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Abstract

If several independent algorithms for a computer-calculated quan-
tity exist, then one can expect their results (which differ because of
numerical errors) to follow approximately Gaussian distribution. The
mean of this distribution, interpreted as the value of the quantity of
interest, can be determined with better precision than what is the
precision provided by a single algorithm. Often, with lack of enough
independent algorithms, one can proceed differently: many practical
algorithms introduce a bias using a parameter, e.g. a small but finite
number to compute a limit or a large but finite number (cutoff) to
approximate infinity. One may vary such parameter of a single al-
gorithm and interpret the resulting numbers as generated by several
algorithms. A numerical evidence for the validity of this approach is
shown for differentiation.

1 Introduction

Average understood as summation (divided by a constant) is under very gen-
eral assumptions subject to the central limit theorem. This can be used in
numerical computations for precision increase. Indeed, if several independent
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algorithms for computing a quantity of interest exist, each of them having
certain numerical imprecision, one may average the results and get a smaller
error. Depending on circumstances, this procedure may be regarded as re-
peated unbiased independent measurements with random errors and, for this
scenario, the expected shrinking of the error is

σ =

√∑N
i=1 σ

2
i

N
≈ σtypical

√
N

,

where one expects the numerical errors of the various methods not to be very
different (all close to a typical value σtypical).

The question of algorithm independence arises. Clearly, if each algorithm
from a given set leads to the same result then the algorithms are, in the
mathematical sense, fully correlated. However, for what concerns numerical
errors, a different optics can be adopted: otherwise result-equivalent algo-
rithms may differ a lot in the functions they use (and the corresponding
register operations) which de-correlates their numerical uncertainties. It is
reasonable to assume that the numerical errors arise from technical details
of the computer processing and do not actually depend a lot on the global
“idea” of a given algorithm. Therefore one can reasonably assume that al-
gorithms which differ in “technical” sense provide practically uncorrelated
numerical errors of their results.

Unfortunately, in practice, one usually does not have many independent
methods to compute a given quantity. However what is often the case is a bi-
ased parameter-dependent algorithm. The parameters allow to approximate
an ideal situation which is inaccessible via computers: a small (but finite) h
can be used as a step in numerical differentiation or integration, a large (but
finite) Λ can be used as a cutoff (approximating infinity). A natural idea
arises: one may use different (but reasonable) values for these parameters,
get in each case a result and apply the previous ideas. Two issues can be
addressed here: bias and error correlations.

Obviously, any numerical differentiation (as an example) with nonzero
step h is biased and even if infinite-precision computers were available the
result would not be fully correct. The overall “wrongness” thus has two
components: numerical errors and bias. Here an expectation can be made:
if the averaging helps to shrink the numerical errors then one should tend
to use, in the averaging approach, an algorithm (its parameter values) with
smaller bias. In other words: the averaging cannot remove the bias but does

2



remove numerical effects and so one expects to get the most precise results
for less biased algorithm compared to the bias leading to the most precise
results for a single (i.e. non-averaged) algorithm.

The correlation of uncertainties of results from the parameter-changing
approach is something one can examine empirically. The case of numerical
differentiation studied in this text shows that their mutual independence is
large enough to provide substantial error reduction.

In what follows, this text fully focuses on the numerical differentiation.
To honestly study the subject I will use several methods of numerical dif-
ferentiation. The corresponding issues will be reviewed in Sec. 2. Next, in
Sec. 3, I will explain the heuristic testing method and present its results. In
the last sections I will discuss different result-related observations and make
summary and conclusions.

2 Numerical differentiation methods

In this text I focus on the (ill-conditioned) numerical differentiation of a
general (differentiable) function, I will therefore ignore special recipes suited
for special situations1. To make sure that the error shrinking by averaging is
not limited to some specific algorithm, I propose to test it on three different
differentiation methods (with an appropriately chosen h):

• Averaged finite difference (AFD)

f ′AFD(x, h) =
1

2

[
f (x+ h)− f (x)

h
+
f (x)− f (x− h)

h

]
,

=
f (x+ h)− f (x− h)

2h
.

• “Five-point rule” based on the Richardson extrapolation (RE)

f ′RE(x, h) =
f (x− 2h)− 8f (x− h) + 8f (x+ h)− f (x+ 2h)

12h
.

