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Abstract. In this article, a residual power series technique for the power series solution of systems of initial value 

problems is introduced. The new approach provides the solution in the form of a rapidly convergent series with 

easily computable components using symbolic computation software. The proposed technique obtains Taylor 

expansion of the solution of a system and reproduces the exact solution when the solution is polynomial. 

Numerical examples are included to demonstrate the efficiency, accuracy, and applicability of the presented 

technique. The results reveal that the technique is very effective, straightforward, and simple. 
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1. Introduction 
 

In real life situations quantities and their rate of changes depend on more than one variable. For example, the 

rabbit population, though it may be represented by a single number, depends on the size of predator populations 

and the availability of food. In order to represent and study such complicated problems we need to use more than 

one dependent variable and more than one equation. Systems of differential equations are the tools to use. These 

kinds of equations can be found in almost all branches of sciences, engineering, and technology, such as 

electromagnetic, solid state physics, plasma physics, elasticity, fluid dynamics, oscillation theory, mathematical 

biology, chemical kinetics, biomechanics, and control theory [1-6]. 

       In the present paper, we invested the residual concept in the power series method to obtain a simple technique 

(we call it residual power series (RPS) [7-15]) to find out the coefficients of the series solutions. This technique 

helps us to construct a power series solution for strongly linear and nonlinear systems. The RPS technique is 

effective and easy to use for solving linear and nonlinear systems of initial value problems (IVPs) without 

linearization, perturbation, or discretization. Different from the classical power series method, the RPS technique 

does not need to compare the coefficients of the corresponding terms and recursion relations are not required. This 

technique computes the coefficient of the power series by a chain of linear equations of 𝑛-variable, where 𝑛 is 

number of equations in the given system. The RPS technique is different from the traditional higher order Taylor 

series method. The Taylor series method is computationally expensive for large orders. The RPS technique is an 

alternative procedure for obtaining analytic Taylor series solution of systems of IVPs. By using residual error 

concept, we get a series solution, in practice a truncated series solution.  

       The RPS technique has the following characteristics [7-15]; first, the technique obtains Taylor expansion of 

the solution; as a result, the exact solution is available when the solution is polynomial. Moreover the solutions 

and all its derivatives are applicable for each arbitrary point in the given interval. Second, it does not require any 

modification while switching from the first order to the higher order; as a result the technique can be applied 

directly to the given problem by choosing an appropriate value for the initial guesses approximations. Third, the 

RPS technique needs small computational requirements with high precision and less time. 

       The purpose of this paper is to obtain symbolic approximate power series solutions for system of IVPs which 

is as follows: 
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𝑥1
′ (𝑡) = 𝑓

1
(𝑡, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)),

𝑥2
′ (𝑡) = 𝑓2(𝑡, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)),

⋮
𝑥𝑛

′ (𝑡) = 𝑓𝑛(𝑡, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)),

   (1) 

subject to the initial conditions 

   𝑥1(𝑡0) = 𝑥1, 𝑥2(𝑡0) = 𝑥2, … , 𝑥𝑛(𝑡0) = 𝑥𝑛,  (2) 

where 𝑡 ∈ [𝑡0, 𝑡0 + 𝑎], 𝑓𝑖: [𝑡0, 𝑡0 + 𝑎] × ℝ𝑛 → ℝ are nonlinear continuous functions of 𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑖(𝑡) are 

unknown functions of independent variable 𝑡 to be determined, and 𝑡0, 𝑎 are real finite constants with 𝑎 > 0. 

Throughout this paper, we assume that 𝑓𝑖 , 𝑥𝑖 are analytic functions on the given interval. Also, we assume that 𝑓𝑖 

satisfies all the necessary requirements for the existence of a unique solution. 

       In general, systems of IVPs do not always have solutions which we can obtain using analytical methods. In 

fact, many of real physical phenomena encountered, are almost impossible to solve by this technique. Due to this, 

some authors have proposed numerical methods to approximate the solutions of systems of IVPs. To mention a 

few, the homotopy analysis method has been applied to solve system (1) and (2) as described in [16]. In [17] the 

authors have developed the homotopy perturbation method. In [18] also, the author has provided the differential 

transformation technique to further investigation to the above system. Furthermore, the reproducing kernel Hilbert 

space method is carried out in [19]. Recently, a class of collocation methods for solving system (1) and (2) is 

proposed in [20]. 

