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Abstract 

Uncertainty and indeterminacy are two major problems in 
data analysis these days. Neutrosophy is a generalization of 
the fuzzy theory. Neutrosophic system is based on 
indeterminism and falsity of concepts in addition to truth 
degrees. Any neutrosophy variable or concept is defined by 
membership, indeterminacy and non-membership 
functions. Finding efficient and accurate definition for 
neutrosophic variables is a challenging process. This paper 
presents a framework of Ant Colony Optimization and 
entropy theory to define a neutrosophic variable from 
concrete data.
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1. Introduction

These days, Indeterminacy is the key idea of 

the information in reality issues. This term 

alludes to the obscure some portion of the 

information representation. The fuzzy 

logic  [1] [2] [3]] serves the piece of information 

participation degree. Thus, the indeterminacy 

and non-participation ideas of the information 

ought to be fittingly characterized and served. 

The neutrosophic  [4] [16] theory characterizes 

the informational index in mix with their 

membership, indeterminacy and non-

membership degrees. Thus, the decisions could 

be practically figured out from these well 

defined information. 

Smarandache in  [5] [13] [14], and Salama et al. 

in [4],  [9], [10] [11] [12] [12] [16] present the 

mathematical base of neutrosophic system and 

principles of neutrosophic data. Neutrosophy 

creates the main basics for a new mathematics 

field through adding indeterminacy concept to 

traditional and fuzzy theories [1] [2] [3] [15].  

Handling neutrosophic system is a new, 

moving and appealing field for scientists. In 

literature, neutrosophic toolbox 

implementation using object oriented 

programming operations and formulation is 

introduced in [18]. Moreover, a data warehouse 

utilizing neutrosophic methodologies and sets 

is applied in  [17]. Also, the problem of 

optimizing membership functions using 

Particle Swarm Optimization was introduced 

in  [24]. This same mechanism could be 

generalized to model neutrosophic variable. 

Ant Colony Optimization is an efficient search algorithm 
presented to define parameters of membership, 
indeterminacy and non-membership functions. The 
integrated framework of information theory measures and 
Ant Colony Optimization is proposed. Experimental 
results contain graphical representation of the 
membership, indeterminacy and non-membership 
functions for the temperature variable of the forest fires 
data set. The graphs demonstrate the effectiveness of the 
proposed framework. 
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The neutrosophic framework depends actually 

on the factors or variables as basics. The 

neutrosophic variable definition is without a 

doubt the base in building a precise and 

productive framework. The neutroshophic 

variable is made out of a tuple of value, 

membership, indeterminacy and non-

membership. Pronouncing the elements of 

participation, indeterminacy and non-

enrollment and map those to the variable 

values would be an attainable arrangement or 

solution for neutroshophic variable 

formulation. 

Finding the subsets boundary points of 

membership and non-membership functions 

within a variable data would be an interesting 

optimization problem. Ant Colony 

Optimization (ACO) [19] [20] is a meta-

heuristic optimization and search 

procedure [22] inspired by ants lifestyle in 

searching for food. ACO initializes a 

population of ants in the search space 

traversing for their food according to some 

probabilistic transition rule. Ants follow each 

other basing on rode pheromone level and ant 

desirability to go through a specific path. The 

main issue is finding suitable heuristic 

desirability which should be based on the 

information conveyed from the variable itself. 

Information theory measures  [6] [20] [21],  [23] 

collect information from concrete data. The 

entropy definition is the measure of 

information conveyed in a variable. Whereas, 

the mutual information is the measure of data 

inside a crossing point between two nearby 

subsets of a variable. These definitions may 

help in finding limits of a membership function 

of neutrosophic variable subsets depending on 

the probability distribution of the data as the 

heuristic desirability of ants. 

In a similar philosophy, the non- membership 

of a neutrosophic variable might be 

characterized utilizing the entropy and mutual 

information basing on the data probability 

distribution complement. Taking the upsides of 

the neutrosophic set definition; the 

indeterminacy capacity could be characterized 

from the membership and non-membership 

capacities. 

This paper exhibits an incorporated hybrid 

search model amongst ACO and information 

theory measures to demonstrate a neutrosophic 

variable. The rest of this paper is organized as 

follows. Section 2 shows the hypotheses and 

algorithms. Section 3 announces the proposed 

integrated framework. Section 4 talks about the 

exploratory outcomes of applying the 

framework on a general variable and 

demonstrating the membership, indeterminacy 

and non-membership capacities. Conclusion 

and future work is displayed in section 5. 

