨xT1j, xI1j, xF1j⟩.⟨aTjk, aIjk, aFjk⟩ = ⟨bT1k, bI1k, bF1k⟩ for all j ∈ Im and k ∈ In. Denote

Ω1(A, b) = {x∣xA = b} represents the set of all solutions of xA = b. Several authors
[4, 6, 12] have studied about the maximum solution x̂ and the minimum solution x̌
of xA = b for fuzzy matrix as well as IFMs.

Li Jian-Xin [6] and Katarina Cechlarova [5] discussed the solvability of maxmin
fuzzy equation xA = b and Ax = b. In both the cases the maximum solution is
unique and the minimum solution need not be unique. Let Ω2(A, b) be the set of
all solutions for Ax = b. Murugadas [10] introduced a method to find maximum g-
inverse as well as minimum g-inverse of fuzzy matrix and intuitionistic fuzzy matrix.
Let us restrict our further discussion in this section to fuzzy neutrosophic soft matrix
equation of the form Ax = b with x = [⟨xTi1, xIi1, xFi1⟩∣i ∈ In], b = [⟨bTk1, bIk1, bFk1⟩ ∈ Im]
where A ∈ FNSMmn.

In this paper the authors extend the idea of finding g-inverse to FNSM. And also
finds the maximum and minimum solution of the relational equation xA = b when
A is a FNSM. Further this concept has been extended in finding g-inverse of FNSM.

2 preliminaries

Definition 2.1. [13] A neutrosophic set A on the universe of discourse X is defined
as A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X → ]−0, 1+[ and

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+ ......(1).
From philosophical point of view the neutrosophic set takes the value from real stan-
dard or non-standard subsets of ]−0, 1+[ . But in real life application especially in
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scientific and Engineering problems it is difficult to use neutrosophic set with value
from real standard or non-standard subset of ]−0, 1+[ . Hence we consider the neu-
trosophic set which takes the value from the subset of [0, 1].
Therefore we can rewrite the equation (1) as

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
In short an element ã in the neutrosophic set A, can be written as ã = ⟨aT , aI , aF ⟩,
where aT denotes degree of truth, aI denotes degree of indeterminacy, aF denotes
degree of falsity such that 0 ≤ aT + aI + aF ≤ 3.

Example 2.2. Assume that the universe of discourse X = {x1, x2, x3}, where x1, x2,
and x3 characterises the quality, relaibility, and the price of the objects. It may be
further assumed that the values of {x1, x2, x3} are in [0, 1] and they are obtained from
some investigations of some experts. The experts may impose their opinion in three
components viz; the degree of goodness, the degree of indeterminacy and the degree
of poorness to explain the characteristics of the objects. Suppose A is a Neutrosophic
Set (NS) of X, such that A = {⟨x1, 0.4, 0.5, 0.3⟩, ⟨x2, 0.7, 0.2, 0.4⟩, ⟨x3, 0.8, 0.3, 0.4⟩},
where for x1 the degree of goodness of quality is 0.4 , degree of indeterminacy of
quality is 0.5 and degree of falsity of quality is 0.3 etc,.

Definition 2.3. [9] Let U be an initial universe set and E be a set of parameters.
Let P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair
(F,A) is called a soft set over U, where F is a mapping given by F : A→ P (U).

Definition 2.4. [1] Let U be an initial universe set and E be a set of parameters.
Consider a non empty set A, A ⊂ E. Let P (U) denotes the set of all fuzzy neutro-
sophic sets of U . The collection (F,A) is termed to be the Fuzzy Neutrosophic Soft
Set (FNSS) over U, where F is a mapping given by F : A → P (U). Hereafter we
simply consider A as FNSS over U instead of (F,A).

