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1 Introduction
Fibonacci-numbers have been studied in many different forms for centuries and the liter-
ature on the subject is consequently incredibly vast. Surveys and connections of the type
just mentioned are provided in [] and [] for a very minimal set of examples of such texts,
while in [] an application (observation) concerns itself with the theory of a particular class
of means which has apparently not been studied in the fashion done there by two of the
authors of the present paper. Han et al. [] studied a Fibonacci norm of positive integers,
and they presented several conjectures and observations.
Given the usual Fibonacci-sequences [, ] and other sequences of this type, one is natu-

rally interested in considering whatmay happen inmore general circumstances. Thus, one
may consider what happens if one replaces the (positive) integers by the modulo integer
n or what happens in even more general circumstances. The most general circumstance
we will deal with in this paper is the situation where (X,∗) is actually a groupoid, i.e., the
product operation ∗ is a binary operation, where we assume no restrictions a priori. Han
et al. [] considered several properties of Fibonacci sequences in arbitrary groupoids.
The notion of BCK-algebras was introduced by Iséki and Imai in . This notion

originated from both set theory and classical and non-classical propositional calculi. The
operation ∗ in BCK-algebras is an analogue of the set-theoretical difference. Nowadays,
BCK-algebras have been studied by many authors and they have been applied to many
branches of mathematics such as group theory, functional analysis, probability theory,
topology and fuzzy theory [–] and so on. We refer to [, ] for further information on
BCK/BCI-algebras.
Let (X,∗) be a groupoid (or an algebra). Then (X,∗) is a Smarandache-type P-algebra

if it contains a subalgebra (Y ,∗), where Y is non-trivial, i.e., |Y | ≥ , or Y contains at
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least two distinct elements, and (Y ,∗) is itself of type P. Thus, we have Smarandache-
type semigroups (the type P-algebra is a semigroup), Smarandache-type groups (the type
P-algebra is a group), Smarandache-type Abelian groups (the type P-algebra is an Abelian
group). Smarandache semigroup in the sense of Kandasamy is in fact a Smarandache-type
group (see []). Smarandache-type groups are of course a larger class than Kandasamy’s
Smarandache semigroups since they may include non-associative algebras as well.
In this paper, we introduce the notion of generalized Fibonacci sequences over a

groupoid and discuss it in particular for the case where the groupoid contains idempo-
tents and pre-idempotents. Using the notion of Smarandache-type P-algebra, we obtain
several relations on groupoids which are derived from generalized Fibonacci sequences.

2 Preliminaries
Given a sequence 〈ϕ,ϕ, . . . ,ϕn, . . .〉 of elements of X, it is a left-∗-Fibonacci sequence if
ϕn+ = ϕn+ ∗ ϕn for n ≥ , and a right-∗-Fibonacci sequence if ϕn+ = ϕn ∗ ϕn+ for n ≥ .
Unless (X,∗) is commutative, i.e., x ∗ y = y ∗ x for all x, y ∈ X, there is no reason to assume
that left-∗-Fibonacci sequences are right-∗-Fibonacci sequences and conversely. We will
begin with a collection of examples to note what, if anything, can be concluded about such
sequences.

Example . Let (X,∗) be a left-zero-semigroup, i.e., x ∗ y := x for any x, y ∈ X. Then ϕ =
ϕ∗ϕ = ϕ,ϕ = ϕ∗ϕ = ϕ = ϕ,ϕ = ϕ∗ϕ = ϕ = ϕ, . . . for anyϕ,ϕ ∈ X. It follows that
〈ϕn〉L = 〈ϕ,ϕ,ϕ, . . .〉. Similarly, ϕ = ϕ ∗ ϕ = ϕ, ϕ = ϕ ∗ ϕ = ϕ, ϕ = ϕ ∗ ϕ = ϕ = ϕ,
. . . for any ϕ,ϕ ∈ X. It follows that 〈ϕn〉R = 〈ϕ,ϕ,ϕ,ϕ,ϕ,ϕ, . . .〉. In particular, if we let
ϕ := , ϕ := , then 〈ϕn〉L = 〈, , , , , . . .〉 and 〈ϕn〉R = 〈, , , , , , . . .〉.

