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Abstract. In this paper, we introduce the integer 

programming in neutrosophic environment, by consi-

dering coffecients of problem as a triangulare neutros-

ophic numbers. The degrees of acceptance, indeterminacy 

and rejection of objectives are simultaneously considered. 

The Neutrosophic Integer Programming Problem (NIP) is 

transformed into a crisp programming model, using truth 

membership (T), indeterminacy membership (I), and fal-

sity membership (F) functions as well as single valued 

triangular neutrosophic numbers. To measure the effic-

iency of the model, we solved several numerical examples.
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1 Introduction 

   In linear programming models, decision variables are al-

lowed to be fractional. For example, it is reasonable to ac-

cept a solution giving an hourly production of automobiles 

at 64
1

2
 , if the model were based upon average hourly pro-

duction. However, fractional solutions are not realistic in 

many situations and to deal with this matter, integer pro-

gramming problems are introduced. We can define integer 

programming problem as a linear programming problem 

with integer restrictions on decision variables. When some, 

but not all decision variables are restricted to be integer, this 

problem called a mixed integer problem and when all deci-

sion variables are integers, it’s a pure integer program. Inte-

ger programming plays an important role in supporting 

managerial decisions. In integer programming problems the 

decision maker may not be able to specify the objective 

function and/or constraints functions precisely. In 1995, 

Smarandache [1-3] introduce neutrosophy which is the 

study of neutralities as an extension of dialectics. Neutro-

sophic is the derivative of neutrosophy and it includes neu-

trosophic set, neutrosophic probability, neutrosophic statis-

tics and neutrosophic logic. Neutrosophic theory means 

neutrosophy applied in many fields of sciences, in order to 

solve problems related to indeterminacy. Although intui-

tionistic fuzzy sets can only handle incomplete information 

not indeterminate, the neutrosophic set can handle both  in-

complete and indeterminate information.[4] Neutrosophic 

sets characterized by three independent degrees as in Fig.1., 

namely truth-membership degree (T), indeterminacy-mem-

bership degree(I),  and falsity-membership degree (F), 

where T,I,F are standard or non-standard subsets of ]-0, 1+[. 

The decision makers in neutrosophic set want to increase the 

degree of truth-membership and decrease the degree of in-

determinacy and falsity membership.  

The structure of the paper is as follows: the next section is a 

preliminary discussion; the third section describes the 

formulation of integer programing problem using the 

proposed model; the fourth section presents some 

illustrative examples to put on view how the approach can 

be applied; the last section summarizes the conclusions and 

gives an outlook for future research. 

2 Some Preliminaries 

2.1 Neutrosophic Set [4] 

Let 𝑋 be a space of points (objects) and 𝑥∈𝑋. A neutro-
sophic set 𝐴 in 𝑋 is defined by a truth-membership function 
(𝑥), an indeterminacy-membership function (𝑥) and a fal-
sity-membership function 𝐹𝐴(𝑥).  (𝑥), 𝐼(𝑥) and 𝐹(𝑥) are real 

standard or real nonstandard subsets of ]0−,1+[. That is 
𝑇𝐴(𝑥):𝑋→]0−,1+[, I𝐴(𝑥):𝑋→]0−,1+[ and F𝐴(𝑥):𝑋→]0−,1+[.  
There is no restriction on the sum of (𝑥), (𝑥) and 𝐹𝐴(𝑥), so 

 0−≤sup(𝑥)≤sup𝐼𝐴(𝑥)≤𝐹𝐴(𝑥)≤3+. 

2.2 Single Valued Neutrosophic Sets (SVNS) [3-4] 

Let 𝑋 be a universe of discourse. A single valued neu-
trosophic set 𝐴 over 𝑋 is an object having the form  
𝐴= {〈𝑥, T(𝑥), I𝐴(𝑥),F𝐴(𝑥)〉:𝑥∈𝑋},          
where T𝐴(𝑥):𝑋→[0,1], I𝐴(𝑥):𝑋→[0,1] and F𝐴(𝑥):𝑋→[0,1] 
with 0≤T𝐴(𝑥)+ I𝐴(𝑥)+F𝐴(𝑥)≤3 for all 𝑥∈𝑋. The intervals T(𝑥), 
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I(𝑥) and F𝐴(𝑥) denote the truth-membership degree, the in-
determinacy-membership degree and the falsity member-
ship degree of 𝑥 to 𝐴, respectively.  

In the following, we write SVN numbers instead of sin-
gle valued neutrosophic numbers. For convenience, a SVN 
number is denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 

𝑎+𝑏+𝑐≤3. 