Definition 2.5. [2] Let U = {c1, c2, ...cm} be the universal set and E be the set of
parameters given by E = {e1, e2, ...en}. Let A ⊆ E . A pair (F,A) be a FNSS over
U . Then the subset of U × E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)} which
is called a relation form of (FA, E). The membership function, indeterminacy mem-
bership function and non membership function are written by TRA

: U × E → [0, 1],
IRA

: U × E → [0, 1] and FRA
: U × E → [0, 1] where TRA

(u, e) ∈ [0, 1], IRA
(u, e) ∈

[0, 1] and FRA
(u, e) ∈ [0, 1] are the membership value, indeterminacy value and non

membership value respectively of u ∈ U for each e ∈ E.
If [(Tij, Iij, Fij)] = [(Tij(ui, ej), Iij(ui, ej), Fij(ui, ej)] we define a matrix
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[⟨Tij, Iij, Fij⟩]m×n =

⎡⎢⎣ ⟨T11, I11, F11⟩ ⟨T12, I12, F12⟩ ⋅ ⋅ ⋅ ⟨T1n, I1n, F1n⟩
⟨T21, I21, F21⟩ ⟨T22, I22, F22⟩ ⋅ ⋅ ⋅ ⟨T2n, I2n, F2n⟩

...
...

...
⟨Tm1, Im1, Fm1⟩ ⟨Tm2, Im2, Fm2⟩ ⋅ ⋅ ⋅ ⟨Tmn, Imn, Fmn⟩

⎤⎥⎦
which is called an m× n FNSM of the FNSS (FA, E) over U.

Definition 2.6. Let U = {c1, c2...cm} be the universal set and E be the set of param-
eters given by E = {e1, e2, ...en}. Let A ⊆ E. A pair (F,A) be a fuzzy neutrosophic
soft set. Then fuzzy neutrosophic soft set (F,A) in a matrix form as Am×n = (aij)m×n
or A = (aij), i = 1, 2, ...m, j = 1, 2, ...n where

(aij) =

{
(T (ci, ej), I(ci, ej), F (ci, ej)) if ej ∈ A
⟨0, 0, 1⟩ if ej /∈ A

where Tj(ci) represent the membership of ci, Ij(ci) represent the indeterminacy of ci
and Fj(ci) represent the non-membership of ci in the FNSS (F,A).
If we replace the identity element ⟨0, 0, 1⟩ by ⟨0, 1, 1⟩ in the above form we get FNSM
of type-II.

FNSM of Type-I[14]
Let Nm×n denotes FNSM of order m× n and Nn denotes FNSM of order n× n.

Definition 2.7. Let A = (
〈
aTij, a

I
ij, a

F
ij

〉
), B = (

〈
bTij, b

I
ij, b

F
ij

〉
) ∈ Nm×n the component-

wise addition and componentwise multiplication is defined as
A⊕B = (sup

{
aTij, b

T
ij

}
, sup

{
aIij, b

I
ij

}
, inf

{
aFij, b

F
ij

}
).

A⊙B = (inf{aTij, bTij}, inf{aIij, bIij}, sup{aFij, bFij}).

Definition 2.8. Let A ∈ Nm×n, B ∈ Nn×p, the composition of A and B is defined
as

A ∘B =

(
n∑
k=1

(aTik ∧ bTkj),
n∑
k=1

(aIik ∧ bIkj),
n∏
k=1

(aFik ∨ bFkj

)
equivalently we can write the same as

=

(
n⋁
k=1

(aTik ∧ bTkj),
n⋁
k=1

(aIik ∧ bIkj),
n⋀
k=1

(aFik ∨ bFkj)

)
.

The product A ∘ B is defined if and only if the number of columns of A is same
as the number of rows of B. A and B are said to be conformable for multiplication.
We shall use AB instead of A ∘B.

FNSM of Type-II[14]
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Definition 2.9. Let A = (⟨aTij, aIij, aFij⟩), B = (⟨bTij, bIij, bFij⟩) ∈ Nm×n, the component
wise addition and component wise multiplication is defined as
A⊕B = (⟨sup

{
aTij, b

T
ij

}
, inf

{
aIij, b

I
ij

}
, inf

{
aFij, b

F
ij

}
⟩).

A⊙B = (⟨inf{aTij, bTij}, sup{aIij, bIij}, sup{aFij, bFij}⟩).

