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Abstract. Smith, Lopez and Lam described how to combine genetic similarities,
measured in centimorgans (cM), among declared relatives in an outside pedigree, and
to concentrate those cM values into a single cM measurement for an envoy that is a
representative of the outside pedigree. An unknown relative is presumed to be a
descendant of the envoy, but has the cM values with relatives in the outside pedigree.
That prior effort was a univariate analysis, where there is only one unknown relative
with matches with others in the outside pedigree. The present paper presents a
bivariate analysis, where there are two sisters that have matches with others in the
outside pedigree. The cM values are now paired, where any DNA tested member of the
pedigree has two cM values that match to both sisters. The bivariate analysis offers 
more efficient use of information, compared to two univariate analyses done for each
sister in turn. This advantage comes with an increase in model complexity, in that a
model is developed for treating three mutually exclusive categories representing genes
found in the sisters: for genes in the first sister but not in the second sister; genes
common to both sisters; or genes in the second sister but not in the first. The model is
applied to the inheritance of the cM values in the pedigree. Even though the number of
random effects is increased by a factor of three, the number of fixed effects that
actually spend two degrees of freedom is unchanged from the univariate analysis. This
is on top of the doubling of the number of observations for the bivariate analysis
compared to one univariate analysis.

1. Introduction

DNA testing companies, Ancestry, My Family Tree DNA, My Heritage, 23andMe, offer
their customers a collection of DNA matches to help locate family members. The
matches are reported in centimorgans (cM), where the larger the cM measurement the
closer the relationship to a customer, denoted by R. Unless the relationship to R is
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close, such as grandchild-grandparent or among 1  cousins, a single cM value is notst

that useful if the objective is to locate family that are more distant. 

To get beyond the above limitation, Smith, Lopez and Lam (2017) described a
statistical method that combined a collection cM values from a cluster of relatives that
were known among themselves (see Display 1), but collectively having an unknown
relationship to R. Precisely, an envoy is attached to the cluster, where R is a
descendant of the envoy, and the collection of cM values are statistically combined to
provide a single cM estimate between R and the envoy. The envoy’s estimated cM is
computed with a statistical error to judge significance. Unlike a single cM value on a
typical unknown relative, the envoy’s cM (with R) can be notably large and indicating a
real genetic path through the envoy to R that has been previously undiscovered. Smith,
Lopez and Lam described their method for 14 cM values collected for each of two
sisters (dark circles of Display 1). The details and data of that prior paper  will now be1

investigate again in the present paper, where adjustments are recommended for
treating the fact that the two sisters contribute paired data (Table 1), rather than a
single collection coming from one customer R. In short, Smith, Lopez and Lam applied
the same set of calculations for each sister in turn, but a preferred analysis does a
single joint analysis by incorporating the appropriate covariances for paired data.

Table 1. Ancestry’s cM values between two sisters and 14 individuals that belong to the 
Rosa and Paula families; from Smith, Lopez and Lam.

Individual ET YP KH RM JM JK SS JS LM SK PJ KO DP TM

Sister 1 36 11 31 28 21 33.2 72 182 108 26 <6 15.5 60 60

Sister 2 15.5 11.4 29.4 26 <6 36 47 135 24.3 <6 <6 <6 39 13.3
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Display 1. Family tree with central ancestors Manuel da Rose and Rosa Paula, with
paternal common ancestors Francisco da Rosa and Maria Delfina, and with maternal
common ancestors Manuel Antonio Paula and Marianna Felecie. Circles indicate
individuals involved with gene flows that are common by decent between the envoy (red
circle)  and living descendants that took DNA tests (dark circles); from Smith, Lopez
and Lam.

