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Abstract

Let n be a non-null positive integer and d(n) is the number of positive divisors of

n, called the divisor function. Of course, d(n) ≤ n. d(n) = 1 if and only if n = 1.

For n > 2 we have d(n) ≥ 2 and in this paper we try to find the smallest k such that

d(d(...d(n)...)) = 2 where the divisor function is applied k times. At the end of the

paper we make a conjecture based on some observations.

∗Electronic address: sayakc@cmi.ac.in;
†Electronic address: arghyad@cmi.ac.in

1

http://arxiv.org/abs/1704.00007v1


1 Introduction

We found this problem in a paper by Florentin Smarandache, see [3]. This is the 18th un-

solved problem in his paper.

We start with some trivial observations. d(d(...d(n)...)) = 2 implies dk−1(n) = p where p is

a prime. If p = 2 then the chain continues infinitely long without any significance.

Otherwise suppose p is odd, p = 2α+1. We know that only perfect squares have odd number

of factors and since that odd number 2α + 1 is prime the only choice for the perfect square

is q2α where q is a prime. Now this q can be arbitrarily large.

Going back one step more, we see that a number with number of divisors equal to q2α will

be of the form
∏2α

i=1 p
q−1
i where pi are distinct primes. Now this number can be arbitrarily

large since though fixing α will fix the number of pi’s, still q can be arbitrarily large.

2 The Values K can Attain

From introduction we clearly observe that n can be arbitrarily large while k = 3 remains

fixed and we get dk(n) = 2 at the end. But computer programming reveals that if we plot k

with respect with n, the frequency with which k = 3 or k = 4 occurs is far above any other

frequency for at least numbers up to numbers like 5000000. k = 5 first occurs at 60 and

k = 6 first occurs at 5040. k = 7 first occurs when n = 26 x 34 x 52 x 72 x 11 x 13 x 17 x 19

which is more than 10 digit number. We observe that k increases very slowly compared to

n. But what is interesting is that k = 3 or k = 4 occurs with same frequency almost in every

sufficiently large interval. k = 1 also occurs sometimes due to the distribution of primes and

the presence of twin primes.

But we can clearly see here that k attains every integer m ∈ N. Observe that

given n =
∏m

i=1 p
ai
i and k = r we just construct n1 such that d(n1) = n, then for n1 we

have k = r + 1. Just put n1 =
∏m

i q
p
ai
i
−1

i where qj is the jth prime starting from 2. So k is

unbounded.
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3 The least n for a given k

After the previous section, he we give an algorithm for which given n for which k = r, we

give the smallest n1 for which k = r+1. Since we know that 60 is the smallest number where

k = 5 the first time, by induction we can consequently find the n′
1s for which k = 6, 7, 8......

Look at the following image on the next page to get an idea of the variation of k with

respect to n when n is taken in the range (0,350). We plot the n along the x axis and the

corresponding k along the y axis.
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3.1 The Algorithm

Given k = k0 for a particular n ∈ N, we give an explicit construction of minimal integer

L ∈ N such that d(L) = k0 + 1. Assume an ordering of primes 2 = p1 < p2 < p3 <.....

Say n =
∏m

i=1 p
ai
i and we assume L = 2a1 .3a2 .5a3 ....

Case 1: ai = 1 for some i

In order to construct the minimum L, we need to make sure that the largest prime should

be put as the index on the smallest possible prime. So if ai = 1 for some i, clearly it goes to

power of single prime because if am = 1 without loss of generality, then a1 = p− 1 because

otherwise L will not me minimal.

Case 2: ai ≥ 2 for some i

Here we say that for a generic term in prime decomposition say p
aj
j , it can be distributed

like 2p
aj
j −1 or 2pj−1.3pj−1......p

pj−1
aj two ways.We will prove that to achieve the minimal L,

the second choice is better. Similarly we can argue 3p
aj
j −1 > 3pj−1...p

pj−1
aj+1 . This will lead

to the conclusion that each generic coupe, say without loss of generality pamm will give

(2pm−1.3pm−1....ppm−1
am

) contribution in the prime factorization of L.