Theorem . Let 〈ϕn〉L and 〈ϕn〉R be the left-∗-Fibonacci and the right-∗-Fibonacci se-
quences generated by ϕ and ϕ. Then 〈ϕn〉L = 〈ϕn〉R if and only if ϕn ∗ (ϕn– ∗ ϕn) =
(ϕn ∗ ϕn–) ∗ ϕn for any n≥ .

A d-algebra [] (X,∗, ) is an algebra satisfying the following axioms: (D) x ∗ x =  for
all x ∈ X; (D)  ∗ x =  for all x ∈ X; (D) x ∗ y = y ∗ x =  if and only if x = y.
A BCK-algebra [] is a d-algebra X satisfying the following additional axioms:
(D) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ,
(D) (x ∗ (x ∗ y)) ∗ y =  for all x, y, z ∈ X .
Given algebra types (X,∗) (type-P) and (X,◦) (type-P), we will consider them to be

Smarandache disjoint [] if the following two conditions hold:
(i) If (X,∗) is a type-P-algebra with |X| > , then it cannot be a

Smarandache-type-P-algebra (X,◦);
(ii) If (X,◦) is a type-P-algebra with |X| > , then it cannot be a

Smarandache-type-P-algebra (X,∗).
This condition does not exclude the existence of algebras (X,�) which are both Smaran-
dache-type-P-algebras and Smarandache-type-P-algebras. It is known that semigroups
and d-algebras are Smarandache disjoint [].
It is known that if (X,∗, ) is a d-algebra, then it cannot be a Smarandache-type semi-

group, and if (X,∗) is a semigroup, then it cannot be a Smarandache-type d-algebra [].
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3 Generalized Fibonacci sequences over (X,∗)
Let Z[[X]] denote the power-series ring over the field Z = {, }. Given p(x) = p + px +
px + · · · ∈ Z[[X]], we associate a sequence

∧
p(x) = {λ,λ,λ, . . .}, where λi = L if pi = 

and λi = R if pi = , which gives some information to construct a generalized Fibonacci
sequence in a groupoid (X,∗).
Given a groupoid (X,∗) and a power-series p(x) ∈ Z[[X]], if a,b ∈ X, we construct a

sequence as follows:

[a,b]p(x) := {a,b,u,u,u, . . . ,uk , . . .},

where

u :=

⎧⎨
⎩
a ∗ b if λ = R,

b ∗ a if λ = L,

u :=

⎧⎨
⎩
b ∗ u if λ = R,

u ∗ b if λ = L
and uk+ :=

⎧⎨
⎩
uk ∗ uk+ if λk+ = R,

uk+ ∗ uk if λk+ = L.

We call such a sequence [a,b]p(x) a p(x)-Fibonacci sequence over (X,∗) or a generalized
Fibonacci sequence over (X,∗).

Example . Let (X,∗) be a groupoid and a,b ∈ X. If p(x) =  + x + x + x + x + · · ·
is a sequence in Z[[X]], then we obtain

∧
p(x) = {R,L,R,R,L,L, . . .} and its p(x)-Fibonacci

sequence [a,b]p(x) can be denoted as follows: [a,b]p(x) := {a,b,u,u,u, . . .}, where u =
a∗ b, u = u ∗ b = (a∗ b)∗ b, u = u ∗u = (a∗ b)∗ [(a∗ b)∗ b], u = u ∗u = [(a∗ b)∗ b]∗
{(a∗b)∗[(a∗b)∗b]},u = u∗u = [[(a∗b)∗b]∗{(a∗b)∗[(a∗b)∗b]}]∗[(a∗b)∗[(a∗b)∗b]],
. . . .

Example . (a) Let (X,∗) be a right-zero semigroup and let p(x) :=  +x + x + x +
· · · . Then ∧

p(x) = {L,L,L, . . .} and hence [a,b]p(x) = {a,b,b∗a = a, (b∗a)∗ b = b, [(b∗a)∗
b] ∗ (b ∗ a) = a, . . .} = {a,b,a,b,a,b, . . .} for any a,b ∈ X.
(b) Let (X,∗) be a left-zero semigroup and let p(x) :=  + x+ x + x + · · · . Then ∧

p(x) =
{R,R,R, . . .} and hence [a,b]p(x) = {a,b,a,b,a,b, . . .} for any a,b ∈ X.