Analogous to FNSM of type-I, we can define FNSM of type -II in the following
way

Definition 2.10. Let A = (⟨aTij, aIij, aFij⟩) = (aij) ∈ Nm×n and B = (⟨bTij, bIij, bFij⟩) =
(bij) ∈ ℱn×p the product of A and B is defined as

A ∗B =

(
n∑
k=1

〈
aTik ∧ bTkj

〉
,

n∏
k=1

〈
aIik ∨ bIkj

〉
,

n∏
k=1

〈
aFik ∨ bFkj

〉)
equivalently we can write the same as

=

(
n⋁
k=1

〈
aTik ∧ bTkj

〉
,
n⋀
k=1

〈
aIik ∨ bIkj

〉
,
n⋀
k=1

〈
aFik ∨ bFkj

〉)
.

the product A ∗B is defined if and only if the number of columns of A is same as the
number of rows of B. A and B are said to be conformable for multiplication.

3 Main results

Definition 3.1. A ∈ Nm×n is said to be regular if there exists X ∈ Nn×m such that
AXA = A.

Definition 3.2. If A and X are two FNSM of order m × n satisfies the relation
AXA = A, then X is called a generalized inverse (g-inverse) of A which is denoted
by A−. The g-inverse of an FNSM is not necessarily unique. We denote the set of all
g-inverse by A{1}.

Definition 3.3. Any element x̂ ∈ Ω1(A, b) is called a maximal solution if for all
x ∈ Ω1(A, b), x ≥ x̂ implies x = x̂. That is elements x, x̂ are component wise equal.

Definition 3.4. Any elementx̌ ∈ Ω1(A, b) is called a minimal solution if for all
x ∈ Ω1(A, b), x ≤ x̌ implies x = x̌. That is elements x, x̌ are component wise equal.

Lemma 3.5. Let xA = b as defined in eqn (1) . If ⟨max
j
aTjk,max

j
aIjk,min

j
aFjk⟩ <

⟨bT1k, bI1k, bF1k⟩ for some k ∈ In, then Ω1(A, b) = �.
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Proof: If ⟨max
j
aTjk,max

j
aIjk,min

j
aFjk⟩ < ⟨bT1k, bI1k, bF1k⟩ for some k, then

min{⟨xT1j, xI1j, xF1j⟩, ⟨aTjk, aIjk, aFjk⟩} ≤ ⟨aTjk, aIjk, aFjk⟩ ≤ ⟨max
j
aTjk,max

j
aIjk,min

j
aFjk⟩

< ⟨bT1k, bI1k, bF1k⟩
Hence max

j
min{⟨xT1j, xI1j, xF1j⟩, ⟨aTjk, aIjk, aFjk⟩} < ⟨bT1k, bI1k, bF1k⟩.

Therefore, no values of x satisfy the equation xA = b.
Hence Ω(A, b) = �.

Theorem 3.6. For the equation xA = b,Ω1(A, b) ∕= ' if and only if x̂ = [⟨x̂T1j, x̂I1j, x̂F1j⟩∣j ∈
Im] defined as ⟨x̂T1j, x̂I1j, x̂F1j⟩ = ⟨min�(aTjk, b

T
1k),min�

′
(aIjk, b

I
1k),max�

′′
(aFjk, b

F
1k)⟩,

where

�(aTjk, b
T
1k) =

{
bT1k if aTjk > bT1k
1 otherwise

�
′
(aIjk, b

I
jk) =

{
bI1k if aIjk > bI1k
1 otherwise

�
′′
(aFjk, b

F
1k) =

{
bF1k if aFjk < bF1k
0 otherwise

is the maximum solution of xA = b

Proof: If Ω1(A, b) ∕= �, then x̂ is a solution of xA = b. For if x̂ is not a solution,
then x̂A ∕= b and therefore
max
j
min⟨x̂T1j, x̂I1j, x̂F1j⟩⟨aTjk, aIjk, aFjk⟩ ∕= ⟨bT1k0 , b

I
1k0
, bF1k0⟩ for atleast one k0 ∈ In. By the

Definition of ⟨x̂T1j, x̂I1j, x̂F1j⟩, ⟨x̂T1j, x̂I1j, x̂F1j⟩ ≤ ⟨bT1k, bI1k, bF1k⟩ for each k and so
⟨x̂T1j, x̂I1j, x̂F1j⟩ ≤ ⟨bT1k0 , b

I
1k0
, bF1k0⟩.