       However, none of previous studies propose a methodical way to solve systems of IVPs (1) and (2). Moreover, 

previous studies require more effort to achieve the results and usually they are suited for linear form of system (1) 

and (2). On the other hand, the applications of other versions of series solutions to linear and nonlinear problems 

can be found in [21-26] and references therein. Also, for numerical solvability of different categories of 

differential equations one can consult the references [27, 28]. 

       The outline of the paper is as follows: in the next section, we present the basic idea of the RPS technique. In 

section 3, numerical examples are given to illustrate the capability of proposed approach. This article ends in 

section 4 with some concluding remarks. 

 

2. Solution of systems of IVPs by RPS technique 
 

In this section, we employ our technique of the RPS to find out series solution for systems of IVPs subject to 

given initial conditions. We first formulate and analyze the RPS technique for solving such systems of IVPs. After 

that, a convergence theorem is presented in order to capture the behavior of the solution. 

       The RPS technique consists in expressing the solutions of system of IVPs (1) and (2) as a power series 

expansion about the initial point 𝑡 = 𝑡0. To achieve our goal, we suppose that these solutions take the form 

      𝑥𝑖(𝑡) = ∑ 𝑥𝑖,𝑚(𝑡),

∞

𝑚=0

𝑖 = 1,2, … , 𝑛, 

where 𝑥𝑖,𝑚 are terms of approximations and are given as 𝑥𝑖,𝑚(𝑡) = 𝑐𝑖,𝑚(𝑡 − 𝑡0)𝑚. 

       Obviously, when 𝑚 = 0, since 𝑥𝑖,0(𝑡) satisfy the initial conditions (2), where 𝑥𝑖,0(𝑡) are the initial guesses 

approximations of 𝑥𝑖(𝑡), we have 𝑐𝑖,0 = 𝑥𝑖,0(𝑡0) = 𝑥𝑖(𝑡0), 𝑖 = 1,2, … , 𝑛. 

       If we choose 𝑥𝑖,0(𝑡) = 𝑥𝑖(𝑡0) as initial guesses approximations of 𝑥𝑖(𝑡), then we can calculate 𝑥𝑖,𝑚(𝑡) for 

𝑚 = 1,2, … and approximate the solutions 𝑥𝑖(𝑡) of system of IVPs (1) and (2) by the 𝑘th-truncated series 

   𝑥𝑖
𝑘(𝑡) = ∑ 𝑐𝑖,𝑚(𝑡 − 𝑡0)𝑚

𝑘

𝑚=0

, 𝑖 = 1,2, … , 𝑛. (3) 

       Prior to applying the RPS technique, we rewrite system of IVPs (1) and (2) in the form of the following: 

   𝑥𝑖
′(𝑡) − 𝑓𝑖(𝑡, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) = 0, 𝑖 = 1,2, … , 𝑛. (4) 

The subsisting of 𝑘th-truncated series 𝑥𝑖
𝑘(𝑡) into Eq. (4) leads to the following definition for the 𝑘th residual 

functions: 
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   Res𝑖
𝑘(𝑡) = ∑ 𝑚𝑐𝑖,𝑚(𝑡 − 𝑡0)𝑚−1

𝑘

𝑚=1

− 𝑓𝑖 (𝑡, ∑ 𝑐1,𝑚(𝑡 − 𝑡0)𝑚

𝑘

𝑚=0

, ∑ 𝑐2,𝑚(𝑡 − 𝑡0)𝑚

𝑘

𝑚=0

, … , ∑ 𝑐𝑛,𝑚(𝑡 − 𝑡0)𝑚

𝑘

𝑚=0

) , 𝑖 = 1,2, … , 𝑛, 

(5) 

and the following ∞th residual functions: 

      Res𝑖
∞(𝑡) = lim

𝑘→∞
Res𝑖

𝑘(𝑡) , 𝑖 = 1,2, … , 𝑛. 

       It easy to see that, Res𝑖
∞(𝑡) = 0 for each 𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. This show that Res𝑖

∞(𝑡) are infinitely many times 

differentiable at 𝑡 = 𝑡0. On the other hand, 
𝑑𝑠

𝑑𝑡𝑠 Res𝑖
∞(𝑡0) =

𝑑𝑠

𝑑𝑡𝑠 Res𝑖
𝑘(𝑡0) = 0, for each 𝑠 = 1,2, … , 𝑘. In fact, this 

relation is a fundamental rule in RPS technique and its applications. 