Example . If we let S(x) := x + x + x + · · · and C(x) :=  + x + x + x + · · · , then
S(x) + C(x) = p(x) and S(x) = xC(x). It follows that

∧
S(x) = {L,R,L,R, . . .} and

∧
C(x) =

{R,L,R,L,R, . . .}. Let (X,∗) be a groupoid and let a,b ∈ X. Then [a,b]S(x) = {a,b,b ∗ a,b ∗
(b∗a), (b∗ (b∗a))∗ (b∗a), . . .} and [a,b]C(x) = {a,b,a∗b, (a∗b)∗b, (a∗b)∗ ((a∗b)∗b), . . .}.

Let p(x) ∈ Z[[X]]. A groupoid (X,∗) is said to be power-associative if, for any a,b ∈ X,
there exists k ∈ Z such that the generalized Fibonacci sequence [a,b]p(x) has uk– = uk– = u
for some u ∈ X.

Proposition. Let p(x) ∈ Z[[X]].Let (X,∗) be a groupoid having an identity e, i.e., x∗e =
x = e∗x for all x ∈ X.Then (X,∗) is power-associative if, for any a,b ∈ X, [a,b]p(x) contains e.
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Proof If [a,b]p(x) contains e, then there exists an u ∈ X such that [a,b]p(x) has . . . ,u, e, . . . .
Since [a,b]p(x) is a generalized Fibonacci sequence, it contains . . . ,u, e,u ∗ e = e ∗ u = u, e ∗
u = u ∗ e = u, . . . , proving that (X,∗) is power-associative. �

Let (X,∗) be a semigroup and let x ∈ X. We denote x := x ∗ x, and xn+ := xn ∗ x = x ∗ xn,
where n is a natural number.

Theorem . Let p(x) ∈ Z[[X]]. Let (X,∗) be a semigroup and let a,b ∈ X. If it is power-
associative, then [a,b]p(x) contains a subsequence {uk} such that uk+n = uFn+ for some u ∈ X,
where Fn is the usual Fibonacci number.

Proof Given a,b ∈ X, since (X,∗) is power-associative, [a,b]p(x) contains an element u such
that uk– = uk– = u. It follows that either uk = uk– ∗ uk– = u ∗ u = u or uk = uk– ∗ uk– =
u ∗ u = u. This shows that either uk+ = uk ∗ uk– = u ∗ u = u or uk+ = uk– ∗ uk = u ∗
u = u. In this fashion, we have uk+ = u,uk+ = u = uF , . . . ,uk+n = uFn+ . �

Let (X,∗) be a groupoid having the following conditions:
(A) x ∗ (y ∗ x) = x,
(B) (x ∗ y) ∗ y = x ∗ y for all x, y ∈ X .
Given p(x) =

∑∞
n= xn, for any a,b ∈ X, a generalized Fibonacci sequence [a,b]p(x) has

the following periodic sequence:

[a,b]p(x) =
{
a,b,a ∗ b,b ∗ (a ∗ b), (a ∗ b) ∗ (

b ∗ (a ∗ b)
)
, . . .

}

= {a,b,a ∗ b,b,a ∗ b,b,a ∗ b, . . .}.

We call this kind of a sequence periodic.
A BCK-algebra (X,∗, ) is said to be implicative [] if x = x ∗ (y ∗ x) for all x, y ∈ X.

Proposition . Let (X,∗, ) be an implicative BCK-algebra and let a,b ∈ X. Then the
generalized Fibonacci sequence [a,b]p(x) is periodic.

Proof Every implicative BCK-algebra satisfies the conditions (A) and (B). �

Proposition . Let (X,∗, ) be a BCK-algebra and let a,b ∈ X. Then the generalized
Fibonacci sequence [a,b]p(x) is of the form {a,b,b ∗ a, , , , . . .}.