Figure 1: Neutrosophication process  

2.3 Complement [5] 

The complement of a single valued neutrosophic set 𝐴 

is denoted by C (𝐴) and is defined by 

𝑇𝑐(𝐴)(𝑥) = 𝐹(𝐴)(𝑥) , 

𝐼𝑐(𝐴)(𝑥)  = 1 − 𝐼(𝐴)(𝑥) , 

  𝐹𝑐(𝐴)(𝑥) = 𝑇(𝐴)(𝑥)              for all 𝑥 in 𝑋 

2.4 Union [5] 

      The union of two single valued neutrosophic sets A and 

B is a single valued neutrosophic set C, written as C = AUB, 
whose truth-membership, indeterminacy membership and 
falsity-membership functions are given by 
    𝑇(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,     

  𝐼(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 

 𝐹(𝐶)(𝑥) =  𝑚𝑖𝑛((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋   

2.5 Intersection [5] 

      The intersection of two single valued neutrosophic sets 
A and B is a single valued neutrosophic set C, written as  
C = A∩B, whose truth-membership, indeterminacy mem-
bership and falsity-membership functions are given by 
   𝑇(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,        

  𝐼(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 

 𝐹(𝐶)(𝑥) =  𝑚𝑎𝑥((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋 

 3 Neutrosophic Integer Programming Problems 
 Integer programming problem with neutrosophic coef-

ficients (NIPP) is defined as the following: 

Maximize Z= ∑ 𝑐�̃�𝑥𝑗
𝑛
𝑗=1

Subject to 

 ∑ aij
~n𝑥𝑗

n
j=1 ≤ 𝑏i     𝑖 = 1,… ,𝑚 ,     (1) 

 𝑥𝑗 ≥ 0,        𝑗 = 1,…𝑛 , 

𝑥𝑗       integer for   𝑗 ∈ {0,1, …𝑛}.

Where 𝑐�̃� , aij
~n  are  neutrosophic numbres. 

The single valued neutrosophic number (aij
~n) is donated by

A=(a,b,c) where a,b,c ∈ [0,1] And a,b,c ≤ 3 

The truth- membership function of  neutrosophic number 

aij
~n is defined as: 

T aij
~n(x)={

𝑥−𝑎1 

𝑎2−𝑎1
 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎2−𝑥

𝑎3−𝑎2
 𝑎2 ≤ 𝑥 ≤ 𝑎3

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2) 

The indeterminacy- membership function of  neutrosophic 

number 𝑎𝑖𝑗
𝑛 is defined as: 

I aij
~n(x)=

{
 

 
𝑥−𝑏1 

𝑏2−𝑏1
 𝑏1 ≤ 𝑥 ≤ 𝑏2

𝑏2−𝑥

𝑏3−𝑏2
 𝑏2 ≤ 𝑥 ≤ 𝑏3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 

And its falsity- membership function of  neutrosophic 

number 𝑎𝑖𝑗
~𝑛 is defined as: 

F aij
~n(x)=

{
 

 
𝑥−𝐶1 

𝐶2−𝐶1
 𝐶1 ≤ 𝑥 ≤ 𝐶2 

𝑏2−𝑥

𝑏3−𝑏2
 𝐶2 ≤ 𝑥 ≤ 𝐶3 

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (4) 

Then we find the maximum and minimum values of the 

objective function for truth-membership, indeterminacand 

falsity membership as follows: 

𝑓𝑚𝑎𝑥 = max{𝑓(𝑥𝑖
∗  )} and 𝑓𝑚𝑖𝑛 =min{𝑓(𝑥𝑖

∗  )} where 1≤
𝑖 ≤ 𝑘 

𝑓𝑚𝑖𝑛=
𝐹 𝑓𝑚𝑖𝑛

𝑇  and  𝑓𝑚𝑎𝑥=
𝐹 𝑓𝑚𝑎𝑥

𝑇 − 𝑅(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 )
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𝑓𝑚𝑎𝑥=
𝐼 𝑓𝑚𝑎𝑥

𝐼  𝑎𝑛𝑑 𝑓𝑚𝑖𝑛=
𝐼 𝑓𝑚𝑖𝑛

𝐼 − 𝑆(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 )
Where R ,S are predetermined real number in (0,1) 

The truth membership, indeterminacy membership, falsity 

membership of objective function as follows: 

𝑇𝑓(𝑥) = 

{

1  𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛 
𝑓𝑚𝑎𝑥−𝑓(𝑥)

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
      𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥 

0  𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥       

  (5) 

𝐼𝑓(𝑥) = 

{
 
 

 
 0   𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛       

𝑓(𝑥) − 𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥  (6) 

0   𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥       

𝐹𝑓(𝑥) =

 {

0  𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛 
𝑓(𝑥)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥 