2. Theory overview

2.1  Parameters of a neutrosophic variable 

In the neutrosophy theory [5] [13] [14], every 

concept is determined by rates of truth   ��(�) 

, indeterminacy  ��(�), and negation ��(�)  in 

various partitions. Neutrosophy is a 

generalization of the fuzzy 

hypothesis [1] [2] [3]] and an extension of the 

regular set. Neutrosophic is connected to 

concepts identified with indeterminacy. 

Neutrosophic data is defined by three main 

concepts to manage uncertainty. These 

concepts are joined together in the triple: 

� = 〈��(�), ��(�), ��(�)〉   (1) 

Where 

 ��(�)  is the membership degree, 

��(�) is the indeterminacy degree, 

 ��(�) is the falsity degree. 

These three terms form the fundamental 

concepts and they are independent and 

explicitly quantified. In neutrosophic set  [7], 

each value  � ∈ � in set A defined by Eq. 1 is 

constrained by the following conditions: 

0� ≤  ��(�), ��(�), ��(�) ≤  1�  
(2) 
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0� ≤  ��(�) + ��(�)+ ��(�) ≤  3�  

(3) 

 Whereas, Neutrosophic intuitionistic set of 

type 1  [8] is subjected to the following: 

0� ≤  ��(�), ��(�), ��(�) ≤  1�      (4) 

��(�)  ∧  ��(�) ∧  ��(�) ≤  0.5        (5) 

0� ≤  ��(�) + ��(�)+ ��(�) ≤  3�   (6) 

Neutrosophic intuitionistic set of type 2  [5]  is 

obliged by to the following conditions: 

0.5 ≤  ��(�), ��(�), ��(�)  (7) 

��(�)  ∧  ��(�) ≤  0.5 ,   ��(�)  ∧  ��(�) ≤

 0.5, ��(�) ∧  ��(�) ≤  0.5    (8) 

0� ≤  ��(�) + ��(�)+ ��(�) ≤  2�    (9) 

2.2  Ant Colony Optimization (ACO) 

The ACO  [19] [20]is an efficient search 

algorithm used to find feasible solutions for 

complex and high dimension problems. The 

intelligence of the ACO is based on a 

population of ants traversing the search 

workspace for their food. Each ant follows a 

specific path depending on information left 

previously from other ants. This information is 

characterized by the probabilistic transition 

rule Eq. 10.   

��
�(�) =

����×����(�)�

∑ [��]×����(�)��∈��

  
(10) 

Where  

��   is the heuristic desirability of choosing 

node j and  

��� is the amount of virtual pheromone on edge 

( i, j) 

The pheromone level guides the ant through its 

journey. This guide is a hint of the significance 

level of a node (exhibited by the ants went to 

the nodes some time recently). The pheromone 

 level is updated by the algorithm using the 

fitness function. 

���(� + 1) = (1− �). ��� (�) + ∆���(t)  (11) 

Where 0< ρ  <1 is a decay constant used to 

estimate the evaporation of the pheromone 

from the edges. ∆τ��(t)  is the amount of 

pheromone deposited by the ant.  

The heuristic desirability η
�

 describes the 

association between a node j and the problem 

solution or the fitness function of the search. If 

a node has a heuristic value for a certain path 

then the ACO will use this node in the solution 

of the problem. The algorithm of ACO is 

illustrated in figure 1. 

�� = ��������� ��������        (12) 

ACO  Algorithm 
Input :pd, N 
%%%% pd number of decision variables in 
ant, N iterations, Present position (ant) in the 
search universe  ��� , � evaporation rate,  
%%%%%%% 
Output: Best_Solution 
1: Initianlize_Node_Graph(); 
2: Initialize_Phermoni_Node(); 
3: While (num_of_Iterations>0) do 
4:  foreach Ant 
5: �� objective function of the search space 

6: TRANSITION_RULE[j]= ��
�(�) =

����×����(�)�

∑ [��]×����(�)��∈��

7:  Select node with the highest ��
�(�) 

8: Update Pheromone level ���(� + 1) =

(1− �). ���(�) + ∆���(�) 

9:  num_of_Iterations--; 
10: end While 
11:Best_sol solution with best �� 

12: output(Best_sol) 

Figure 1:  Pseudo code of ant colony 
optimization Algorithm 
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Information theory measures  [6] [20] [23] 

collect information from raw data. The entropy 

of a random variable is a function which 

characterizes the unexpected events of a 

random variable. Consider a random variable 

X expressing the number on a roulette wheel 

or the number on a fair 6-sided die. 