       Now, in order to obtain the 1st-approximate solutions, we put 𝑘 = 1 and substitute 𝑡 = 𝑡0 into Eq. (5) and 

using the fact that Res𝑖
∞(𝑡0) = Res𝑖

1(𝑡0) = 0, to conclude 

      𝑐𝑖,1 = 𝑓𝑖
(𝑡0, 𝑐1.0, 𝑐2.0, … , 𝑐𝑛.0) = 𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)), 𝑖 = 1,2, … , 𝑛. 

Thus, using 1st-truncated series the first approximation for system of IVPs (1) and (2) can be written as 

      𝑥𝑖
1(𝑡) = 𝑥𝑖(𝑡0) + 𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0))(𝑡 − 𝑡0), 𝑖 = 1,2, … , 𝑛. 

       Similarly, to find the 2nd approximation, we put 𝑘 = 2 and 𝑥𝑗
2(𝑡) = ∑ 𝑐𝑗,𝑚(𝑡 − 𝑡0)𝑚2

𝑚=0 , 𝑖 = 1,2, … , 𝑛. On 

the other hand, we differentiate both sides of Eq. (5) with respect to 𝑡 and substitute 𝑡 = 𝑡0, to get 

      
𝑑

𝑑𝑡
Res𝑖

2(𝑡0) = 2𝑐𝑖,2 −
𝜕

𝜕𝑡
𝑓𝑖

(𝑡0, 𝑐1.0, 𝑐2.0, … , 𝑐𝑛.0) − ∑ 𝑐𝑗,1

𝜕

𝜕𝑥𝑗
2

𝑛

𝑗=1

𝑓𝑖(𝑡0, 𝑐1,0, 𝑐2,0, … , 𝑐𝑛,0), 𝑖 = 1,2, … , 𝑛. 

In fact 
𝑑

𝑑𝑡
Res𝑖

2(𝑡0) =
𝑑

𝑑𝑡
Res𝑖

∞(𝑡0) = 0. Thus, we can write 

      𝑐𝑖,2 =
1

2
[

𝜕

𝜕𝑡
𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)) + ∑ 𝑐𝑗,1

𝜕

𝜕𝑥𝑗
2

𝑛

𝑗=1

𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0))] , 𝑖 = 1,2, … , 𝑛. 

Hence, using 2nd-truncated series the second approximation for system of IVPs (1) and (2) can be written as 

      𝑥𝑖
2(𝑡) = 𝑥𝑖(𝑡0) + 𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0))(𝑡 − 𝑡0) +

1

2
[

𝜕

𝜕𝑡
𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0))

+ ∑ 𝑐𝑗,1

𝜕

𝜕𝑥𝑗
2

𝑛

𝑗=1

𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0))] (𝑡 − 𝑡0)2, 𝑖 = 1,2, … , 𝑛. 

       This procedure can be repeated till the arbitrary order coefficients of RPS solutions for system of IVPs (1) 

and (2) are obtained. Moreover, higher accuracy can be achieved by evaluating more components of the solution. 

In other words, choose large 𝑘 in the truncation series (3). The next theorem shows convergence of the RPS 

technique. 
 

Theorem 2.1. Suppose that 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 are the exact solutions for system of IVPs (1) and (2). Then, the 

approximate solutions obtained by the RPS technique are just the Taylor expansion of 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛. 
 

Proof. Assume that the approximate solutions for system of IVPs (1) and (2) are as follows: 

   �̃�𝑖(𝑡) = 𝑐𝑖.0 + 𝑐𝑖.1(𝑡 − 𝑡0) + 𝑐𝑖.2(𝑡 − 𝑡0)2 + ⋯ , 𝑖 = 1,2, … , 𝑛. (6) 

In order to prove the theorem, it is enough to show that the coefficients 𝑐𝑖.𝑚 in Eq. (6) take the form 

   𝑐𝑖.𝑚 =
1

𝑚!
𝑥𝑖

(𝑚)(𝑡0), 𝑖 = 1,2, … , 𝑛, (7) 

for each 𝑚 = 0,1, …, where 𝑥𝑖(𝑡) are the exact solutions for system of IVPs (1) and (2). Clear that for 𝑚 = 0 the 

initial conditions (2) give 

   𝑐𝑖.0 = 𝑥𝑖(𝑡0), 𝑖 = 1,2, … , 𝑛. (8) 

Moreover, for 𝑚 = 1, substitute 𝑡 = 𝑡0 into Eq. (1), we obtain 

      𝑥𝑖
′(𝑡0) = 𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)), 𝑖 = 1,2, … , 𝑛. 
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On the other hand, from Eqs. (6) and (8), we can write 