The implementation of the numerical differentiation is in many common
mathematical computer packages based on the Richardson extrapola-
tion.

1E.g. the set of analytic functions and well-conditioned differentiation based on the
Cauchy theorem.
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• Lanczos differentiation by integration (LDI)

f ′LDI(x, h) =
3

2h3

∫ x+h

x−h
(x− t) f (t) dt.

To evaluate the integral I use, in my programs, the composite Boole’s
rule with 16 equidistant points {xi}i=16

i=1 , x1 = x − h, x16 = x + h,
xi+1 − xi = 4x∫ x+h

x−h
f (t) dt ≈ 24x (I1 + I2 + I3 + I4) /45,

I1 = 7 [f (x1) + f (x16)] ,

I2 = 32
i=7∑
i=1

f (x2i+1) ,

I3 = 14
i=3∑
i=1

f (x4i) ,

I4 = 12
i=3∑
i=0

f (x4i+2) .

Let me index these methods by the letter k, kε {AFD, RE, LDI}. I imple-
ment the averaging procedure in the straightforward way

f ′AV
k (x) =

1

N

N∑
i=1

f ′k(x, hi), hiεH,

where the set H is chosen in function of the h used in the single algorithm
computation as follows:

• For AFD H = [0.5h, 1.5h] where two options are investigated

– hi is generated as a random number with uniform distribution
from the interval H (noted AFDAV

MC).

– successive values of hi are generated such as to be equidistant with
h1 = 0.5h and hN = 1.5h (noted AFDAV

ED).

• For RE and LDI H = [0.5h, 1.5h], where hi is generated as a random
number with uniform distribution from this interval (only this option
is investigated).
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Use of random numbers seems to be a safer option if aiming uncorrelated
errors, yet regular division of the interval is tested also. For testing purposes
I use a program2 written in the JAVA programming language and double
precision variables.

3 Testing and results

To study the behavior of the method in more details I make an effort to
examine it depending on the first and second derivatives of the function
and on the step size h. The first quantity directly correlates with what
is being approximated (f ′), the two others (f ′′, h) are often related to the
expected precision of the approximation. I do the analysis by scanning 6
orders of magnitude for each “dependence” (its absolute value). For that
purpose I choose 19 points in the |f ′|, |f ′′| plane, trying, in the logarithmic
scale, to map it more or less uniformly. To avoid any fine-tuning suspicions
I choose to use the basic elementary functions: cos (x), exp (x), ln (x) and
arctan (x). However, with this choice, it is impossible to “uniformly” cover
the 10−3 > |f ′| , |f ′′| . 103 region. Aiming this purpose, I add a suitable
polynomial: the Laguerre polynomial L7 (x). Situation is summarized in
Tab 1 and in Fig. 1. From now on I will use the word “case” to refer to any
of the 19 settings, each of them characterized by a function f , its argument
x and the absolute value of its first and second derivatives at x. I will stick
to the numbering presented in Tab. 1.

The step size h is changed from h = 10−3 to h = 10−8 in geometrical
progression with factor 10. One needs also to define the size of the statistical
sample. To profit most from the averaging method a big number is suitable;
I fix it to N = 106. This choice is driven also by practical considerations,
i.e. the wish to keep the computer processing time in reasonable limits (∼
minutes). The error is shown as absolute error∣∣f ′approximated − f ′true

∣∣ , (1)

where for f ′true the numerical value of the corresponding (known) derivative
function is taken.

2The program can be, at least temporarily, downloaded from http://www.dthph.sav.

sk/fileadmin/user_upload/liptaj/differentiationAveraging.zip or requested
from the author. I also greatly profited from the WxMaxima software.
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Case number Function x= |f ′ (x)| ≈ |f ′′ (x)| ≈
1 L7 (x) 9.683 19.88 0.0011
2 L7 (x) 11.2345 0.0031 28.57
3 L7 (x) 15.83 265.1 0.1534
4 L7 (x) 17.65 1.443 358.1
5 L7 (x) 15.8285 265.1 0.0026
6 L7 (x) 17.64595 0.0048 356.8
7 exp (x) −6.9 0.0010 0.0010
8 ln (x) 10 0.1 0.01
9 arctan (x) 6.245 0.0249 0.0078
10 cos (x) 1.47 0.9949 0.1006
11 cos (x) 0.1 0.0998 0.9950
12 cos (x) 0.0025 0.0024 0.9999
13 arctan (x) 0.002 0.9999 0.0039
14 ln (x) 0.03 33.33 1111.1
15 exp (x) 6.9 992.2 992.2
16 ln (x) 1.0 1.0 1.0
17 L7 (x) 9.67477 19.88 0.1000
18 L7 (x) 11.2311 0.1001 28.49
19 exp (x) 4.25 70.10 70.10

Table 1: Cases (points and functions) for which the averaging procedure was
tested.