Therefore, ⟨x̂T1j, x̂I1j, x̂F1j⟩⟨aTjk, aIjk, aFjk⟩ < ⟨bT1k0 , b
I
1k0
, bF1k0⟩

⟨max
j
aTjk,max

j
aIjk,min

j
aFjk⟩ < ⟨bT1k0 , b

I
1k0
, bF1k0⟩ for some k0 by our assumption.

Hence by Lemma 3.5 Ω1(A, b) = �.
which is a contradiction. Hence x̂ is a solution. Let us prove that x̂ is the maximum
one. If possible let us assume that ŷ is another solution such that ŷ ≥ x̂ that is
⟨yT1j0 , y

I
1j0
, yF1j0⟩ > ⟨x̂

T
1j0
, x̂I1j0 , x̂

F
1j0
⟩ for atleast one j0.

Therefore, by the definition of ⟨x̂T1j0 , x̂
I
1j0
, x̂F1j0⟩,

⟨yT1j0 , y
I
1j0
, yF1j0⟩ > ⟨min�(aTj0k, b

T
1k),min�

′
(aIj0k, b

I
1k),max�

′′
(aFj0k, b

F
1k)⟩

Since Ω(A, b) ∕= �,
by the Lemma 3.5 ⟨max

j
aTjk,max

j
aIjk,min

j
aFjk⟩ ≥ ⟨bT1k0 , b

I
1k0
, bF1k0⟩ for each k0.

Hence ⟨bT1k0 , b
I
1k0
, bF1k0⟩ ∕= ⟨max

j
min(yTj , a

T
jk0

),max
j
min(yIj , a

I
jk0

),min
j
max(yFj , a

F
jk0

)⟩
which is a contradiction to our assumption that y ∈ Ω1(A, b).
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Therefore x̂ is the maximum solution.
The converse part is trivial.
If the relational equation is the form Ax = b.....(2)
where A is an fuzzy neutrosophic soft matrix of order m× n,
x = (⟨xT11, xI11, xF11⟩, ..., ⟨xT1n, xI1n, xF1n⟩)T , b = (⟨bT11, bI11, bF11⟩, ..., ⟨bT1m, bI1m, bF1m⟩)T we can
prove the following Lemma and Theorem in similar fashion. Let Ω2(A, b) be the set
all solution of the relational equation Ax = b.

Definition 3.7. Any element x̂ ∈ Ω2(A, b) is called a maximal solution if for all
x ∈ Ω2(A, b), x ≥ x̂ implies x = x̂. That is elements x, x̂ are component wise equal.

Definition 3.8. Any element x̌ ∈ Ω2(A, b) is called a minimal solution if for all
x ∈ Ω2(A, b), x ≤ x̌ implies x = x̌. That is elements x, x̌ are component wise equal.

Lemma 3.9. Let Ax = b as defined in (2).
If ⟨max

i
aTki,max

i
aIki,min

i
aFki⟩ < ⟨bTk1, bIk1, bFk1⟩ for some k ∈ Im, then Ω2(A, b) = �.

Theorem 3.10. For the equation Ax = b,Ω2(A, b) ∕= � if only if
x̂ = [⟨x̂Tj1, x̂Ij1, x̂Fj1⟩∣j ∈ In]defined as

⟨x̂Tj1, x̂Ij1, x̂Fj1⟩ = ⟨min�(aTki, b
T
k1),min�

′
(aIki, b

I
k1),max�

′′
(aFki, b

F
k1)⟩,

where

�(aTki, b
T
k1) =

{
bTk1 if aTki > bTk1
1 otherwise

�
′
(aIki, b

I
k1) =

{
bIk1 if aIki > bIk1
1 otherwise

�
′′
(aFki, b

F
k1) =

{
bF1k if aFki < bFk1
0 otherwise

is the maximum solution of Ax = b.