   �̃�𝑖(𝑡) = 𝑥𝑖(𝑡0) + 𝑐𝑖.1(𝑡 − 𝑡0) + 𝑐𝑖.2(𝑡 − 𝑡0)2 + ⋯, 𝑖 = 1,2, … , 𝑛, (9) 

by substituting Eq. (9) into Eq. (1) and then setting 𝑡 = 𝑡0, we get 

   𝑐𝑖.1 = 𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)) = 𝑥𝑖
′(𝑡0), 𝑖 = 1,2, … , 𝑛. (10) 

       Further, for 𝑚 = 2, differentiating both sides of Eq. (1) with respect to 𝑡, we obtain 

   𝑥𝑖
′′(𝑡) =

𝜕

𝜕𝑡
𝑓𝑖(𝑡, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) + ∑ 𝑥𝑗

′ (𝑡)
𝜕

𝜕𝑥𝑗

𝑛

𝑗=1

𝑓𝑖(𝑡, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)), 𝑖 = 1,2, … , 𝑛, (11) 

by substituting 𝑡 = 𝑡0 in Eq. (11), we can conclude that 

   𝑥𝑖
′′(𝑡0) =

𝜕

𝜕𝑡
𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)) + ∑ 𝑥𝑗

′(𝑡0)
𝜕

𝜕𝑥𝑗

𝑛

𝑗=1

𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)), 𝑖 = 1,2, … , 𝑛. (12) 

According to Eqs. (9) and (10), we can write the approximation for system of IVPs (1) and (2) as follows: 

   �̃�𝑖(𝑡) = 𝑥𝑖(𝑡0) + 𝑥𝑖
′(𝑡0)(𝑡 − 𝑡0) + 𝑐𝑖.2(𝑡 − 𝑡0)2 + ⋯ ,𝑖 = 1,2, … , 𝑛, (13) 

by substituting Eq. (13) into Eq. (11) and setting 𝑡 = 𝑡0, we obtain 

   2𝑐𝑖.2 =
𝜕

𝜕𝑡
𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)) + ∑ 𝑥𝑗

′(𝑡0)
𝜕

𝜕𝑥𝑗

𝑛

𝑗=1

𝑓𝑖(𝑡0, 𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)), 𝑖 = 1,2, … , 𝑛. (14) 

       Finally, by comparing Eqs. (12) and (14), we can conclude that 𝑐𝑖.2 =
1

2
𝑥𝑖

′′(𝑡0), 𝑖 = 1,2, … , 𝑛. By continuing 

the above procedure, we can easily prove Eq. (7) for 𝑚 = 3,4, …. So, the proof of the theorem is complete. 
 

Corollary 2.1. If some of 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 is a polynomial, then the RPS technique will be obtained the exact 

solution. 
 

       It will be convenient to have a notation for the error in the approximation 𝑥𝑖(𝑡) ≈ 𝑥𝑖
𝑘(𝑡). Accordingly, we 

will let Rem𝑖
𝑘(𝑡) denote the difference between 𝑥𝑖(𝑡) and its 𝑘th Taylor polynomial; that is, 

      Rem𝑖
𝑘(𝑡) = 𝑥𝑖(𝑡) − 𝑥𝑖

𝑘(𝑡) = ∑
𝑥𝑖

(𝑚)(𝑡0)

𝑚!
(𝑡 − 𝑡0)𝑚

∞

𝑚=𝑘+1

, 𝑖 = 1,2, … , 𝑛. 

The functions Rem𝑖
𝑘(𝑡) are called the 𝑘th remainder for the Taylor series of 𝑥𝑖(𝑡). In fact, it often happens that the 

remainders Rem𝑖
𝑘(𝑡) become smaller and smaller, approaching zero, as 𝑘 gets large. 

 

3. Numerical results and discussion 
 

The proposed method provides an analytical approximate solution in terms of an infinite power series. However, 

there is a practical need to evaluate this solution, and to obtain numerical values from the infinite power series. 

The consequent series truncation and the practical procedure are conducted to accomplish this task, transforms the 

otherwise analytical results into an exact solution, which is evaluated to a finite degree of accuracy. In this 

section, we consider five examples to demonstrate the performance and efficiency of the present technique. 

Throughout this paper, all the symbolic and numerical computations performed by using Maple 13 software 

package. 