Figure 1: Studied cases depicted in |f ′| , |f ′′|the plane.

6



To prevent long listings within the main text, I put the tables with de-
tailed results in Attachment. Each table corresponds to a single case and is
differential in the step size and used method. Here, I average these tables
(i.e. I average each cell over 19 cases), which might be somewhat artificial
but has more message-conveying power.

Case-averaged results
h 10−3 10−4 10−5

AFD 2.0× 10−3 2.0× 10−5 1.8× 10−7

AFDAV
MC 2.2× 10−3 2.2× 10−5 2.2× 10−7

AFDAV
ED 1.2× 10−3 1.2× 10−5 1.2× 10−7

RE 6.9× 10−9 7.6× 10−9 7.1× 10−8

REAV 1.1× 10−8 6.0× 10−12 4.2× 10−11

LDI 1.2× 10−3 1.4× 10−5 7.2× 10−4

LDIAV 1.3× 10−3 1.3× 10−5 4.4× 10−7

Case-averaged results
h 10−6 10−7 10−8

AFD 3.0× 10−7 1.8× 10−6 6.3× 10−2

AFDAV
MC 2.3× 10−9 3.1× 10−9 5.1× 10−5

AFDAV
ED 1.7× 10−9 1.6× 10−9 1.0× 10−6

RE 4.3× 10−7 2.4× 10−6 9.4× 10−2

REAV 7.1× 10−10 1.0× 10−9 4.0× 10−5

LDI 7.2× 10−2 5.5× 100 1.2× 107

LDIAV 9.3× 10−5 5.1× 10−3 8.0× 103

4 Discussion

Results confirm that the averaging method is very efficient in providing pre-
cise numerical derivative and reducing related errors. The overall error re-
duction (in absolute error) typically corresponds to two or three orders of
magnitude (when comparing the most precise results). Besides the obvious
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fact of reducing the error by increasing statistics3, the assumptions concern-
ing method functioning are further confirmed by the behavior with respect
to h: as predicted earlier (Sec. 1) the most precise results of the averaging
method typically happen for smaller step h than is h which corresponds to
the most precise result of the same, but non-averaged method. Rather nu-
merous are situations where h remains the same, rare are exceptions where
the behavior is opposite (RE method in case 12 and AFDAV

MC method in
case 16). Rather amazing are results of the REAV method in cases 13 and
14 where, within the computer precision, exact results are reconstructed.

When comparing AFDAV
MC and AFDAV

ED approaches, one observes that
their performances are rather equivalent. Yet, the “equidistant” method per-
forms somewhat better which is little bit surprising: one can imagine that a
regular division could introduce some correlation into the numbers to be aver-
aged and thus slightly spoil the results. One can speculate that this behavior
could be related to what is know from quasi-Monte Carlo methods: random
numbers are often distributed quite unevenly, i.e. the “low-discrepancy” of
the equidistant method may be the reason for it to win. It might certainly
be a good idea for further studies to use, within the averaging method, low-
discrepancy sequences.

The results also show that the averaging method can be combined with
any of the three proposed “standard” methods, which points once more to the
general statistical aspects of the method. One may notice that the “standard”
methods differ quite not only in the definition but also in the optimal step
size h (step where the maximal precision is reached). The most precise of
them is clearly the one based on the Richardson extrapolation.

Finally, one needs to remark that for the LDI method in cases 14 and
16 the averaging method fails. I cannot think about a solid explanation, it
might by a random accident or it might be somehow related to the fact of
LDI being the least precise of the studied methods (or any other feature of
this method). At least in the case 14 the non-averaged result it atypically
precise for this method, which might be interpreted as a ”luck”. In case 16
the difference between results is small, making the averaging failure not to
be so ”pronounced”. In any case I need to stress that, despite these two
observations, the averaging method works in general very well also for the
LDI algorithm.