H(X) = ∑ −P(x) log P(x)�∈�     (13) 

Joint entropy is the entropy of a joint 

probability distribution, or a multi-valued 

random variable. For example, consider the 

joint entropy of a distribution of mankind (X) 

defined by a characteristic (Y) like age or race 

or health status of a disease. 

I(X;  Y ) = ∑ p(x, y)log
�(�,�)

�(�)�(�)�,�

(14) 

3. The proposed frame work

An Integrated hybrid model of ACO and 

information theory measures (entropy and 

mutual information) as the objective function 

is presented. The ACO [19] [20] is a heuristic 

searching algorithm used to locate the ideal 

segments of the membership and non-

membership functions of a neutrosophic 

variable. The indeterminacy function is 

calculated by the membership and non-

membership functions basing on the 

definitions of neutrosophic set illustrated in 

section 2. The objective function is the amount 

of information conveyed from various 

partitions in the workspace. Therefore, the 

total entropy  [21] is  used as the objective 

function on the variables workspace. Total 

entropy calculates amount of information of 

various partitions and intersections between 

these partitions.  Best points in declaring the 

membership function are the boundaries of the 

partitions. The ants are designed to form the 

membership and non-membership partitions as 

illustrated in figure 2. A typical triangle 

membership function would take the shape of 

figure 2. 

The triangle function of a variable partition is 

represented by parameters (L, (L+U)/2, U). 

Finding best values of L and U for all 

partitions would optimize the membership 

(non-membership) function definition. Figure 

3 give a view of the ant with n partitions for 

each fuzzy variable. 

Figure 2 : corresponding to triangle fuzzy 
membership and its boundary parameters  

Individual L1 U1 L2 U2 …… Ln Un 

Figure 3: Individual in ACO for Triangle 
function 

One of the main difficulties in designing 

optimization problem using ACO is finding the 

heuristic desirability which formulates the 

transition rule. The amount of information 

deposited by neutrosophic variable inspires the 

ACO to calculate the transition rule and find 

parameters of membership, indeterminism and 

non-membership declarations. The 

membership function subsets are declared by 

ant parameters in figure 2. The histogram of a 

variable shows the data distribution of the 

different values. Therefore, the set of 

parameters are mapped to the histogram of a 

given variable data (Fig. 4). 

Figure 4:  Fuzzy discretizing  of the histogram 
into n  joint subsets and m-1 intersections 

The objective function is set as the total 

entropy of partitions [23]. By enhancing 

partition's parameters to optimize the total 

entropy of the histogram subsets, the optimal 

membership design of the variable is found.  

2.3 Entropy and Mutual Information 
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Start 

Initialize ACO parameters 

Initialize two ACO populations for membership and non-membership generation 

Read attribute data file 

Evaluate the Initial ants and pheromone level for edges 

Get Ant positions for non-membership 

Select Ant with the best objective 

function 

Calculate transition rule  

End of 

Iterations? 

Get optimal parameters for 

fuzzy partitions of non-

membership function  

Use membership and non-membership functions 

to evaluate indeterminacy function 

Draw the membership, non-membership and 

indeterminacy functions 

End

Next Itera�on t=t+1 

Get Ant positions for membership 

Calculate transition rule 

Update pheromone level 

Select Ant with the best objective 

function 

Get optimal parameters for 

fuzzy partitions of membership 

function  

Yes 

No 

Normalize indeterminacy function  

Update pheromone level 

Figure 4: Flow chart for the modelling neuotrosophic variable using ACO 
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Input :pd, N, variable_datafile 
%%%% pd number of decision variables in particle, N ieteration, Present position in the search 
universe  ��� , �  is the decay rate of phermone. %%%%%%% 
Output: membership, non-membership and indeterminacy function, conversion rate. 
1: XInitianlize_Ants(); % Each ant is composed of  pd decision variables for fuzzy partitions 