2. Statistical Model

A bivariate extension of the prior univariate analysis presented by Smith, Lopez and
Lam (2017) is straightforward, but only in principle. The fact is that the residual effects
in the prior linear models that depict the inheritance pattern of the paired cM values, do
not correspond to a superficially available variance-covariance matrix. In the univariate
analysis the variances were found proportional to Pr(P=R) or Pr(O=R), where Pr(X=R)
represents the probability of identity by descent that a random gene from X (i.e., from
parent P or offspring O) is identical to a random gene from relative R. Or in the case of

P O P Ore-weighted iteration, the variances were found proportional to û  or û , where û  or û  
are the imputed cM values for relative R matched with parent P and offspring O,
respectively. No such proportionality adjustment was found for the bivariate case
because the Markov chain properties of inheritance was found disrupting simple
patterns, as will become apparent when the actual remedy is described.

An approach that worked, if not the only approach, was to partition the cM values, that
are contained as entries in a vector u in Smith, Lopez and Lam, into three classes:
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Class k=1 is where genes are common to Sister 1 and excluded from Sister 2; Class
k=2 is where genes are common to both Sister 1 and Sister 2; and Class k=3 is where
genes are common to Sister 2 and excluded from Sister 1. If the cM value for individual

X X X1 X2X in u (matched with one of the sisters in turn) is denoted by u , then u =u +u  for

X X2 X3 Xk XSister 1 and u =u +u  for Sister 2, where u  is the partition of u  into Class k. For the
univariate analysis there are two vectors u for each sister in turn, but in the bivariate

Xkanalysis there is only one vector u with three times as many entries that contain u  for
all X and k. Originally there were 52 relatives where the cM where predicted (not
counting the envoy and the envoy’s descendants), and therefore, in the bivariate
analysis u has length 156 .2

With the above partition of the cM values into three classes, the inheritance pattern can
be treated as independent happenings, where the three categories (A, B and C)
presented in Smith, Lopez and Lam can be applied independently for each class in
turn, and this permits the construction of the appropriate linear model involving the
vector u and a residual , as Pu = ,. Even this remedy is approximate, however,
because its quite possible for DNA segments to overlap the classes. But this
approximation is preferable to the grosser approximation of trying the map out the cM
values unpartitioned by assigning a possible variance-covariance matrix for residuals.

The only modification that is needed before applying the rules presented in Smith,

Xk XLopez and Lam, is to recognize that the probabilistic sizes of u , relative to u  in the
univariate analysis, are cut in half.  For the first round of iteration, the adjustment is
made by using the multiplicative factor of 1700 when multiplying the probability of
identity by descent, rather than 3400, but for re-weighted iteration (if there are any
additional rounds) the adjustment is already implicit with the partition that implies that

X X1 X2 X X2 X3u =u +u  or u =u +u . The rules for the three categories of cM values, appropriately
adjusted, and for the three classes in turn (k = 1, 2, 3), follow.

A. From one parent to an offspring, with the parent not a common ancestor or central
ancestor.

PkIf u  is the partitioned cM measurement between any parent, identified as P, and the

Okunknown relative R, then let u  be the partitioned cM measurement between that
parent’s offspring, identified as O, and relative R. Moreover, define Pr(P = R) as the
probability that a random gene taken from P (at a given loci) is identical by decent to a
random gene taken from the relative R (at the same loci) that is now assumed to pass
through the envoy by following a stipulated path.

It is apparent with meiosis and crossovers (i.e., genetic recombination) that half of the
parents genes will be passed on to the offspring, implying that
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Ok Pk Ok(1) u  = ½u  + ,

Okwhere ,  is a random residual, with a variance that is approximated as:

OkVariance(, ) .1700×Pr(P = R) for the first round,
or

Ok Pk PkVariance(, ) .½× û  during re-weighted iteration, where a fresh prediction of u  is

Pkavailable as û .

B. From common ancestors, or central ancestors, to an offspring, when the offspring is
not one of the central ancestors.

As long as the flow of genes that are common to the unknown relative flow down from
the two parents (P1 and P2) to an offspring (O), we can apply model (1) to represent
the uniting gametes from the two parents. Any allele that is common to the unknown
relative can only occupy one loci across both parents, and hence the common genes
are passed on independently with (1) applied twice to give model (2).