Proof If (X,∗, ) is a BCK-algebra, then (x ∗ y) ∗ x = (x ∗ x) ∗ y =  ∗ y =  for all x, y ∈ X. It
follows that [a,b]p(x) = {a,b,b ∗ a, (b ∗ a) ∗ b = , ∗ (b ∗ a) = ,  ∗  = ,, , . . .}. �

4 Idempotents and pre-idempotents
A groupoid (X,∗) is said to have an exchange rule if (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X.

Proposition . Let a groupoid (X,∗) have an exchange rule and let b be an idempotent
in X. Then [a,b]p(x) = {a,b,b ∗ a, (b ∗ a), (b ∗ a), (b ∗ a), . . .} for all a ∈ X.

Proof Given a,b ∈ X, since (X,∗) has an exchange rule, (b ∗ a) ∗ b = (b ∗ b) ∗ a. It follows
from b is an idempotent that b ∗ b = b. This proves that [a,b]p(x) = {a,b,b ∗ a, (b ∗ a) ∗ b =
(b ∗ b) ∗ a = b ∗ a, (b ∗ a) ∗ (b ∗ a) = (b ∗ a), (b ∗ a), . . .}. �
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Corollary . Let a groupoid (X,∗) have an exchange rule and let b and b ∗ a be idempo-
tents in X. Then [a,b]p(x) = {a,b,b ∗ a,b ∗ a,b ∗ a, . . .}.

Proof Straightforward. �

A groupoid (X,∗) is said to have an opposite exchange rule if x ∗ (y ∗ z) = y ∗ (x ∗ z) for all
x, y, z ∈ X.

Proposition . Let a groupoid (X,∗) have an opposite exchange rule and let b be an
idempotent in X. Then [a,b]p(x) = {a,b,a ∗ b, (a ∗ b), (a ∗ b), (a ∗ b), . . .} for all a ∈ X.

Proof Given a,b ∈ X, since (X,∗) has an opposite exchange rule and b is an idempotent in
X, b ∗ (a ∗ b) = a ∗ (b ∗ b) = a ∗ b and (a ∗ b) ∗ [b ∗ (a ∗ b)] = (a ∗ b) ∗ (a ∗ b) = (a ∗ b). This
proves that [a,b]p(x) = {a,b,a ∗ b, (a ∗ b), (a ∗ b), (a ∗ b), . . .}. �

Proposition . Let (X,∗) be a groupoid having the condition (B). If b∗ (b∗a) is an idem-
potent in X for some a,b ∈ X, then [a,b]S(x) = {a,b,b ∗ a,b ∗ (b ∗ a),b ∗ (b ∗ a), . . .}.

Proof Given a,b ∈ X, since (X,∗) has the condition (B), we have (b ∗ (b ∗ a)) ∗ (b ∗ a) =
b∗ (b∗a) and [b∗ (b∗a)]∗ [(b∗ (b∗a))∗ (b∗a)] = (b∗ (b∗a))∗ (b∗ (b∗a)). Since b∗ (b∗a)
is an idempotent in X, it follows that [a,b]S(x) = {a,b,b ∗ a,b ∗ (b ∗ a),b ∗ (b ∗ a), . . .}. �

Proposition . Let (X,∗) be a groupoid having the condition (B). If a∗b is an idempotent
in X for some a,b ∈ X, then [a,b]C(x) = {a,b,a ∗ b,a ∗ b,a ∗ b, . . .}.

Proof The proof is similar to Proposition .. �

A groupoid (X,∗) is said to be pre-idempotent if x ∗ y is an idempotent in X for any
x, y ∈ X. Note that if (X,∗) is an idempotent groupoid, then it is a pre-idempotent groupoid
as well. If (X,∗, f ) is a leftoid, i.e., x ∗ y := f (x) for some map f : X → X, then f (f (x)) = f (x)
implies (X,∗, f ) is a pre-idempotent groupoid.

Theorem . Let (X,∗) be a groupoid. Let u ∈ X such that [a,b]p(x) = {a,b,u,u, . . .} for any
a,b ∈ X. Then (X,∗) is a pre-idempotent groupoid, and

(i) if p(x) = , then (b ∗ a) ∗ b = b ∗ a,
(ii) if p(x) = , then (a ∗ b) ∗ b = a ∗ b,
(iii) if p(x) = x, then b ∗ (b ∗ a) = b ∗ a,
(iv) if p(x) =  + x, then b ∗ (a ∗ b) = a ∗ b.