2:AttRead_data(variable_datafile)  
3:Objective_mem_  Evaluate _ Objective_of_Particles (X, P(Att)); % According to entropy and 
Mutual information 
4: Objective_non_mem  Evaluate _ Objective_of_Particles (X, 1-P(Att)); % According to 
entropy and Mutual information 

5: While (num_of_Iterations<Max_iter) 
% membership generation 
6: foreach Ant  

7: �� � =  ∑ �(�)�
��� − ∑ �(�, � + 1)���

���  

8: ��
�(�)  

����×����(�)�

∑ [��]×����(�)��∈��

            9: ���(� + 1) = (1− �). ���(�) + ∆���(�) 

10:end foreach 
 11: Best_sol_mem max(��) % Best found value until iteration t 

% non-membership generation 
12: foreach Ant  

13 �� � =  ∑ �(�)�
��� −  ∑ �(�, � + 1)���

���  

14: ��
�(�)  

����×����(�)�

∑ [��]×����(�)��∈��

15: ���(� + 1) = (1− �). ���(�) + ∆���(�) 

16:end foreach 
17: Best_sol_non-mem max(��) % Best found value until iteration t 

18: End While 
18: Best _mem  Best_sol_mem  
19: Best _non-mem  Best_sol_non-mem  
20: indeterminacy calculate-ind(Best _mem, Best _non-mem); 
21: Draw(Best _mem, Best _non-mem, indetrminancy) 
22: Draw_conversions_rate() 
23: Output membership, non-membership and indeterminacy function, conversion rate. 

--------------------------------------------------------------------------------------------------------------------- 

Function calculate-ind(��(�),  ��(�)) 
1: Input:( ��(�),  ��(�))  
2: Output: indeterminacy 
3: 0� − [��(�) +  ��(�)] ≤   ��(�)    ≤  3� − [��(�) +  ��(�)] 
4: indeterminacy Normalize(��(�)); 
5: Return indeterminacy 
5: End Fun 

Figure 5: Algorithm for the modelling neuotrosophic variable using ACO 
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To model (n) membership functions, variable 

histogram is partitioned into n overlapped 

subsets that produce n-1 intersections. Every 

joint partition corresponds to joint entropy and 

each overlap is modelled by mutual 

information. Eq.15 shows the total entropy 

which is assigned to the heuristic desirability 

of ants. 

�� = � =  ∑ �(�)�
��� − ∑ �(�, � + 1)���

���             

(15) 

Where n is the number of partitions or subsets 

in the fuzzy variable, 

H is the total entropy, 

H(i) is the entropy of subset i, 

I is the mutual information between to 

intersecting partitions(i,j). 

In membership function modelling, the total 

entropy function Eq. 13, 14 and 15 are 

calculated by the probability distribution P(x)  

of the variable data frequency in various 

partitions and the intersecting between them. 

The complement of probability distribution 

1− P(x) is utilized to measure the non-

membership of variable data in different 

partitions. Therefore, the non-membership 

objective function will compute Eq. 13, 14 and 

15 with the variable data frequency 

complement in different partitions and 

overlapping.  

According to Eq.3 & 6, the summation of the 

membership, non membership and 

indeterminacy values for the same instance is 

in the interval [ 0�, 3� ]. Hence the 

indeterminacy function is declared by Eq. 16. 

0� − [��(�) +  ��(�)] ≤   ��(�)    ≤  3� −

[��(�) +  ��(�)]                       (16) 

Where Eq. 9 states that the summation of the 

membership, non membership and 

indeterminacy values for the same instance is 

in the interval [ 0�, 2� ]. Hence, the 

indeterminacy function is defined as Eq. 17.  

0� − [��(�) +  ��(�)] ≤     ��(�)     ≤  2� −

[��(�) +  ��(�)]                        (17) 

By finding the membership and non-

membership definition of  �  , the 

indeterminacy function ��(�) could be driven 

easily from Eq. 15 or 16. The value of the 

indeterminacy function should be in the 

interval [0� 1�] , hence the ��(�)  function is 

normalized according to Eq. 18.  

����������_��(��) =
��(��)����(��(�))

���(��(�))����(��(�))

(18) 

Where σ�(x�) is the indeterminacy function for 
the value  x� . The flow chart and algorithm of 
the integrated framework is illustrated in figure 
5 and 6 respectively. 