3Non-averaged results can be seen as averaged results with statistics equal to one.
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5 Summary and conclusion

In this text I made a numerical study of the averaging method applied to
the numerical differentiation. A rigorous approach to the whole idea would
require a rigorous treatment of the floating-point arithmetic in computer
registers. If possible, such an approach would certainly be very tedious with
many assumptions and special cases. I believe a numerical evidence is strong
enough to make claims about the method and its mechanism. The method
is efficient and provides an important precision increase. It is very general
and robust because of its statistical character. It should be used in situa-
tions where precision is the priority, its main drawback, slowness, makes it
not suitable for quick computations. When combined with a high precision
“standard” method, the averaging method is, to my knowledge, the most
precise numerical differentiation method at the market today.

Appendix

The following tables give detailed results for cases mentioned in Tab 1. In
each table the step h is varied from 10−3 to 10−8 in columns, in rows different
methods are presented (notation from Sec. 2 is used). Individual cells contain
absolute error (formula 1), the most precise of them is, for each method,
shown in bold characters.
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Case number: 1
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.1× 10−4 2.1× 10−6 4.9× 10−9 2.1× 10−7 1.2× 10−6 9.5× 10−5

AFDAV
MC 2.2× 10−4 2.2× 10−6 2.2× 10−8 2.3× 10−10 1.8× 10−9 6.4× 10−8

AFDAV
ED 1.2× 10−4 1.2× 10−6 1.2× 10−8 3.9× 10−10 5.2× 10−10 2.1× 10−9

RE 1.5× 10−10 4.4× 10−10 2.3× 10−8 2.9× 10−7 1.9× 10−6 1.5× 10−4

REAV 5.0× 10−11 1.7× 10−12 1.2× 10−11 2.9× 10−10 7.8× 10−11 9.4× 10−8

LDI 1.2× 10−4 8.4× 10−7 2.6× 10−5 2.6× 10−3 1.3× 10−1 2.6× 104

LDIAV 1.3× 10−4 1.3× 10−6 2.8× 10−8 8.4× 10−6 5.5× 10−4 1.1× 101

Case number: 2
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 3.9× 10−4 3.9× 10−6 1.7× 10−8 3.4× 10−7 1.8× 10−6 4.8× 10−4

AFDAV
MC 4.2× 10−4 4.2× 10−6 4.2× 10−8 4.5× 10−10 2.1× 10−9 4.7× 10−7

AFDAV
ED 2.3× 10−4 2.3× 10−6 2.3× 10−8 4.0× 10−10 6.0× 10−10 1.8× 10−9

RE 2.2× 10−9 4.4× 10−10 3.0× 10−8 4.1× 10−7 2.2× 10−6 7.2× 10−4

REAV 2.8× 10−9 7.0× 10−12 9.5× 10−12 4.8× 10−10 2.8× 10−9 2.7× 10−7

LDI 2.3× 10−4 1.6× 10−6 4.9× 10−5 4.9× 10−3 2.4× 10−1 1.2× 105

LDIAV 2.5× 10−4 2.5× 10−6 1.4× 10−7 5.5× 10−6 4.9× 10−4 2.6× 100
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Case number: 3
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.7× 10−3 1.7× 10−5 9.6× 10−8 2.5× 10−7 1.1× 10−6 4.6× 10−2

AFDAV
MC 1.8× 10−3 1.8× 10−5 1.8× 10−7 1.3× 10−9 2.3× 10−8 2.2× 10−5

AFDAV
ED 9.8× 10−4 9.8× 10−6 9.8× 10−8 5.5× 10−9 1.4× 10−8 7.4× 10−7

RE 1.1× 10−8 6.3× 10−9 1.0× 10−7 4.8× 10−7 5.1× 10−7 6.9× 10−2

REAV 1.8× 10−8 2.0× 10−11 1.2× 10−10 4.1× 10−9 1.9× 10−9 6.4× 10−5

LDI 1.0× 10−3 1.1× 10−6 6.0× 10−4 6.0× 10−2 3.0× 100 1.2× 107

LDIAV 1.1× 10−3 1.1× 10−5 6.2× 10−7 4.6× 10−5 6.5× 10−3 1.0× 104

Case number: 4
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.3× 10−3 5.3× 10−5 1.1× 10−7 2.6× 10−6 1.9× 10−5 5.4× 10−1