Ok P1k P2k Ok(2) u =½ u  +½ u  +  ,

OkThe term ,  is again the residual, but now with a variance that can be approximated
by:

OkVariance(, ) .1700×[Pr(P1 = R)+Pr(P2 = R)] for the first round,
or

Ok P1k P2k Variance(, ) .½× [û  + û ] during re-weighted iteration.

C. From a paternal (or maternal) central ancestor back against the flow of genes to the
paternal (or maternal) common ancestors.

The paternal common ancestors are the parents for the male central ancestor, and the
maternal common ancestors are the parents for the female central ancestor. Here gene
flow is reversed to place the common genes, i.e., found identical in the unknown
relative, that are also in the central ancestors, but now finding them into the noted
parents. This makes two equations given by (3) for the parents rather than one for the
offspring, and done for both the paternal and maternal sides of the central ancestors.

P1k Ok P1ku =½ u   +  ,
 (3) 

P2k Ok P2ku =½ u   +  ,

Every common allele (at a particular loci) found in P1 is an allele missing in P2, and

P1k P2kvisa versa. Therefore ,  and ,  have a perfect negative correlation, and the
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associated 2×2 variance-covariance matrix is a rank-1 matrix, approximated by the
following.

Where

v = 1700×Pr(O=R) for the first round,
or

Okv = ½ û  during re-weighted iteration.

The residuals in equation (3) are meant to have the conditional variance-covariance

Okmatrix given above, i.e., conditional on u  as opposed to being unconditional, and its
easy to conflate an unconditional variance or covariance with a better approximation
that it is not. The conditional distribution is better approximated as a binomial
distribution, rather than a Poisson distribution, and this leads to the above singular
variance matrix once v, or the mean of the distribution, is substituted and allowances
are made for extra-Poisson variation that acts as a proportionality constant over the
variances and covariances for all residuals. This pattern of using a multinomial
distribution to derive a variance matrix (the binomial distribution in the above example),
followed by the substitution of the mean of the distribution, is again employed bellow
where specifications were found required of the central ancestors but now using a
trinomial distribution.

D. Equations for central ancestors.

There are now equations and residuals coming form (1), (2) and (3) for all individuals in
the pedigree that is to be analyzed, excluding the central ancestors and the envoy, and
the envoy’s descendants leading to the unknown relative. But new equations for the
central ancestors are needed too, because absent any other adjustment the bivariate
analysis will end up spending six degrees of freedom in estimating all six fixed effects
that are otherwise associated with the two central ancestors. In the univariate analysis
there were only two fixed effects associated with the central ancestors, but in the
present situation the partitioning inflates that number by a factor of three. It had been
advantageous to let those prior fixed effects float freely to absorb all the 14 cM values
that had been measured (for each sister in turn). But floating all six parameters is over-
kill and creates instabilities as well as using up too much information, even if the total
information grows to 28 cM values for both sisters. The bivariate analysis should result
in a more efficient use in information, not less, and so a new adjustment is required. 

Any central ancestor (denoted by C), will also show an expected cM value with relative
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R given by 6800×Pr(C=R), but this falls to 3400×Pr(C=R) for the expected cM values

C1 C2 C3representing each of the three classes or partitions, for u , u  and u . Every gene
passed from ancestor C to at lease one of the sisters has an equal a chance of falling

ein any of the three partitions. If there are N  effective DNA segments of length "cM,
segregating independently, more or less, then the trinomial distribution is available to
define the needed prior distribution  of which the mean vector and variance matrix are3

sought and are listed below.

CThe mean value for all three classes, symbolically u , had been approximated as 

C e3400×Pr(C=R). The substitution u  = a×"N  is plugged into the variance matrix to
produce the following.

This matrix must still be calibrated with all the other residual variances used for
categories A, B and C above, because it was implicit that ½" was a common factor that
became part of the extra-Poisson variation.  Following calibration , the equations for the4

both central ancestors are found, and are presented next.