       To show the accuracy of the present method for our problems, we report four types of error. The first one is 

the residual error, Res𝑖
𝑘(𝑡), and defined as 

      Res𝑖
𝑘(𝑡) ≔ |

𝑑

𝑑𝑡
𝑥𝑖

𝑘(𝑡) − 𝑓𝑖 (𝑡, 𝑥1
𝑘(𝑡), 𝑥2

𝑘(𝑡), … , 𝑥𝑛
𝑘(𝑡))|, 

while the exact, Ext, relative, Rel, and consecutive, Con, errors are defined, respectively, by 

      Ext𝑖
𝑘(𝑡): = |𝑥𝑖,exact(𝑡) − 𝑥𝑖

𝑘(𝑡)|, 

      Rel𝑖
𝑘(𝑡): =

|𝑥𝑖,exact(𝑡) − 𝑥𝑖
𝑘(𝑡)|

|𝑥𝑖,exact(𝑡)|
, 

      Con𝑖
𝑘(𝑡): = |𝑥𝑖

𝑘+1(𝑡) − 𝑥𝑖
𝑘(𝑡)|, 
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for 𝑖 = 1,2, … , 𝑛, where 𝑡 ∈ [𝑡0, 𝑡0 + 𝑎], 𝑥𝑖
𝑘 are the 𝑘th-order approximation of 𝑥𝑖,exact(𝑡) obtained by the RPS 

technique, and 𝑥𝑖,exact(𝑡) are the exact solution. 

       In most real life situations, the differential equation that models the problem is too complicated to solve 

exactly, and there is a practical need to approximate the solution. In the next two examples, the exact solutions 

cannot be found analytically. 
 

Example 3.1. Consider the nonlinear SIR model [29]: 

   

𝑆′(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡),

𝐼′(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡),

𝑅′(𝑡) = 𝛾𝐼(𝑡),

   (15) 

subject to the initial conditions 

   𝑆(0) = 𝑁𝑆, 𝐼(0) = 𝑁𝐼, 𝑅(0) = 𝑁𝑅,   (16) 

where 𝛽, 𝛾 and 𝑁𝑆, 𝑁𝐼, 𝑁𝑅 are positive real numbers. 
 

       The SIR model is one common epidemiological model for the spread of disease, which consists of a system of 

three differential equations that describe the changes in the number of susceptible, infected, and recovered 

individuals in a given population. This was introduced as far back as 1927 by Kermack and McKendrick [30], and 

despite of its simplicity, it is a good model for many infectious diseases. The reader is asked to refer to [29-37] in 

order to know more details about mathematical epidemiology, including its history and kinds, basics of SIR 

epidemic models, method of solutions, and so forth. 

    As we mentioned earlier, if we select the initial guesses approximations as 𝑆0(𝑡) = 𝑁𝑆, 𝐼0(𝑡) = 𝑁𝐼, and 

𝑅0(𝑡) = 𝑁𝑅 then the Taylor series expansions of solutions for Eqs. (15) and (16) are as follows: 

      

𝑆(𝑡) = ∑ 𝑐1,𝑚𝑡𝑚

∞

𝑚=0

= 𝑁𝑆 + 𝑐1,1𝑡 + 𝑐1,2𝑡2 + 𝑐1,3𝑡3 + ⋯ ,

𝐼(𝑡) = ∑ 𝑐2,𝑚𝑡𝑚

∞

𝑚=0

= 𝑁𝐼 + 𝑐2,1𝑡 + 𝑐2,2𝑡2 + 𝑐2,3𝑡3 + ⋯ ,

 𝑅(𝑡) = ∑ 𝑐3,𝑚𝑡𝑚

∞

𝑚=0

= 𝑁𝑅 + 𝑐3,1𝑡 + 𝑐3,2𝑡2 + 𝑐3,3𝑡3 + ⋯ .

 

   According to 𝑘th residual functions in Eq. (5), we can write 

   

Res𝑆
𝑘(𝑡) = ∑ 𝑚𝑐1,𝑚𝑡𝑚−1

𝑘

𝑚=1

− [−𝛽 ( ∑ 𝑐1,𝑚𝑡𝑚

𝑘

𝑚=0

) ( ∑ 𝑐2,𝑚𝑡𝑚

𝑘

𝑚=0

)] ,

Res𝐼
𝑘(𝑡) = ∑ 𝑚𝑐2,𝑚𝑡𝑚−1

𝑘

𝑚=1

− [𝛽 ( ∑ 𝑐1,𝑚𝑡𝑚

𝑘

𝑚=0

) ( ∑ 𝑐2,𝑚𝑡𝑚

𝑘

𝑚=0

) − 𝛾 ∑ 𝑐2,𝑚𝑡𝑚

𝑘

𝑚=0

] ,

 Res𝑅
𝑘 (𝑡) = ∑ 𝑚𝑐3,𝑚𝑡𝑚−1

𝑘

𝑚=1

− 𝛾 [ ∑ 𝑐2,𝑚𝑡𝑚

𝑘

𝑚=0

] .