Proof (i) If p(x) = , then [a,b]p(x) = {a,b,b∗a, (b∗a)∗b, ((b∗a)∗b)∗ (b∗a), . . .}. It follows
that (b ∗ a) ∗ b = b ∗ a and b ∗ a = ((b ∗ a) ∗ b) ∗ (b ∗ a) = (b ∗ a) ∗ (b ∗ a), proving that (X,∗)
is a pre-idempotent groupoid with (b ∗ a) ∗ b = b ∗ a.
(ii) If p(x) = , then [a,b]p(x) = {a,b, (a ∗ b) ∗ b, ((a ∗ b) ∗ b) ∗ (a ∗ b), . . .}. It follows that

(a ∗ b) ∗ b = a ∗ b and a ∗ b = ((a ∗ b) ∗ b) ∗ (a ∗ b) = (a ∗ b) ∗ (a ∗ b), proving that (X,∗) is a
pre-idempotent groupoid with (a ∗ b) ∗ b = a ∗ b.
(iii) If p(x) = x, then [a,b]p(x) = {a,b,b ∗ a,b ∗ (b ∗ a), (b ∗ (b ∗ a)) ∗ (b ∗ a), . . .}. It follows

that b ∗ (b ∗ a) = b ∗ a and b ∗ a = (b ∗ (b ∗ a)) ∗ (b ∗ a) = (b ∗ a) ∗ (b ∗ a), proving that (X,∗)
is a pre-idempotent groupoid with b ∗ (b ∗ a) = b ∗ a.
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(iv) If p(x) = +x, then [a,b]p(x) = {a,b,a∗b,b∗ (a∗b), (a∗b)∗ (b∗ (a∗b)), . . .}. It follows
that b ∗ (a ∗ b) = a ∗ b and a ∗ b = (a ∗ b) ∗ (b ∗ (a ∗ b)) = (a ∗ b) ∗ (a ∗ b), proving that (X,∗)
is a pre-idempotent groupoid with b ∗ (a ∗ b) = a ∗ b. �

Remark Not every generalized Fibonacci sequence has such an element u in X as in The-
orem . in the cases of BCK-algebras.

Example . Let X := {, , , } be a set with the following table:

∗    
    
    
    
    

Then (X,∗, ) is a BCK-algebra. If we let p(x) :=  + x, then it is easy to see that [, ]p(x) =
{, , , , , , . . .}, [, ]p(x) = {, , , , . . .}, [, ]p(x) = {, , , , , , . . .}.

A groupoid (X,∗) is said to be a semi-lattice if it is idempotent, commutative and asso-
ciative.

Theorem . If (X,∗) is a semi-lattice and p(x) = p + px ∈ Z[[x]], then there exists an
element u ∈ X such that [a,b]p(x) = {a,b,u,u, . . .} for any a,b ∈ X.

Proof If (X,∗) is a semi-lattice, then it is a pre-idempotent groupoid. Given a,b ∈ X, we
have (b ∗ a) ∗ b = (a ∗ b) ∗ b = a ∗ (b ∗ b) = a ∗ b, b ∗ (b ∗ a) = (b ∗ a) ∗ a = b ∗ a, b ∗ (a ∗ b) =
(b∗a)∗b = (a∗b)∗b = a∗ (b∗b) = a∗b, (a∗b)∗b = a∗ (b∗b) = a∗b. If we take u := a∗b,
then [a,b]p(x) = {a,b,u,u, . . .} for any a,b ∈ X, in any case of Theorem .. �

5 Smarandache disjointness
Proposition . The class of d-algebras and the class of pre-idempotent groupoids are
Smarandache disjoint.

Proof Let (X,∗, ) be both a d-algebra and a pre-idempotent groupoid. Then a ∗ b = (a ∗
b)∗ (a∗b) =  and b∗a = (b∗a)∗ (b∗a) = , by pre-idempotence and (D), for any a,b ∈ X.
By (D), it follows that a = b, which proves that |X| = . �

Proposition . The class of groups and the class of pre-idempotent groupoids are
Smarandache disjoint.