C1 C C1u  = u  + ,

C2 C C2(4) u  = u  + ,

C3 C C3u  = u  + ,

C1 C2 C3Where the variance matrix for , , , and ,  is given by the following.

for the first round,
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or

during re-weighted iteration.

C CThe mean value u , and its estimate û , are different for each central ancestor; i.e.,
there are two sets of them, and now estimation spends two degrees of freedom as

Coriginally sought. The two u  values are treated as a fixed effects, and are floated to
represent all the cM measurements.

This information in equations (1), (2), (3) and (4) can be collected and expressed in
matrix notation as follows

Pu = ,

Var(,) = R

Where P is a rectangular matrix with 156 rows and 158 columns, with each row
representing an equation of the form (1) or (2) or where two rows are given by (3) or
three rows given by (4), where most elements in any row are set to zero expect for the
numbers 1, -1 or -½ that are found at the appropriate places. The column vector ,
represents the collection of 156 residuals. The variance matrix R  is almost completely5

diagonal, except for six 2×2 blocks that correspond to the paternal and maternal
common ancestors and two 3×3 blocks that correspond to the central ancestors . The
matrix R is rank deficient  and this property is treated correctly with the matrix tools6

described by Smith, Lopez and Lam. 

The data are the paired cM values found on living relatives that also belong to the
terminal ends of the pedigree presented in Display 1. The linear model for the
observations is the following.

y=Zu

Where y a column vector of length 28 containing the 14 paired cM values observed on
some of the living relatives, and Z is an incidence matrix of 28 rows and 158 columns
containing mostly zeros except for two entries containing the number one in each row
that picks out the appropriate two elements in u so that it is matched with the
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X X1 X2corresponding element in y. These are linear equations of the form: u =u +u  for

X X2 X3Sister 1 and u =u +u  for Sister 2. The linear model for the observations contains no
additional error terms, following the standard presented by Smith, Lopez and Lam.

The matrices (P, Z and R) and the vector (y) are now plugged into the matrix M below,
following Smith, Lopez and Lam.

The empty space in M is understood to represent entries of zero. The only
modifications necessary to the 6-step protocol of Smith, Lopez and Lab involve steps 3
and 6. For the sake of completeness and flow, all 6 steps are repeated  again, with7

modifications.

1. The matrix M is constructed as described above, using approximate variances
derived for the Poisson distribution and the probabilities of identity by descent.

2. A permutation matrix Q is found dynamically with the implementation of the LU
factorization (see Smith 2001), to compute the unit lower triangular matrix L and an
upper triangular matrix U such that LU=QMQ , while restricting the permittedT

permutations to leave the last row and column of M fixed in the last position.

3. The chi-square statistic (P ) with 2×(N – 1) degrees of freedom  is retrieve in the last2 8

diagonal element of U which is present as -P . The expectation is that this statistics will2

show significance because the Poisson distribution comes with small relative variances,
and it is therefore easy to generate a poor fit. Significance implies the presence of
extra-Poisson variation, with variance term F  noted below.2
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4. To calculate the predictions of shared cM for all the known relatives (i.e., to calculate
the prediction of the vector u), retrieve the last column U but excluding the last element
where the chi-square statistic was found, and put it in the work vector r. Remove the
last row and column of U, making a smaller upper triangular matrix â. The column
vector r has already been subjected to implicit forward substitution with the LU
factorization. Complete the process now by solving × in â×=r by backward substitution.
The prediction of u, now defined as û, is found scattered in × depending on the
permutations. However, because the permutations are done implicitly by software, û is
found in × as if there had been no permutations.

5. With the chi-square statistic significant, the matrix M can be rebuilt for re-weighted
iteration by using the current value of û. The calculation then returns to Step 2 above,
and this iteration repeated as many of times as necessary until the chi-square statistic
stabilizes. Ideally, the chi-square statistic should fall initially, if only a little, otherwise re-
weighted iteration is not recommended. Once this is done, the last estimate of F  found2

in Step 3 is taken as the extra-Poisson variation.