 (17) 

       In order to find the 1st-approximate solutions, we put 𝑘 = 1 through Eq. (17) and using the fact that 

Res𝑆
𝑘(0) = Res𝐼

𝑘(0) = Res𝑅
𝑘(0) = 0, to conclude 

      

𝑐1,1 − [−𝛽𝑁𝑆𝑁𝐼] = 0,

𝑐2,1 − [𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼] = 0,

𝑐3,1 − [−𝛾𝑁𝐼] = 0.
 

Based on the above equations, we can write the first approximations of the RPS solution for Eqs. (15) and (16) as 

      

𝑆1(𝑡) = 𝑁𝑆 − 𝛽𝑁𝑆𝑁𝐼𝑡,

𝐼1(𝑡) = 𝑁𝐼 + (𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼)𝑡,

𝑅1(𝑡) = 𝑁𝑅 + 𝛾𝑁𝐼𝑡.
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       By continuing with the similar fashion, the second approximations of the RPS solution for Eqs. (15) and (16) 

take the form 

   

𝑆2(𝑡) = 𝑁𝑆 − 𝛽𝑁𝑆𝑁𝐼𝑡 + 𝑐1,2𝑡2,

𝐼2(𝑡) = 𝑁𝐼 + (𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼)𝑡 + 𝑐2,2𝑡2,

𝑅2(𝑡) = 𝑁𝑅 − 𝛾𝑁𝐼𝑡 + 𝑐3,2𝑡2.

   (18) 

In order to find the values of the coefficients 𝑐1,2, 𝑐2,2, and 𝑐3,2 in Eq. (18), we put 𝑘 = 2 through Eq. (17) and 

using the fact that 
𝑑

𝑑𝑡
Res𝑆

2(0) =
𝑑

𝑑𝑡
Res𝐼

2(0) =
𝑑

𝑑𝑡
Res𝑅

2(0) = 0, to obtain the following results: 

      

2𝑐1,2 − [−𝛽(𝑁𝑆)(𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼) − 𝛽(−𝛽𝑁𝑆𝑁𝐼)(𝑁𝐼)] = 0,

2𝑐2,2 − [𝛽(𝑁𝑆)(𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼) + 𝛽(−𝛽𝑁𝑆𝑁𝐼)(𝑁𝐼) − 𝛾(−𝛾𝑁𝐼 + 𝛽𝑁𝑆𝑁𝐼)] = 0

2𝑐3,1 − [𝛾(−𝛾𝑁𝐼 + 𝛽𝑁𝑆𝑁𝐼)] = 0.

,  

Based on the above equations, we can write the second approximations of the RPS solution for Eqs. (15) and (16) 

as follows: 

      

𝑆2(𝑡) = 𝑁𝑆 − 𝛽𝑁𝑆𝑁𝐼𝑡 +
1

2
(𝛽(𝑁𝑆)(𝛾𝑁𝐼 − 𝛽𝑁𝑆𝑁𝐼) + 𝛽2𝑁𝑆𝑁𝐼

2)𝑡2,

𝐼2(𝑡) = 𝑁𝐼 + (𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼)𝑡 +
1

2
(𝛽𝑁𝑆(𝛽𝑁𝑆𝑁𝐼 − 𝛾𝑁𝐼) − 𝛽2𝑁𝑆𝑁𝐼

2 + 𝛾(𝛾𝑁𝐼 − 𝛽𝑁𝑆𝑁𝐼))𝑡2,

𝑅2(𝑡) = 𝑁𝑅 + 𝛾𝑁𝐼𝑡 +
1

2
𝛾(−𝛾𝑁𝐼 + 𝛽𝑁𝑆𝑁𝐼)𝑡2.