AFDAV
MC 5.7× 10−3 5.7× 10−5 5.7× 10−7 4.9× 10−9 1.7× 10−8 6.3× 10−4

AFDAV
ED 3.1× 10−3 3.1× 10−5 3.1× 10−7 2.3× 10−10 9.7× 10−10 9.0× 10−6

RE 2.1× 10−8 8.7× 10−8 6.2× 10−7 3.8× 10−6 2.7× 10−5 8.0× 10−1

REAV 2.7× 10−8 1.8× 10−11 3.4× 10−10 1.7× 10−9 4.0× 10−9 5.7× 10−5

LDI 3.2× 10−3 2.2× 10−5 9.6× 10−4 9.6× 10−2 9.6× 100 9.9× 107

LDIAV 3.4× 10−3 3.4× 10−5 1.7× 10−6 7.1× 10−4 1.9× 10−2 6.5× 104
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Case number: 5
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.7× 10−3 1.7× 10−5 5.2× 10−8 2.1× 10−7 5.8× 10−6 4.7× 10−2

AFDAV
MC 1.8× 10−3 1.8× 10−5 1.8× 10−7 2.2× 10−9 6.7× 10−9 6.0× 10−5

AFDAV
ED 9.8× 10−4 9.8× 10−6 9.8× 10−8 2.4× 10−9 5.7× 10−9 1.4× 10−7

RE 9.2× 10−9 7.9× 10−9 1.6× 10−7 4.5× 10−7 5.9× 10−6 6.9× 10−2

REAV 1.8× 10−8 1.9× 10−11 3.3× 10−11 1.3× 10−9 4.3× 10−9 3.1× 10−5

LDI 1.0× 10−3 1.1× 10−6 6.0× 10−4 6.0× 10−2 3.0× 100 1.2× 107

LDIAV 1.1× 10−3 1.1× 10−5 2.0× 10−7 3.5× 10−5 2.2× 10−3 1.0× 104

Case number: 6
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.3× 10−3 5.3× 10−5 7.7× 10−7 1.5× 10−6 1.6× 10−6 5.6× 10−1

AFDAV
MC 5.7× 10−3 5.7× 10−5 5.7× 10−7 7.4× 10−9 2.2× 10−9 2.7× 10−4

AFDAV
ED 3.1× 10−3 3.1× 10−5 3.1× 10−7 8.9× 10−9 5.7× 10−9 8.9× 10−6

RE 1.7× 10−8 3.3× 10−8 3.3× 10−7 1.9× 10−6 2.0× 10−6 8.4× 10−1

REAV 2.7× 10−8 3.0× 10−11 2.1× 10−10 4.8× 10−9 1.2× 10−9 6.0× 10−4

LDI 3.2× 10−3 2.2× 10−5 9.6× 10−4 9.6× 10−2 9.6× 100 9.8× 107

LDIAV 3.4× 10−3 3.4× 10−5 2.0× 10−6 2.8× 10−4 6.2× 10−2 6.7× 104
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Case number: 7
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.1× 10−2 2.1× 10−4 2.1× 10−6 2.5× 10−7 1.1× 10−7 3.7× 10−12

AFDAV
MC 2.3× 10−2 2.3× 10−4 2.3× 10−6 2.2× 10−8 6.6× 10−10 5.0× 10−15

AFDAV
ED 1.2× 10−2 1.2× 10−4 1.2× 10−6 1.2× 10−8 9.6× 10−10 6.2× 10−17

RE 3.1× 10−8 4.0× 10−9 2.4× 10−8 4.0× 10−7 8.0× 10−7 5.6× 10−12

REAV 4.7× 10−8 2.7× 10−12 1.5× 10−11 2.8× 10−10 1.8× 10−9 4.2× 10−15

LDI 1.3× 10−2 2.0× 10−4 1.0× 10−2 1.0× 100 7.8× 101 2.7× 10−4

LDIAV 1.4× 10−2 1.4× 10−4 3.5× 10−6 6.5× 10−4 4.0× 10−3 3.3× 10−7

Case number: 8
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.5× 10−4 2.5× 10−6 4.8× 10−8 2.2× 10−7 7.6× 10−8 1.3× 10−4