 1  𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥 

 (7) 

The neutrosophic set of the 𝑗𝑡ℎ  decision variable 𝑥𝑗 is

defined as: 

𝑇𝑥𝑗
(𝑥) =

 { 

 1         𝑖𝑓     𝑥𝑗 ≤ 0                      
𝑑𝑗−𝑥𝑗

𝑑𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗    (8)                        

0  𝑖𝑓   𝑥𝑗  > 𝑑𝑗        

           

𝐹𝑥𝑗
(𝑥)

=

{
 

 
0         𝑖𝑓     𝑥𝑗 ≤ 0 
𝑥𝑗

𝑑𝑗 + 𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗      (9)  

1  𝑖𝑓   𝑥𝑗  > 𝑑𝑗  

 

𝐼𝑗 
(𝑥)

=

{
 
 

 
 
0  𝑖𝑓    𝑥𝑗 ≤ 0  (10) 

𝑥𝑗 − 𝑑𝑗

𝑑𝑗 + 𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗

  0              𝑖𝑓   𝑥𝑗  > 𝑑𝑗  

Where 𝑑𝑗 , 𝑏𝑗 are integer numbers.

4 Neutrosophic Optimization Model of integer pro-
gramming problem 

In our neutrosophic model we want to maximize the de-
gree of acceptance and minimize the degree of rejection and 
indeterminacy of the neutrosophic objective function and 
constraints. Neutrosophic optimization model can be de-
fined as: 

 𝑚𝑎𝑥𝑇(𝑥)

 𝑚𝑖𝑛𝐹(𝑥)

 𝑚𝑖𝑛𝐼(𝑥)

  Subject to 

 𝑇(𝑋) ≥ 𝐹(𝑥)

  𝑇(𝑋) ≥ 𝐼(𝑥)

 0 ≤ 𝑇(𝑋) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3          (11) 

  𝑇(𝑋),     𝐼(𝑋) ,    𝐹(𝑋) ≥ 0        

 𝑥 ≥ 0  , integer. 

Where 𝑇(𝑥). 𝐹(𝑥), 𝐼(𝑥)denotes the degree of acceptance,

 rejection and indeterminacy of 𝑥 respectively. 

The above problem is equivalent to the following: 

𝑚𝑎𝑥 𝛼,  𝑚𝑖𝑛 𝛽 , 𝑚𝑖𝑛 𝜃 
Subject to      

𝛼 ≤ 𝑇(𝑥)
𝛽 ≤ 𝐹(𝑥)
𝜃 ≤ 𝐼(𝑥)
 𝛼 ≥ 𝛽 

 𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3                                                 (12) 

       𝑥 ≥ 0  , integer. 

Where  𝛼 denotes the minimal acceptable degree, 𝛽 denote 
the maximal degree of rejection and 𝜃 denote maximal de-
gree of indeterminacy. 

The neutrosophic optimization model can be changed 

into the following optimization model: 
𝑚𝑎𝑥(𝛼 −  𝛽 −  𝜃)        
Subject to 

𝛼 ≤ 𝑇(𝑥)                                                                    (13)

𝛽 ≥ 𝐹(𝑥)
𝜃 ≥ 𝐼(𝑥)
 𝛼 ≥ 𝛽 

  𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3 

𝛼, 𝛽, 𝜃 ≥ 0       
  𝑥 ≥ 0  , integer. 

The previous model can be written as: 

𝑚𝑖𝑛 (1-  𝛼) 𝛽 𝜃 
Subject to 

𝛼 ≤ 𝑇(𝑥)
𝛽 ≥ 𝐹(𝑥)
𝜃 ≥ 𝐼(𝑥)
 𝛼 ≥ 𝛽 

  𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3                                               (14) 

 𝑥 ≥ 0 , integer. 



 5 The Algorithms for Solving Neutrosophic inte-
ger Programming Problem (NIPP) 

5.1 Neutrosophic Cutting Plane Algorithm 

Step 1: Convert neutrosophic integer programming problem 

to its crisp model by using the following method: 
By defining a method to compare any two single valued triangular 

neutrosophic numbers which is based on the score function and the 

accuracy function. Let �̃� = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤�̃� , 𝑢�̃�, 𝑦�̃� 〉 be a single

valued triangular neutrosophic number, then 

𝑆(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� − 𝜆�̃�)  (15) 

and 

𝐴(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� + 𝜆�̃�)  (16) 

is called the score and accuracy degrees of �̃�, respectively. The 

neutrosophic integer programming NIP can be represented by crisp 

programming model using truth membership, indeterminacy 

membership, and falsity membership functions and the score and 

accuracy degrees of ã, at equations (15) or (16). 