Example 3.11. Let A =

[
⟨0.5 0.6 0.2⟩ ⟨0.7, 0.5, 0.1⟩
⟨0.2 0.3 0.5⟩ ⟨0.6, 0.4, 0⟩

]
and b = [⟨0.2, 0.3, 0.5⟩ ⟨0.5, 0.3, 0.1⟩]

then we can find x̂ = [⟨x̂T11, x̂I11, x̂F11⟩, ⟨x̂T12, x̂I12, x̂F12⟩] in xA = b
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⟨x̂T11, x̂I11, x̂F11⟩ = ⟨min
k
�(aT1k, b

T
1k),min

k
�

′
(aI1k, b

I
1k),max

k
�

′′
(aF1k, b

F
1k)⟩

= ⟨min
k

(0.2, 0.5),min
k

(0.3, 0.3),max
k

(0.5, 0)⟩

= ⟨0.2, 0.3, 0.5⟩
⟨x̂T12, x̂I12, x̂F12⟩ = ⟨min

k
�(aT2k, b

T
1k),min

k
�

′
(aI2k, b

I
1k),max

k
�

′′
(aF2k, b

F
1k)⟩

= ⟨min
k

(1, 0.5),min
k

(1, 0.3),max
k

(0, 0.1)⟩

= ⟨0.5, 0.3, 0.1⟩
Then clearly

(⟨0.2, 0.3, 0.5⟩ ⟨0.5, 0.3, 0.1⟩)
[
⟨0.5 0.6 0.2⟩⟨0.7, 0.5, 0.1⟩
⟨0.2 0.3 0.5⟩⟨0.6, 0.4, 0⟩

]
= (⟨0.2, 0.3, 0.5⟩ ⟨0.5, 0.3, 0.1⟩)

To get the minimal solution x̌ of xA = b we follow the procedure as followed
for fuzzy neutrosophic soft matrix equation.

Step.1 Determine the sets Jk(x̂) = {j ∈ Im∣min(⟨x̂T1j, x̂I1j, x̂F1j⟩, ⟨aTjk, aIjk, aFjk⟩) = bT1k}
for all k ∈ In. Construct their cartesian product J(x̂) = J1(x̂)× J2(x̂)× ...× Jn(x̂).

Step.2 Denote the elements of J(x̂), by � = [�k/k ∈ In]. For each
� ∈ J(x̂) and each j ∈ Im, determine the set
k(�, j) = {k ∈ Im∣�k = j}.

Step.3 For each � ∈ J(x̂) generate the n-tuple
g(�) = gj(�)∣j ∈ Im},
where

gj(�) =

⎧⎨⎩max
k(�,j)
⟨bT1k, bI1k, bF1k⟩ if k(�, j) ∕= 0

⟨0, 0, 1⟩ otherwise

Step.4 From all the m-tuples g(�) generated in step.3, select only the minimal one
by pairwise comparison. The resulting set of n-tuples is the minimal solution of the
reduced form of equation xA = b.

Example 3.12. Let us find the minimal solution to the linear equation given in Ex-
ample 3.11 using the maximal solution x̂
Step 1. To determine Jk(x̂) for k = 1, 2.
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J1(x̂) = {j = 1, 2∣min(⟨xT1j, xI1j, xF1j⟩, ⟨aTjk, aIjk, aFjk⟩) = ⟨bT1k, bI1k, bF1k⟩}
= {min{⟨0.2, 0.3, 0.5⟩⟨0.5, 0.6, 0.2⟩},min{⟨0.5, 0.3, 0.1⟩⟨0.2, 0.3, 0.5⟩}}
= ⟨0.2, 0.3, 0.5⟩ = {1, 2}