Proof Let (X,∗, ) be both a group and a pre-idempotent groupoid. Then, for any x ∈ X, we
have x = x∗ e = (x∗ e)∗ (x∗ e) = x∗ x. It follows that e = x∗ x– = (x∗ x)∗ x– = x∗ (x∗ x–) =
x ∗ e = x, proving that |X| = . �

A groupoid (X,∗) is said to be an L-groupoid if, for all a,b ∈ X,
(L) ((b ∗ a) ∗ b) ∗ (b ∗ a) = b ∗ a,
(L) (b ∗ a) ∗ ((b ∗ a) ∗ b) = (b ∗ a) ∗ b.

http://www.advancesindifferenceequations.com/content/2013/1/26
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Example . Let X := R be the set of all real numbers. Define a map ϕ : X → X by ϕ(x) :=
�x� – 

 , where �x� is the ceiling function. Then ϕ(ϕ(x)) = �ϕ(x)� – 
 = ��x� – 

� – 
 =

�ϕ(x)� – 
 = ϕ(x). Define a binary operation ‘∗’ on X by x ∗ y := ϕ(y) for all x, y ∈ X. Then

(X,∗) is an L-groupoid. In fact, for all a,b ∈ X, ((b∗a)∗b)∗ (b∗a) = ϕ(b)∗ϕ(a) = ϕ(ϕ(a)) =
ϕ(a) = b ∗ a. Moreover, (b ∗ a) ∗ ((b ∗ a) ∗ b) = ϕ(a) ∗ ϕ(b) = ϕ(ϕ(b)) = ϕ(b) = (b ∗ a) ∗ b.

Proposition . Let (X,∗) be a groupoid and let p(x) ∈ Z[[x]] such that p(x) = xq(x)
for some q(x) ∈ Z[[x]]. If there exist u, v ∈ X such that [a,b]p(x) = {a,b,u, v,u, v,α,α, . . .},
where αi ∈ Z for any a,b ∈ X, then (X,∗) is an L-groupoid.

Proof Since p(x) = xq(x), we have
∧

p(x) = {L,L,L,L,α,α, . . .}, where αi ∈ {L,R}. It follows
that [a,b]p(x) = {a,b,b∗a, (b∗a)∗b, ((b∗a)∗b)∗(b∗a), (((b∗a)∗b)∗(b∗a))∗((b∗a)∗b), . . .}.
This shows that u = b ∗ a, v = (b ∗ a) ∗ b, and hence ((b ∗ a) ∗ b) ∗ (b ∗ a) = b ∗ a and
(b ∗ a) ∗ ((b ∗ a) ∗ b) = (b ∗ a) ∗ b, proving the proposition. �

Proposition . Every L-groupoid is pre-idempotent.

Proof Given a,b ∈ X, we have (b ∗ a) ∗ (b ∗ a) = ((b ∗ a) ∗ b) ∗ (b ∗ a) = b ∗ a, proving the
proposition. �

Proposition . The class of L-groupoids and the class of groups are Smarandache dis-
joint.

Proof Let (X,∗) be both an L-groupoid and a group with identity e. Then ((b ∗ a) ∗ b) ∗
(b ∗ a) = b ∗ a for all a,b ∈ X. Since any group has the cancellation laws, we obtain
(b∗a)∗b = e. If we apply this to (L), then we have (b∗a)∗ e = e. This means that b∗a = e.
It follows that e = b ∗ a = ((b ∗ a) ∗ b) ∗ (b ∗ a) = (e ∗ b) ∗ e = b, proving that |X| = . �

Proposition . The class of L-groupoids and the class of BCK-algebras are Smaran-
dache disjoint.