AFDAV
MC 2.7× 10−4 2.7× 10−6 2.7× 10−8 2.4× 10−10 1.3× 10−9 7.7× 10−8

AFDAV
ED 1.5× 10−4 1.5× 10−6 1.5× 10−8 7.2× 10−11 8.6× 10−11 3.7× 10−10

RE 2.7× 10−10 5.1× 10−10 2.7× 10−8 3.1× 10−7 1.6× 10−7 1.9× 10−4

REAV 5.0× 10−10 2.0× 10−12 1.2× 10−11 2.6× 10−11 4.2× 10−10 1.4× 10−7

LDI 1.5× 10−4 1.0× 10−6 3.3× 10−5 3.3× 10−3 1.6× 10−1 3.5× 104

LDIAV 1.6× 10−4 1.6× 10−6 6.9× 10−8 8.7× 10−6 7.1× 10−4 1.7× 101
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Case number: 9
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 8.6× 10−5 8.6× 10−7 8.5× 10−9 3.0× 10−9 2.7× 10−8 1.3× 10−6

AFDAV
MC 9.3× 10−5 9.3× 10−7 9.3× 10−9 7.0× 10−11 1.1× 10−10 3.8× 10−10

AFDAV
ED 5.0× 10−5 5.0× 10−7 5.0× 10−9 3.3× 10−11 4.3× 10−11 1.3× 10−10

RE 1.1× 10−9 7.6× 10−11 2.0× 10−10 6.2× 10−9 4.2× 10−8 1.7× 10−6

REAV 1.6× 10−9 1.9× 10−13 1.9× 10−13 2.2× 10−11 1.7× 10−10 1.3× 10−9

LDI 5.2× 10−5 5.6× 10−7 5.5× 10−6 5.5× 10−4 4.1× 10−2 1.4× 102

LDIAV 5.6× 10−5 5.6× 10−7 7.1× 10−9 2.8× 10−7 1.3× 10−6 6.7× 10−1

Case number: 10
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 4.5× 10−5 4.5× 10−7 4.5× 10−9 1.1× 10−10 6.7× 10−10 1.4× 10−10

AFDAV
MC 4.9× 10−5 4.9× 10−7 4.9× 10−9 4.9× 10−11 2.6× 10−12 6.1× 10−12

AFDAV
ED 2.7× 10−5 2.7× 10−7 2.7× 10−9 2.7× 10−11 1.8× 10−13 2.9× 10−13

RE 3.9× 10−9 4.0× 10−12 4.1× 10−12 2.1× 10−10 1.4× 10−9 6.0× 10−10

REAV 5.9× 10−9 5.8× 10−13 1.7× 10−14 2.5× 10−13 2.0× 10−12 1.2× 10−12

LDI 2.7× 10−5 2.7× 10−7 4.1× 10−8 7.6× 10−6 1.1× 10−3 8.7× 10−1

LDIAV 3.0× 10−5 3.0× 10−7 2.7× 10−9 2.6× 10−8 1.7× 10−6 1.0× 10−3
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Case number: 11
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.3× 10−4 5.3× 10−6 5.3× 10−8 5.2× 10−10 6.6× 10−11 3.9× 10−11

AFDAV
MC 5.7× 10−4 5.7× 10−6 5.7× 10−8 5.7× 10−10 5.7× 10−12 3.6× 10−13

AFDAV
ED 3.1× 10−4 3.1× 10−6 3.1× 10−8 3.1× 10−10 3.1× 10−12 5.1× 10−15

RE 6.8× 10−9 7.0× 10−13 5.8× 10−13 2.2× 10−12 6.6× 10−11 4.1× 10−10

REAV 1.0× 10−8 1.0× 10−12 8.9× 10−16 3.6× 10−15 4.5× 10−14 1.4× 10−13

LDI 3.2× 10−4 3.2× 10−6 3.3× 10−8 5.0× 10−7 3.3× 10−5 1.8× 10−2

LDIAV 3.4× 10−4 3.4× 10−6 3.4× 10−8 2.2× 10−10 3.7× 10−8 3.6× 10−6

Case number: 12
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.8× 10−4 5.8× 10−6 5.8× 10−8 5.8× 10−10 7.8× 10−12 4.3× 10−10