Step 2: Create the decision set which include the highest 

degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  Solve the problem as a linear programming problem 
and ignore integrality. 

Step 4:  If the optimal solution is integer, then it’s right. 
Otherwise, go to the next step. 

Step 5: Generate a constraint which is satisfied by all inte-
ger solutions and add this constraint to the problem. 

Step 6: Go to step 1. 

5.2 Neutrosophic Branch and Bound Algorithm 

Step 1: Convert neutrosophic integer programming problem 
to its crisp model by using the following method: 
By defining a method to compare any two single valued triangular 

neutrosophic numbers which is based on the score function and the 

accuracy function. Let �̃� = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤�̃� , 𝑢�̃�, 𝑦�̃� 〉 be a single

valued triangular neutrosophic number, then 

𝑆(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� − 𝜆�̃�)  (15) 

and 

𝐴(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� + 𝜆�̃�)  (16) 

is called the score and accuracy degrees of �̃�, respectively. The 

neutrosophic integer programming NIP can be represented by crisp 

programming model using truth membership, indeterminacy 

membership, and falsity membership functions and the score and 

accuracy degrees of ã, at equations (15) or (16). 

Step 2: Create the decision set which include the highest 
degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  At the first node let the solution of linear program-
ming model with integer restriction as an upper bound and 
the rounded-down integer solution as a lower bound. 

Step 4: For branching process, we select the variable with 

the largest fractional part.  Two constrains are obtained after 
the branching process, one for≤ and the other is ≥ con-
straint. 

Step 5: Create two nodes for the two new constraints. 

Step 6: Solve the model again, after adding new constraints 
at each node. 

Step 7: The optimal integer solution has been reached, if the 
feasible integer solution has the largest upper bound value 
of any ending node. Otherwise return to step 4. 

The previous algorithm is for a maximization model.  For a 
minimization model, the solution of linear programming 
problem with integer restrictions are rounded up and upper 
and lower bounds are reversed. 

6 Numerical Examples 

To measure the efficiency of our proposed model we 
solved many numerical examples. 

6.1 Illustrative Example #1 

𝑚𝑎𝑥 5̃𝑥1 + 3̃𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

4̃𝑥1 + 3̃𝑥2 ≤ 12̃

1̃𝑥1 + 3̃𝑥2 ≤ 6̃
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

where 

5̃ =  〈(4,5,6 ), 0.8, 0.6, 0.4 〉 
3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.3 〉 
4̃ =  〈(3.5,4,4.1 ), 1, 0.5, 0.0 〉 
3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.25 〉 
1̃ =  〈(0,1,2 ), 1, 0.5, 0 〉 
3̃ =  〈(2.8,3,3.2 ), 0.75, 0.5, 0.25 〉 
12̃ =  〈(11,12,13 ), 1, 0.5, 0 〉

6̃ =  〈(5.5,6,7.5 ), 0.8, 0.6, 0.4 〉 

Then the neutrosophic model converted to the crisp model 

by using Eq.15 , Eq.16.as follows : 

 Mohamed Abdel-Basset et al., Neutrosophic Integer Programming Problem
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max    5.6875𝑥1 + 3.5968𝑥2

subject to     

4.3125𝑥1 + 3.625𝑥2 ≤ 14.375
0.2815𝑥1 + 3.925𝑥2 ≤ 7.6375

𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

The optimal solution of the problem is 𝑥∗ = (3,0)   with 

optimal objective value 17.06250. 

6.2 Illustrative Example #2 

𝑚𝑎𝑥    25̃𝑥1 + 48̃𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

where 

25̃ =  〈(19,25,33 ), 0.8,0.5,0 〉; 
48̃ =  〈(44,48,54 ), 0.9,0.5,0 〉

Then the neutrosophic model converted to the crisp model 

as : 

max    27.8875𝑥1 + 55.3𝑥2

subject to     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

The optimal solution of the problem is 𝑥∗ = (500,1250)  
with optimal objective value 83068.75. 

7 Conclusions and Future Work 

     In this paper, we proposed an integer programming 

model based on  neutrosophic environment, simultaneously 

considering the degrees of acceptance, indeterminacy and 

rejection of objectives, by proposed model for solving 

neutrosophic integer programming problems (NIPP). In the 

model, we maximize the degrees of acceptance and 

minimize indeterminacy and rejection of objectives. NIPP 

was transformed into a crisp programming model using 

truth membership, indeterminacy membership, falsity 

membership and score functions.  We also give numerical 

examples to show the efficiency of the proposed method. 

Future research directs to studying the duality theory of 

integer programming problems based on Neutrosophic. 
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