Example: If we put n = 5040 = then we get L = 26.34.52.72.11.13.17.19 which is a 13 digit

number. Observe how we use the algorithm.

5040 = 24.32.5.7. So according to our algorithm since 5 and 7 have index 1, they will corre-

spond to a single prime number each. We have to construct L such that d(L) = 5040. So

the prime factorization of L will begin with 26.34 for sure. Now to get 32 as a factor of d(L)

we need to distribute it in such a way that our obtained L is minimum.

So we have L = 26.34.52.72.... and by similar reasoning we finish the construction of L as

L = 26.34.52.72.11.13.17.19.

It is noticeable that the algorithm shows it is always better to distribute the indexes over as

many primes as possible to minimize the outcome.

3.2 The Proof of the Algorithm

Proof. We will use induction on aj .

For aj = 2, without loss of generality let j = m. If j = k(< m) then instead of 2, our
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decomposition will start with pam+am−1+...+ak−1+1 and argument for that will be similar.

If aj = 2 we have to show:

2p
2
m−1 > 2pm−1.3pm−1 (1)

=⇒ 2pm > 3 (2)

Induction Step: Assuming am = k we will prove for am = k + 1

2p
k+1
m −1 > (2pm−1.3pm−1......p

pm−1
am−1)(p

pm−1
am

)

Now (2pm−1.3pm−1......p
pm−1
am−1) < 2p

k
m−1 by the hypothesis.

So it is enough to check if

2p
k+1
m −1 > 2p

k
m−1.ppm−1

am
(3)

=⇒ 2p
k+1
m −pkm > ppm−1

am
(4)

=⇒ 2p
k
m > pam (5)

Now it is clearly true that pn ≤ 2n and so enough to show

2p
k
m ≥ 2k+1. But clearly pkm > k + 1, and so we are done.

4 An estimate of k for all n

Here we return to our original problem of finding the smallest k such that d(d(...d(n)...)) = 2.

Constructing n1 from n according to our algorithm, we see that if n has prime decomposition

of the form pa11 .pa22 .....pamm then the same for n1 will be

n1 =

(

2pm−1.3pm−1....ppm−1
am

)(

p
pm−1−1

am+1 .p
pm−1−1

am+2 ......p
pm−1−1
am+am−1

)(

p
pm−2−1

am+am−1+1.....

)

.

So log n =
∑m

i=1
ai log pi and also

logn1 = (pm − 1) log[2.3...pam ] + (pm − 1) log(pam+1....pam+am−1)+....

Now we will use a well known fact that product of first n primes is asymptotically en logn.

Using this above result changes the above equation
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logn1 = (pm − 1)am log am + (pm−1 − 1)

[

(am + am−1) log(am + am−1)− am log am

]

+ (pm−2 −

1)

[

(am + am−1 + am−2) log(am + am−1 + am−2)− (am + am−1 log(am + am−1)

]

+ ....

Now to compare logn1 to log n we will investigate the increment for each ai’s. We have to

begin with the coefficient for am in log n1 .

Observe that (pm − 1)am log am serves as the main term since except this term, others in-

volve decreasing functions which can be arbitrarily small but all these terms are clearly

non-negative.

This follows because

ai ≥ 2 and log(n+ 2)− logn = log(1 +
2

n
) → 0 as n → ∞.

The assumption that ai ≥ 2 will be justified shortly.

So the main contribution is due to (pm − 1)am log am. And similarly main term related to

increment for the co-efficient of am−1 will be (pm−1 − 1)(am + am−1) log(am + am−1) which is

greater than (pm − 1)am log am. An interesting thing to observe is that the above inequality

cannot be considerably made better since am can be as small as 2 and log(n + 2) ∼ logn.

So all we have got is the generic main term for increment corresponding to the co-efficient

ai will be pi log ai.

For measuring the increase from logn to logn1 we try to estimate the increase for each ai.

Now

[(pm − 1) log am − log pm] ∼ [(pm − 1) log 2 − log pm] ∼ [m logm log 2 − logm − log logm]

(using pn ∼ n logn).