J2(x̂) = {min{⟨0.2, 0.3, 0.5⟩⟨0.7, 0.5, 0.1⟩},min{⟨0.5, 0.3, 0.1⟩⟨0.6, 0.4, 0⟩}}
= ⟨0.5, 0.3, 0.1⟩
= {2}

Therefore Jk(x̂) = J1(x̂)× J2(x̂) = {1, 2} × {2} = {(1, 2, (2, 2))} = �
Step 2: To determine the sets K(�, j) for each � = Jk(x̂) and for each j=1,2.
For � = (1, 2)
K(�, 1) = {k = 1, 2∣�k = 1} = {1}
K(�, 2) = {k = 1, 2∣�k = 2} = {2}

For � = (2, 2)
K(�, 1) = {k = 1, 2∣�k = 1} = {'}
K(�, 2) = {k = 1, 2∣�k = 2} = {1, 2}

Thus the sets K(�, j) for each � ∈ J(x̂) and j = 1, 2 are listed in the following table.
K{�, j} 1 K

(1, 2) {1} {2}
(2, 2) {�} {1, 2}

Step 3. For each � ∈ J(x̂) we generate the tuples g(�)
For � = (1, 2)

g1(�) =

⎧⎨⎩ max
k∈k(�,1)

⟨0.2, 0.3, 0.5⟩ if k(�, 1) ∕= �

⟨0, 0, 1⟩ otherwise

= ⟨0.2, 0.3, 0.5⟩
g2(�) = ⟨0.5, 0.3, 0.1⟩
For � = (2, 2)
g1(�) = ⟨0, 0, 1⟩
g2(�) = ⟨0.5, 0.3, 0.1⟩

Therefore we can get the following table for �

� g(�)
(1, 2) ⟨0.2, 0.3, 0.5⟩, ⟨0.5, 0.3, 0.1⟩
(2, 2) ⟨0, 0, 1⟩, ⟨0.5, 0.3, 0.1⟩

Out of which (⟨0, 0, 1⟩, ⟨0.5, 0.3, 0.1⟩) is the minimal one. And also it satisfy
xA = b that is x̂ = (⟨0, 0, 1⟩, ⟨0.5, 0.3, 0.1⟩)
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Using the same method we have followed, one can find the g-inverse of a fuzzy neu-
trosophic soft matrix if it exits.

Example 3.13. Let A =

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
. To find the g-inverse, set AXA = A

and AX = B so that BA = A, where

X =

[
⟨xT11, xI11, xF11⟩ ⟨xT12, xI12, xF12⟩
⟨xT21, xI21, xF21⟩ ⟨xT22, xI22, xF22⟩

]
and B =

[
⟨bT11, bI11, bF11⟩ ⟨bT12, bI12, bF12⟩
⟨bT21, bI21, bF21⟩ ⟨bT22, bI22, bF22⟩

]
.

To find B and X:

(⟨bT11, bI11, bF11⟩, ⟨bT12, bI12, bF12⟩)
[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
= (⟨1, 1, 0⟩, ⟨1, 1, 0⟩)

⟨bT11, bI11, bF11⟩ = ⟨min
k
�(a1k, b1k),min

k
�

′
(a

′

1k, b
′

1k),max
k
�

′′
(a

′′

1k, b
′′

1k)⟩ = ⟨1, 1, 0⟩
⟨bT12, bI12, bF12⟩ = ⟨min

k
�(a2k, b2k),min

k
�

′
(a

′

2k, b
′

2k),max
k
�

′′
(a

′′

2k, b
′′

2k)⟩ = ⟨1, 1, 0⟩

Take (⟨bT21, bI21, bF21⟩, ⟨bT22, bI22, bF22⟩)
[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
= (⟨1, 1, 0⟩, ⟨0, 0, 1⟩)