Proof Let (X,∗) be both an L-groupoid and a BCK-algebra with a special element  ∈ X.
Given a,b ∈ X, we have  = ∗a = (b∗b)∗a = (b∗a)∗b = (b∗a)∗ ((b∗a)∗b) = (b∗a)∗ =
b ∗ a. Similarly, a ∗ b = . Since X is a BCK-algebra, a = b for all a,b ∈ X, proving that
X = {}. �

Let p(x) ∈ Z[[x]]. A groupoid (X,∗) is said to be a Fibonacci semi-lattice if for any
a,b ∈ X, there exists u = u(a,b,p(x)) in X depending on a, b, p(x) such that [a,b]p(x) =
{a,b,u,u, . . .}.
Note that every Fibonacci semi-lattice is a pre-idempotent groupoid satisfying one of

the conditions (b ∗ a) ∗ b = a ∗ b, b ∗ (b ∗ a) = b ∗ a, b ∗ (a ∗ b) = a ∗ b, (a ∗ b) ∗ b = a ∗ b
separately (and simultaneously).

Proposition . Let (X,∗) be a groupoid and let p(x) ∈ Z[[x]] such that p(x) = xq(x) for
some q(x) ∈ Z[[x]] with q = . Then (X,∗) is a Fibonacci semi-lattice.

Proof Since p(x) = xq(x), where q(x) ∈ Z[[x]] with q = , we have
∧

p(x) = {L,L,L,R,α,
α, . . .}, where αi ∈ {L,R}. If we let u := b ∗ a, v := (b ∗ a) ∗ b, then [a,b]p(x) = {a,b,b ∗ a =
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u, (b ∗ a) ∗ b = v, ((b ∗ a) ∗ b) ∗ (b ∗ a) = v ∗ u = u, . . .}. It follows that b ∗ a = u = v ∗ u = v =
(b ∗ a) ∗ b. Hence [a,b]p(x) = {a,b,b ∗ a,b ∗ a, . . .}, proving the proposition. �

A groupoid (X,∗) is said to be an LRL-groupoid if for all a,b ∈ X,

(LRL) (b ∗ (b ∗ a)) ∗ (b ∗ a) = b ∗ a,
(LRL) (b ∗ a) ∗ (b ∗ (b ∗ a)) = b ∗ (b ∗ a).

Proposition . Let (X,∗) be a groupoid and let p(x) ∈ Z[[x]] such that p = p = p = ,
p = . Then (X,∗) is an LRL-groupoid.

Proof Since p(x) ∈ Z[[x]] such that p = p = p = , p = , we have
∧

p(x) = {L,R,L,L,α,
α, . . .}, where αi ∈ {L,R}. If we let u := b ∗ a, v := b ∗ (b ∗ a), then [a,b]p(x) = {a,b,b ∗ a =
u,b ∗ (b ∗ a) = v, (b ∗ (b ∗ a)) ∗ (b ∗ a) = u, [(b ∗ (b ∗ a)) ∗ (b ∗ a)] ∗ [b ∗ (b ∗ a)], . . .}. It follows
that (b∗ (b∗a))∗ (b∗a) = b∗a and (b∗a)∗ (b∗ (b∗a)) = b∗ (b∗a), proving the proposition.

�

Proposition . The class of LRL-groupoids and the class of groups are Smarandache
disjoint.

Proof Let (X,∗) be both an LRL-groupoid and a groupwith a special element e ∈ X. Given
a,b ∈ X, we have (b ∗ (b ∗ a)) ∗ (b ∗ a) = b ∗ a. Since every group has cancellation laws, we
obtain b ∗ (b ∗ a) = e. It follows that b ∗ a = (b ∗ a) ∗ e = (b ∗ a) ∗ (b ∗ (b ∗ a)) = b ∗ (b ∗ a) = e,
and hence e = b ∗ (b ∗ a) = b ∗ e = b. This proves that |X| = , proving the proposition. �

A groupoid (X,∗) is said to be an R-groupoid if for all a,b ∈ X,

(R) (a ∗ b) ∗ (b ∗ (a ∗ b)) = a ∗ b,
(R) (b ∗ (a ∗ b)) ∗ (a ∗ b) = b ∗ (a ∗ b).

Proposition . Let (X,∗) be a groupoid and let p(x) ∈ Z[[x]] such that p = p = p =
p = . Then (X,∗) is an R-groupoid.