6. To predict the shared cM for the envoy add the appropriate cM predictions for the

A1 A2 B1 B2central ancestors (C=A or B in turn) together; i.e., add four elements (û +û +û +û )

A2 A3 B2 B3of û together for Sister 1 and add four elements (û +û +û +û ) for Sister 2. Initialize
the work vector r used in Step 4 to zero everywhere except for the respective four

A1 A2 B1 B2entries that correspond to the central ancestors (i.e., corresponding to û , û , û , û

A2 A3 B2 B3for Sister 1 or û , û , û , û  for Sister 2) that are set to the number one. With the
permutations treated implicitly, use forward substitution to solve for the vector s in
â s=r, for each sister in turn. Calculate the negative weighted sum of squares, T

i iwhere  â  is the i-th diagonal of  â, and s  is the i-th element of s. The standard error for
the shared cM prediction for the particular sister matched with the envoy is F*=(F * ) .2 2 ½

3. Numerical Example

3.1 Stability Issues

When the calculation were applied to the data in Table 1, for the bivariate analysis, it
was discovered that the chi-square statistic (initially at 208.9 with 26 degrees of
freedom) did not fall with re-weighted iteration and so re-weighted iteration was not
performed with the calculations stopping after one round. In the univariate analysis, re-
weight iteration was performed for Sister 1, but not for Sister 2. The predicted cM
values tended to be smaller for Sister 2 than Sister 1. Because of partitioning the
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predicted cM values in the bivariate analysis also tended to be smaller, as much as
50%.

It would be a stability issue that arises more generally, if small cM values tended to
prohibit the initiation of re-weighted iteration by showing no further reduction in the chi-
square statistic.

Six of the predicted cM values, out of a total of 156, were predicted to be negative.
Because these negative numbers were for individuals located at the terminal ends of
the pedigree, they never had a chance to enter as weights during re-weighted iteration.
Only positive weights can be used.

In contrast, none of the 52 cM values were predicted negative for the univariate
analysis. But with partitioning, and a more complicated linear model, the opportunity for
negative cM predictions to arise increases, and this possible instability should be
checked.

The occurrence of negative cM predictions has an easy remedy, however. A Bayesian
trick  can be used to restrict the few troublesome predictions to zero, or near zero. The9

matrix M has a negative block, initially set to a sub-matrix containing only zeros and
occupying the lower right corner. The diagonal elements of that sub-matrix have a one-
to-one correspondence to the elements of u. The corresponding diagonal elements of
M, that correspond to negative predictions in u, can be initialize to a large negative
number, like the -1000 that was actually used. This will force the few predictions to
follow a Bayesian prior that is concentrated sharply around zero, making the predictions
come out close to zero. In theory, this may be an iterative process because forcing
some predictions to zero might also force other predictions to become negative.
However, iteration was not required with the bivariate analysis once restrictions were
set in place for the 6 cM predictions that had been negative.

3.2 Statistical Results

Table 2 presents the side by side comparisons of the bivariate and univariate analyses,
listing the cM predictions (for the sisters matched with the envoy), standard errors and
95% confidence regions. The two types of analyses have very similar results, with
Sister 1 showing a stronger signal than Sister 2. The respective standard errors
dropped by 6% and 3%, for Sister 1 and 2, respectively. A reduction was expected
because the bivariate analysis is more efficient than the univariate analysis, but this
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was a small improvement. 
 

Table 2. Side by side comparison of two univariate analysis compared to one bivariate
analysis.

Sister cM of Envoy Standard Error 95% Confidence Region

Univariate Analysis

Sister 1 1003.7 ±157.8 cM>744.9

Sister 2 566.8 ±153.9 cM>314.4

Bivariate Analysis

Sister 1 890.1 ±148.7 cM>646.2

Sister 2 743.9 ±148.7 cM>500.0

The big effect of the bivariate analysis was to bring the results for the two sisters closer
together. As Bettinger (2016, page 106) reports that the cM values on a great-
grandparent can vary between 547 to 1110, the bivariate analysis brings a closer
agreement with the possibility that the envoy is a great-grandparent of both sisters.
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