⟨bT21, bI21, bF21⟩ = ⟨min
k
�1k, b2k),min

k
(�

′

1k, b
′

2k),max
k

(�
′′

1k, b
′′

2k)⟩ = ⟨0, 0, 1⟩
⟨bT22, bI22, bF22⟩ = ⟨min

k
(�2k, b2k),min

k
(�

′

2k, b
′

2k),max
k

(�
′′

2k, b
′′

2k)⟩ = ⟨1, 1, 0⟩

Therefore B̂ =

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]
which satisfy BA = A

The AX = B becomes[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

] [
⟨xT11, xI11, xF11⟩ ⟨xT12, xI12, xF12⟩
⟨xT21, xI21, xF21⟩ ⟨xT22, xI22, xF22⟩

]
=

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]
⟨xT11, xI11, xF11⟩ = ⟨min

k
(�k1, bk1),min

k
(�

′

k1, b
′

k1),max
k

(�
′′

k1, b
′′

k1)⟩ = ⟨0, 0, 1⟩
⟨xT12, xI12, xF12⟩ = ⟨min

k
(�k1, bk2),min

k
(�

′

k1, b
′

k2),max
k

(�
′′

k1, b
′′

k2)⟩ = ⟨1, 1, 0⟩
⟨xT21, xI21, xF21⟩ = ⟨min

k
(�k2, bk1),min

k
(�

′

k2, b
′

k1),max
k

(�
′′

k2, b
′′

k1)⟩ = ⟨1, 1, 0⟩
⟨xT22, xI22, xF22⟩ = ⟨min

k
(�k2, bk2),min

k
(�

′

k2, b
′

k2),max
k

(�
′′

k2, b
′′

k2)⟩ = ⟨1, 1, 0⟩

Therefore X̂ =

[
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨1, 1, 0⟩

]
. Clearly AX̂A = A

Hence X̂ is the maximum g-inverse of AX̂A = A.
To get the minimal solution: Let us find the minimum B̂ from B̂A = A and using
the minimum B̂ in AX = B we can find the minimum X̂

Consider

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

] [
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
=

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
.

Step 1. Determine the set Jij(B̂)

11



J11(B̂) = {min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩
= {⟨1, 1, 0⟩, ⟨1, 1, 0⟩} = {1, 2}

J12(B̂) = {min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨0, 0, 1⟩}} = ⟨1, 1, 0⟩
= {⟨1, 1, 0⟩, ⟨0, 0, 1⟩} = {1}

J21(B̂) = {min{⟨0, 0, 1⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩
= {⟨0, 0, 1⟩, ⟨1, 1, 0⟩} = {2}

J22(B̂) = {min{⟨0, 0, 1⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨0, 0, 1⟩}} = ⟨0, 0, 1⟩
= {⟨0, 0, 1⟩, ⟨0, 0, 1⟩} = {1, 2}

Let �1 = J11(B̂)× J12(B̂) = {1, 2} × {1} = {(1, 2), (2, 1)}
�2 = J21(B̂)× J22(B̂) = {2} × {1, 2} = {(2, 1), (2, 2)}
Step 2. Determine the set K(�k, j) for k = 1, 2 and j = 1, 2
For �1 = (1, 1)K(�1, 1) = {1, 2}

K(�1, 2) = {�}
For �1 = (2, 1)K(�1, 1) = {2}

K(�1, 2) = {1}
For �2 = (2, 1)K(�2, 1) = {2}

K(�2, 2) = {1}
For �2 = (2, 2)K(�2, 1) = {�}

K(�2, 2) = {1, 2}
Writing the values in tabular form we get

(�1, j) 1 2
(1, 1) {1, 2} �
(2, 1) {2} 1

(�2, j) 1 2
(2, 1) {2} {1}
(2, 2) {�} {1, 2}

Step 3. For each �k let us generate the g(�k) tuples
For �1 = (1, 1)

g1(�1) = (1, 1)
g1(�1) = max

k∈K(�,1)
{⟨1, 1, 0⟩, ⟨1, 1, 0⟩} = ⟨1, 1, 0⟩

g2(�1) = ⟨0, 0, 1⟩
For (�1) = (2, 1)
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g1(�1) = ⟨1, 1, 0⟩
g2(�1) = ⟨1, 1, 0⟩