Proof Since p(x) ∈ Z[[x]] such that p = p = p = p = , we have
∧

p(x) = {R,R,R,R,α,
α, . . .}, where αi ∈ {L,R}. If we let u := a ∗ b, v := b ∗ (a ∗ b), then [a,b]p(x) = {a,b,a ∗ b =
u,b ∗ (a ∗ b) = v, (a ∗ b) ∗ (b ∗ (a ∗ b)) = u, [b ∗ (a ∗ b)] ∗ [(a ∗ b) ∗ (b ∗ (a ∗ b))], . . .}. It follows
that a ∗ b = u = u ∗ v = (a ∗ b) ∗ (b ∗ (a ∗ b)) and b ∗ (a ∗ b) = v = v ∗ u = (b ∗ (a ∗ b)) ∗ (a ∗ b),
proving the proposition. �

Theorem. The class of R-groupoids and the class of groups are Smarandache disjoint.

Proof Let (X,∗) be both an R-groupoid and a group with a special element e ∈ X. Given
a,b ∈ X, we have (a ∗ b) ∗ (b ∗ (a ∗ b)) = a ∗ b. Since every group has cancellation laws,
we obtain b ∗ (a ∗ b) = e. By applying (R), we have e ∗ (a ∗ b) = e, i.e., a ∗ b = e. By (R),
b = e ∗ (b ∗ e) = e. This proves that |X| = , proving the proposition. �

Proposition . Every implicative BCK-algebra is an R-groupoid.

Proof If (X,∗, ) is an implicative BCK-algebra, then a ∗ (b ∗ a) = a and (a ∗ b) ∗ b = a ∗ b
for any a,b ∈ X. It follows immediately that (X,∗) is an R-groupoid. �
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Remark The condition, implicativity, is important for a BCK-algebra to be an R-
groupoid.

Example . Let X := {, , , } be a set with the following table:

∗    
    
    
    
    

Then (X,∗, ) is a BCK-algebra, but not implicative, since  ∗ ( ∗ ) =  = . Moreover, it
is not a R-groupoid since  ∗  =  =  = ( ∗ ) ∗ [ ∗ ( ∗ )].

Theorem . Every BCK-algebra (X,∗, ) inherited from a poset (X,≤) is an R-
groupoid.

Proof If (X,∗, ) is a BCK-algebra (X,∗, ) inherited from a poset (X,≤), then the opera-
tion ‘∗’ is defined by

x ∗ y :=

⎧⎨
⎩
 if x ≤ y,

x otherwise.

Then the condition (R) holds. In fact, given x, y ∈ X, if x≤ y, then x ∗ y =  and y ∗ x = y.
It follows that (x∗y)∗ (y∗ (x∗y)) = ∗ (y∗) =  = x∗y. If y ≤ x, then y∗x =  and x∗y = x.
It follows that (x∗ y)∗ (y∗ (x∗ y)) = x∗ (y∗x) = x∗ = x = x∗ y. If x and y are incomparable,
then x ∗ y = x and y ∗ x = y. It follows that (x ∗ y) ∗ (y ∗ (x ∗ y)) = x ∗ (y ∗ x) = x ∗ y.
We claim that (R) holds. Given x, y ∈ X, if x ≤ y, then x ∗ y = , y ∗ x = y. It follows that

(y ∗ (x ∗ y)) ∗ (x ∗ y) = (y ∗ ) ∗  = y = y ∗  = y ∗ (x ∗ y). If y ≤ x, then y ∗ x = , x ∗ y = x. It
follows that (y ∗ (x ∗ y)) ∗ (x ∗ y) = (y ∗ x) ∗ x =  ∗ x =  = y ∗ x = y ∗ (x ∗ y). If x and y are
incomparable, then x ∗ y = x and y ∗ x = y. It follows that (y ∗ (x ∗ y)) ∗ (x ∗ y) = (y ∗ x) ∗ x =
y ∗ x = y ∗ (x ∗ y). This proves that the BCK-algebra (X,∗, ) inherited from a poset (X,≤)
is an R-groupoid. �

Note that the BCK-algebra (X,∗, ) inherited from a poset (X,≤) need not be an im-
plicative BCK-algebra unless the poset (X,≤) is an antichain [, Corollary ].

Example . Let (X,∗) be a left-zero semigroup, i.e., x ∗ y = x for all x, y ∈ X. Then (X,∗)
is an R-groupoid, but not a BCK-algebra.
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