 

 

       For numerical results, the following values, for parameters, are considered [38]: 𝑁𝑆 = 499, 𝑁𝐼 = 1, 𝑁𝑅 = 1, 

and 𝛽 = 0.001, 𝛾 = 0.1. By continuing with the similar fashion, the 10th-order approximations of the RPS 

solution for 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) lead to the following results: 

      𝑆10(𝑡) = 499 − 0.499𝑡 − 0.099301𝑡2 − 0.013099249𝑡3 − 1.2810842802 × 10−3𝑡4 − 9.7848148692

× 10−5𝑡5 − 5.9089889702 × 10−6𝑡6 − 2.6871034875 × 10−7𝑡7 − 6.7536536974 × 10−9𝑡8

+ 2.6455233662 × 10−10𝑡9 + 5.2266673677 × 10−11𝑡10, 

      𝐼10(𝑡) = 1 + 0.399𝑡 + 0.079351𝑡2 + 1.0454215667 × 10−2𝑡3 + 1.0197288885 × 10−3𝑡4

+ 7.7453570922 × 10−5𝑡5 + 4.618096121476 × 10−6𝑡6 + 2.0273754701 × 10−7𝑡7

+ 4.2194343597 × 10−9𝑡8 − 3.1143494062 × 10−10𝑡9 − 4.9152324271 × 10−11𝑡10, 

      𝑅10(𝑡) = 1 + 0.1𝑡 + 0.01995𝑡2 + 2.6450333333333333333 × 10−3𝑡3 + 2.6135539166666666667

× 10−4𝑡4 + 2.039457777 × 10−5𝑡5 + 1.2908928487055555556 × 10−6𝑡6 + 6.5972801735

× 10−8𝑡7 + 2.5342193377 × 10−9𝑡8 + 4.6882603997 × 10−11𝑡9 − 3.1143494062

× 10−12𝑡10. 
 

       These results are plotted in Figure 1 for the three components 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), and the summation 𝑆(𝑡) +

𝐼(𝑡) + 𝑅(𝑡), respectively. Figure 1.a illustrates the case when we introduce a small number of infectives 𝐼(0) = 1 

into a susceptible population. An epidemic will occur and the number of infectives increases; the maximum 

infective population 𝐼max = 242.11811 will occur where 𝑆 has decreased to the value 85.33824. As time goes on 

∞ you travel along the curve to the right, eventually approaching 𝑆 = 0 and the disease died out. The epidemic 

will end as 𝑆 approaching to 0 with 𝐼 and 𝑅 approaching some positive value 𝐼 = 3.7283 and 𝑅 = 497.27160. 

Meanwhile, the number of immune population increases, but the size of the population over the period of the 

epidemic is constant and equal to 500 as shown in Figure 1.b. 
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Figure 1. Plots of 50th terms RPS approximations for SIR model (15) and (16): a) 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) versus 

time; b) 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) versus time.             

 

       We mention here that, the RPS solution is the same as the Adomian decomposition solution obtained in [34], 

the homotopy perturbation solution obtained in [35], variational iteration solution obtained in [36], and the 

homotopy analysis solution obtained in [37] when ℏ𝑖 = −1 and 𝜇𝑖 = 1, 𝑖 = 1,2,3. 
 

Example 3.2. Consider the nonlinear Genesio system [39]: 

   

𝑥′(𝑡) = 𝑦(𝑡),

𝑦′(𝑡) = 𝑧(𝑡),

𝑧′(𝑡) = −𝑐𝑥(𝑡) − 𝑏𝑦(𝑡) − 𝑎𝑧(𝑡) + 𝑥2(𝑡),

   (19) 

subject to the initial conditions 

   𝑥(0) = 𝐺𝑥, 𝑦(0) = 𝐺𝑦, 𝑥(0) = 𝐺𝑧,   (20) 

where 𝑎, 𝑏, and 𝑐 are positive real numbers, satisfying 𝑎𝑏 < 𝑐. 
 

       The Genesio system, proposed by Genesio and Tesi [32], is one of paradigms of chaos since it captures many 

features of chaotic systems. It includes a simple square part and three simple ordinary differential equations that 

depend on three positive real parameters. The reader is kindly requested to go through [39-44] in order to know 

more details about Genesio system, including its history and kinds, method of solutions, its applications, and so 

forth. 