For g1(�1) = (2, 1)
g1(�1) = ⟨1, 1, 0⟩
g2(�1) = ⟨1, 1, 0⟩

For g1(�1) = (2, 2)
g1(�2) = ⟨0, 0, 1⟩
g2(�2) = max{⟨1, 1, 0⟩, ⟨0, 0, 1⟩} = ⟨1, 1, 0⟩

The corresponding tabular forms are given by

(�1, j) g(�1)
(1, 1) (⟨1, 1, 0⟩, ⟨0, 0, 1⟩)
(2, 1) (⟨1, 1, 0⟩, ⟨1, 1, 0⟩)

(�2, j) g(�2)
(2, 1) (⟨0, 0, 1⟩, ⟨1, 1, 0⟩)
(2, 1) (⟨0, 0, 1⟩, ⟨1, 1, 0⟩)

By pairwise comparison we can find out the minimum in each of the above
table, we get

B̂ =

[
⟨1, 1, 0⟩ ⟨0, 0, 1⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]
Using the minimum B̂ in AX = B we can find the minimum X̂
Now AX = B̂ is[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

] [
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨1, 1, 0⟩

]
=

[
⟨1, 1, 0⟩ ⟨0, 0, 1⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]
Step. 4 Determine the set Jij(B̂)

J11(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨0, 0, 1⟩},min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩
= {⟨0, 0, 1⟩⟨1, 1, 0⟩ = {2}

J12(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨0, 0, 1⟩
= {⟨1, 1, 0⟩⟨1, 1, 0⟩ = {�}

J21(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨0, 0, 1⟩},min⟨{⟨0, 0, 1⟩, ⟨1, 1, 0⟩}} = ⟨0, 0, 1⟩
= {⟨0, 0, 1⟩⟨0, 0, 1⟩ = {1, 2}

J22(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min⟨{⟨0, 0, 1⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩
= {⟨1, 1, 0⟩⟨0, 0, 1⟩ = {1}

Let �1 = J11B̂ × J12B̂ = {2} × �
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�2 = J21B̂ × J22B̂ = {1, 2} × {1} = {(1, 1)(2, 1)}
Step 5. Determine the set K(�k, j) for k=1,2 and j=1,2
For �1 = {2} K(�1, 1) = �
K(�1, 2) = {1}
For �2 = {2, 1}K(�2, 1) = {2}
K(�2, 2) = {1}
k(�1, j) 1 2
{2} × � � {1}

k(�2, j) {1, 2} �
(1, 1) {1, 2} �
(2, 1) {2} {1}

Step 6: For each �k Let as generate the g(�k) tuples.
For �1 = {2} × �

g1(�1) = ⟨0, 0, 1⟩
g2(�2) = ⟨1, 1, 0⟩

For�2 = (1, 1)
g1(�2) = ⟨1, 1, 0⟩
g2(�2) = ⟨0, 0, 1⟩

For�2 = (2, 1)
g1(�2) = ⟨1, 1, 0⟩
g2(�2) = ⟨0, 0, 1⟩

The corresponding tabular forms are given by
�1 g(�1)

{2} × � ⟨0, 0, 1⟩, ⟨1, 1, 0⟩

�2 g(�2)
(1, 1) ⟨1, 1, 0⟩, ⟨0, 0, 1⟩
(2, 1) ⟨1, 1, 0⟩, ⟨0, 0, 1⟩

To get the X̌ select a minimum row from each table, that is

X̌ =

[
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
Clearly this X̌ will satisfy AXA = A and we observe that

[X̌, X̂] = {
[
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨�, �′

, �
′′⟩

]
∣0 ≤ � ≤ 1, 0 ≤ �

′ ≤ 1 and 0 ≤ �
′′ ≤ 1 with

� + �
′
+ �

′′ ≤ 3} is the set of all g-inverse in [X̌, X̂].
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Conclusion: The maximum and minimum solution of the relational equation
xA = b and Ax = b has been obtained. Using this relational equation maximum and
minimum g-inverse of a fuzzy neutrosophic soft matrix are also found.
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