4. Experimental Results

The present reality issues are brimming with 

vulnerability and indeterminism. The 

neutrosophic field is worried by picking up 

information with degrees of enrollment, 

indeterminacy and non-participation. 

Neutrosophic framework depends on various 

neurtosophic factors or variables. 

Unfortunately, the vast majority of the 

informational indexes accessible are normal 

numeric qualities or unmitigated 

characteristics. Henceforth, creating 

approaches for characterizing a neutrosophic 

set from the current informational indexes is 

required. 

The membership capacity function of a 

neutrosophy variable, similar to the fuzzy 

variable, can take a few sorts. Triangle 

membership is very popular due to its 

simplicity and accuracy. Triangle function is 

characterized by various overlapping 

partitions. These subsets are characterized by 

support, limit and core parameters. The most 

applicable parameter to a specific subset is the 

support which is the space of characterizing 
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the membership degree. Finding the start and 

closure of a support over the universe of a 

variable could be an intriguing search issue 

suitable for optimization. Meta-heuristic search 

methodologies  [22] give a intelligent 

procedure for finding ideal arrangement of 

solutions is any universe. ACO is a well 

defined search procedure that mimics ants in 

discovering their sustenance. Figure 3 presents 

the ant as an individual in a population for 

upgrading a triangle membership function 

through the ACO procedure. The ACO utilizes 

the initial ant population and emphasizes to 

achieve ideal arrangement. 

Table 1:Parameters of ACO 

Maximum Number of Iterations 50 

Population Size (number of 
ants) 

10 

Decaying rate 0.1 

The total entropy given by Eq. 15 characterizes 

the heuristic desirability which affects the 

probabilistic transition rule of ants in the ACO 

algorithm.  The probability distribution �(�) 

presented in Eq. 13, 14 and 15  is used to 

calculate the total entropy function. The ACO 

parameters like Maximum Number of 

Iterations, Population Size, and pheromone 

decaying rate are presented in table 1.  

The non-membership function means the 

falsity degree in the variables values. Hence, 

the complement of a data probability 

distribution 1− �(�) is utilized to create the 

heuristic desirability of the ants in designing 

the non-membership function Eq. 13, 14 and 

15.  

The indeterminacy capacity of variable data is 

created by both membership and non-

membership capacities of the same data using 

neutrosophic set declaration in section 2 and 

Eq. 16 or 17. Afterwards, Eq. 18 is used to 

normalize the indeterminacy capacity of the 

data.  Through simulation, the ACO is applied 

by MATLAB , PC with Intel(R) Core (TM) 

CPU and 4 GB RAM. The simulation are 

implemented on the temperature variable from 

the Forest Fires data set created by: Paulo 

Cortez and Anbal Morais (Univ. Minho)  [25]. 

The histogram of a random collection of the 

temperature data is shown in figure 7. 

Figure 6: Temparature Variable Histogram 

Figures 8: a, b and c presents the resulting 

membership, non-membership and 

indeterminacy capacities produced by applying 

the ACO on a random collection of the 

temperature data.  

Figure 7: a. Membership Function b. Non-membership Function c. Inderminacy
Function 
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5. Conclusion

A proposed framework utilizing the ant colony 

optimization and the total entropy measure for 

mechanizing the design of neutrosophic 

variable is exhibited. The membership, non-

membership and indeterminacy capacities are 

utilized to represent the neutrosophy idea. The 

enrollment or truth of subset could be conjured 

from total entropy measure. The fundamental 

system aggregates the total entropy to the 

participation or truth subsets of a neutrosophic 

concept. The ant colony optimization is a 

meta-heuristic procedure which seeks the 

universe related to variable X to discover ideal 

segments or partitions parameters. The 

heuristic desirability of ants, for membership 

generation, is the total entropy based on the 

probability density function of random variable 

X.  Thusly, the probability density complement 

is utilized to design non-membership capacity. 

The indeterminacy capacity is identified, as 

indicated by neutrosophic definition, by the 

membership and non-membership capacities. 

The results in light of ACO proposed system 

are satisfying. Therefore, the technique can be 

utilized as a part of data preprocessing stage 

within knowledge discovery system. Having 

sufficient data gathering,  general neutrosophic 

variable outline for general data can be 

formulated. 
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