AFDAV
MC 6.3× 10−4 6.3× 10−6 6.3× 10−8 6.3× 10−10 6.3× 10−12 2.8× 10−13

AFDAV
ED 3.4× 10−4 3.4× 10−6 3.4× 10−8 3.4× 10−10 3.4× 10−12 8.0× 10−14

RE 7.0× 10−9 7.6× 10−13 5.4× 10−13 4.8× 10−13 4.5× 10−11 6.1× 10−10

REAV 1.1× 10−8 1.1× 10−12 1.8× 10−15 5.3× 10−15 9.8× 10−15 7.0× 10−13

LDI 3.5× 10−4 3.5× 10−6 3.5× 10−8 1.3× 10−8 2.6× 10−6 1.3× 10−4

LDIAV 3.8× 10−4 3.8× 10−6 3.8× 10−8 4.3× 10−10 4.4× 10−9 3.8× 10−7
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Case number: 13
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.8× 10−4 5.8× 10−6 5.8× 10−8 5.8× 10−10 8.6× 10−11 3.7× 10−11

AFDAV
MC 6.3× 10−4 6.3× 10−6 6.3× 10−8 6.3× 10−10 6.4× 10−12 7.6× 10−13

AFDAV
ED 3.4× 10−4 3.4× 10−6 3.4× 10−8 3.4× 10−10 3.4× 10−12 4.3× 10−14

RE 7.0× 10−9 7.1× 10−13 2.7× 10−13 8.4× 10−13 7.7× 10−11 2.2× 10−10

REAV 1.1× 10−8 1.1× 10−12 0.0× 100 1.3× 10−14 3.8× 10−14 7.7× 10−14

LDI 3.5× 10−4 3.5× 10−6 3.5× 10−8 1.3× 10−8 2.6× 10−6 1.3× 10−4

LDIAV 3.8× 10−4 3.8× 10−6 3.8× 10−8 3.9× 10−10 2.1× 10−9 7.2× 10−7

Case number: 14
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.7× 10−4 5.7× 10−6 5.7× 10−8 5.6× 10−10 1.9× 10−11 3.0× 10−11

AFDAV
MC 6.1× 10−4 6.1× 10−6 6.1× 10−8 6.1× 10−10 6.2× 10−12 5.1× 10−13

AFDAV
ED 3.3× 10−4 3.3× 10−6 3.3× 10−8 3.3× 10−10 3.3× 10−12 4.9× 10−14

RE 6.9× 10−9 6.3× 10−13 2.5× 10−14 3.5× 10−12 1.0× 10−11 3.0× 10−11

REAV 1.0× 10−8 1.0× 10−12 0.0× 100 2.7× 10−15 2.7× 10−14 1.2× 10−12

LDI 3.4× 10−4 3.4× 10−6 3.6× 10−8 2.5× 10−7 2.0× 10−11 1.1× 10−3

LDIAV 3.7× 10−4 3.7× 10−6 3.7× 10−8 2.1× 10−10 6.2× 10−9 4.8× 10−6
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Case number: 15
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 7.7× 10−5 7.7× 10−7 4.9× 10−9 3.1× 10−9 1.0× 10−7 2.6× 10−6

AFDAV
MC 8.3× 10−5 8.3× 10−7 8.3× 10−9 4.7× 10−11 7.6× 10−11 3.6× 10−9

AFDAV
ED 4.5× 10−5 4.5× 10−7 4.5× 10−9 6.5× 10−11 2.1× 10−10 6.5× 10−11

RE 1.1× 10−9 2.2× 10−10 4.1× 10−9 4.5× 10−9 9.9× 10−8 3.9× 10−6

REAV 1.8× 10−9 3.8× 10−13 1.6× 10−12 9.6× 10−12 4.8× 10−10 1.4× 10−9

LDI 4.6× 10−5 5.1× 10−7 6.7× 10−6 6.7× 10−4 5.1× 10−2 2.6× 102

LDIAV 5.0× 10−5 5.0× 10−7 8.6× 10−10 3.7× 10−7 2.8× 10−5 1.1× 100

Case number: 16
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.6× 10−4 1.6× 10−6 1.6× 10−8 1.3× 10−10 1.2× 10−10 5.9× 10−11