Now for the function

f(x) = x log x log 2− log x− log log x we seek to find its minimum and for that we solve for

its derivative.

This clearly is the solution of the equation

(log 2)x(log x)2 + (log 2x− 1) log x = 1.

=⇒ x = 0.130488 or 2.39604.

So from here we get that the minimum increase will be at-least

(pm − 1) log am − log pm ∼ 2 log log 2− log 2− log 2 ≥ 0.634.

So am((pm − 1) log am − log pm) ≥ 2 x 0.634 = 1.268 So evidently we have

logn1 − log n ≥ m.(1.26)

=⇒ log10 n1 − log10 n ≥ 0.545 ν(n)

where ν(n) is the number of distinct prime divisors of n. Since there are at least 2 distinct
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prime divisors with ai ≥ 2, we are done.

So by inductive argument we have the minimum size of n for which dk(n) = 2 occurs is

at-least 10k.

Correspondingly ∀ n, k has size O(logn).

The bound for k can be considerably improved for large n using a well known result due to

Wigart. See [4] for more information.

lim sup
n

log d(n) log log n

logn
= log 2

which translates to: given ǫ > 0, ∃N0 such that ∀n ≥ N0 we have

d(n) < n
log 2(1+ǫ)
log log n (6)

=⇒ logn >
log logn

log 2(1 + ǫ)
log d(n) (7)

This clearly improves the bound on k. Assuming d(n1) = n, we have to choose n ≥

max
(

N0,
N1

10

)

where N1 is the least integer such that log logN1 ≥ log 2(1 + ǫ)(1 + c)

log n1 >
log logn1

log 2(1 + ǫ)
log d(n) (8)

=⇒ logn1 ≥ (1 + c) logn (9)

here c > 0 is a constant.

So we have by iteration log n1 ≥ (1 + c)k log 2

So k = O(log log n) for large enough n.

We observe that :

k : 1 2 3 4 5 6 ...

n : 2 4 6 12 60 5040 ...

Here given k we have listed the least n = nk for which dk(n) = 2. Now we make the following

conjecture.

Conjecture: All the nk’s which are produced by our algorithm are highly composite num-

bers. For a complete idea about what highly composite numbers are we refer [1].

From a well known result(for more information about the source see [2]) we have:
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max
n≤x

d(n) = exp

(

log 2
log x

log log x
+O

( log x log log log x

(log x)2
)

)

So for large nk we expect that log nk−1 ∼ log 2
log nk

log lognk

max
n≤nk

d(n) = exp

(

log 2
log nk

log lognk

+O
( log nk log log log nk

(log nk)2
)

)

=⇒ max
n≤nk

d(n) ∼ exp
(

log 2
lognk−1

log 2

)

=⇒ max
n≤nk

d(n) ∼ nk−1 =⇒ nk is highly composite.

5 Acknowledgement

We immensely thank Florentin Smarandache,(University of New Mexico) to raise this prob-

lem in his paper ”THIRTY-SIX UNSOLVED PROBLEMS IN NUMBER THEORY”. He

also motivated us saying that nothing is known about the solution. We remain highly obliged

to Prof. Balasubramanian(Institute of Mathematical Sciences) for guiding us to solve this

problem up to whatever extent we have done.

References

[1] Highly Composite Numbers

Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 409

[2] Handbook of Number Theory I

Jzsef Sndor, Dragoslav S. Mitrinovi, Borislav Crstici

ISBN: 978-1-4020-4215-7

[3] THIRTY-SIX UNSOLVED PROBLEMS IN NUMBER THEORY

https://arxiv.org/ftp/math/papers/0010/0010143.pdf

Florentin Smarandache, University of New Mexico

[4] Sur lordre grandeur du nombre de diviseurs dun entier.

S. Wigert, Ark. Mat. 3, no. 18 (1907), 19.

8


	1 Introduction
	2 The Values K can Attain
	3 The least n for a given k
	3.1 The Algorithm
	3.2 The Proof of the Algorithm

	4 An estimate of k for all n
	5 Acknowledgement