AFDAV
MC 1.7× 10−4 1.7× 10−6 1.7× 10−8 1.7× 10−10 6.7× 10−13 1.4× 10−12

AFDAV
ED 9.1× 10−5 9.1× 10−7 9.1× 10−9 9.1× 10−11 1.1× 10−12 2.4× 10−13

RE 4.8× 10−9 1.1× 10−12 5.8× 10−12 3.8× 10−11 3.0× 10−10 1.2× 10−9

REAV 7.3× 10−9 7.3× 10−13 1.8× 10−14 1.2× 10−13 2.8× 10−13 1.1× 10−13

LDI 9.4× 10−5 9.4× 10−7 6.7× 10−9 3.4× 10−7 2.0× 10−5 4.4× 10−2

LDIAV 1.0× 10−4 1.0× 10−6 9.9× 10−9 2.3× 10−8 2.4× 10−6 1.6× 10−2
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Case number: 17
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.0× 10−4 2.0× 10−6 2.7× 10−8 1.8× 10−8 2.0× 10−6 1.0× 10−4

AFDAV
MC 2.2× 10−4 2.2× 10−6 2.2× 10−8 2.4× 10−10 1.2× 10−9 6.9× 10−10

AFDAV
ED 1.2× 10−4 1.2× 10−6 1.2× 10−8 1.3× 10−10 2.5× 10−10 5.1× 10−7

RE 1.8× 10−10 7.8× 10−10 1.0× 10−8 3.0× 10−8 2.2× 10−6 1.4× 10−4

REAV 3.9× 10−11 1.3× 10−12 2.2× 10−11 2.8× 10−10 2.2× 10−9 6.7× 10−8

LDI 1.2× 10−4 8.3× 10−7 2.6× 10−5 2.6× 10−3 1.3× 10−1 2.5× 104

LDIAV 1.3× 10−4 1.3× 10−6 1.7× 10−8 2.7× 10−7 1.2× 10−4 3.6× 101

Case number: 18
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 3.9× 10−4 3.9× 10−6 2.9× 10−8 2.6× 10−8 1.4× 10−6 4.8× 10−4

AFDAV
MC 4.2× 10−4 4.2× 10−6 4.2× 10−8 8.5× 10−10 2.5× 10−9 7.0× 10−7

AFDAV
ED 2.3× 10−4 2.3× 10−6 2.3× 10−8 1.6× 10−10 2.4× 10−9 9.8× 10−9

RE 1.8× 10−9 3.2× 10−9 1.7× 10−8 6.3× 10−8 1.9× 10−6 6.8× 10−4

REAV 2.7× 10−9 7.1× 10−12 3.4× 10−11 1.4× 10−10 8.6× 10−11 1.1× 10−6

LDI 2.3× 10−4 1.6× 10−6 4.9× 10−5 4.9× 10−3 2.4× 10−1 1.2× 105

LDIAV 2.5× 10−4 2.5× 10−6 3.7× 10−8 1.6× 10−5 3.0× 10−5 2.1× 102
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Case number: 19
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.0× 10−6 1.0× 10−8 7.6× 10−10 2.7× 10−9 1.6× 10−8 1.9× 10−7

AFDAV
MC 1.1× 10−6 1.1× 10−8 1.1× 10−10 1.5× 10−12 5.7× 10−11 2.2× 10−10

AFDAV
ED 5.8× 10−7 5.8× 10−9 5.8× 10−11 3.8× 10−12 2.9× 10−11 3.0× 10−12

RE 9.0× 10−11 6.3× 10−11 8.2× 10−10 3.6× 10−9 1.8× 10−8 2.8× 10−7

REAV 1.4× 10−10 4.3× 10−14 8.0× 10−13 1.3× 10−12 4.2× 10−11 2.2× 10−10

LDI 6.0× 10−7 1.7× 10−8 1.5× 10−6 1.5× 10−4 1.1× 10−2 1.9× 101

LDIAV 6.5× 10−7 6.5× 10−9 4.1× 10−10 4.1× 10−8 1.3× 10−5 8.0× 10−2
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