      According to RPS technique, the initial guesses approximations of Eqs. (19) and (20) are 𝑥0(𝑡) = 𝐺𝑥, 𝑦0(𝑡) =

𝐺𝑦, and 𝑧0(𝑡) = 𝐺𝑧. Thus, the first few approximations of the RPS solution for Eqs. (19) and (20) are 

      

𝑥1(𝑡) = 𝐺𝑥 + 𝐺𝑦𝑡,

𝑦1(𝑡) = 𝐺𝑦 + 𝐺𝑧𝑡,

𝑧1(𝑡) = 𝐺𝑧 − (𝑐𝐺𝑥 − (𝐺𝑥)2 + 𝑎𝐺𝑧 + 𝑏𝐺𝑦)𝑡,

 

      

𝑥2(𝑡) = 𝐺𝑥 + 𝐺𝑦𝑡 +
1

2
𝐺𝑧𝑡2,

𝑦2(𝑡) = 𝐺𝑦 + 𝐺𝑧𝑡 −
1

2
(𝑐𝐺𝑥 − (𝐺𝑥)2 + 𝑎𝐺𝑧 + 𝑏𝐺𝑦)𝑡2,

𝑧2(𝑡) = 𝐺𝑧 − (𝑐𝐺𝑥 − (𝐺𝑥)2 + 𝑎𝐺𝑧 + 𝑏𝐺𝑦)𝑡 −
1

2
(𝑎(𝑐𝐺𝑥 − (𝐺𝑥)2 + 𝑎𝐺𝑧 + 𝑏𝐺𝑦) + 2𝐺𝑥𝐺𝑦 + 𝑎𝐺𝑧 − 𝑏𝐺𝑧 − 𝑐𝐺𝑦)𝑡2.

 

       For numerical results, the following values, for parameters, are considered [16]: 𝐺𝑥 = 0.2, 𝐺𝑦 = −0.3, 𝐺𝑧 =

0.1, and 𝑎 = 1.2, 𝑏 = 2.92, 𝑐 = 6. If we collect the above results, then the 10th-order approximations of the RPS 

solution for 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are as follows: 

      𝑥10(𝑡) = 0.2 − 0.3𝑡 + 0.05𝑡2 − 6.7333333333 × 10−2𝑡3 + 7.8033333333 × 10−2𝑡4 − 0.012064𝑡5

− 2.2902222222 × 10−3𝑡6 − 6.4525841270 × 10−4𝑡7 + 25788923809523809524

× 10−4𝑡8 + 5.6070795062 × 10−5𝑡9 − 2.4439052416 × 10−5𝑡10, 

      𝑦10(𝑡) = −0.3 + 0.1𝑡 − 0.202𝑡2 + 3.1213333333 × 10−1𝑡3 − 6.032 × 10−2𝑡4

− 1.3741333333333333333 × 10−2𝑡5 − 4.5168088889 × 10−3𝑡6 + 2.0631139048

× 10−3𝑡7 + 5.0463715556 × 10−4𝑡8 − 2.4439052416 × 10−4𝑡9 + 8.4373889295 × 10−5𝑡10, 

0
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      𝑧10(𝑡) = 0.1 − 0.404𝑡 + 0.9364𝑡2 − 0.24128𝑡3 − 6.8706666667 × 10−2𝑡4 − 2.7100853333 × 10−2𝑡5

+ 1.4441797333 × 10−2𝑡6 + 4.0370972444 × 10−3𝑡7 − 2.1995147175 × 10−3𝑡8

+ 8.4373889295 × 10−4𝑡9 − 2.4064938515 × 10−4𝑡10. 

       While one cannot know the error without knowing the solution, in most cases the consecutive error can be 

used as a reliable indicator in the iteration progresses. In Tables 1, the value of consecutive error functions 

Con𝑥
𝑘(𝑡), Con𝑦

𝑘(𝑡), and Con𝑧
𝑘(𝑡) for the two consecutive approximate consecutive solutions has been calculated 

for various 𝑡 in [0,1] with step size 0.1 to measure the difference between consecutive solutions obtained from the 

10th-order RPS solutions for Eqs. (19) and (20). However, the computational results below provide a numerical 

estimate for the convergence of the RPS technique. Also, it is clear that the accuracy obtained using present 

method is in advanced by using only few terms approximations. In addition, we can conclude that higher accuracy 

can be achieved by evaluating more components of the solution. On the other hand, based on this heuristic, we 

terminate the iteration in our method. 
 

Table 1: The values of consecutive error function Con𝑘(𝑡) when 𝑘 = 10 for different values of 𝑡. 

𝑡𝑖             Con𝑥
10(𝑡)             Con𝑦

10(𝑡)             Con𝑧
10(𝑡) 

0             0             0             0 

0.1             8.32667 × 10−17             2.22045 × 10−16             5.55112 × 10−17 

0.2             1.57097 × 10−13             4.48031 × 10−13             8.64239 × 10−14 

0.3             1.35878 × 10−11             3.87549 × 10−11             7.47563 × 10−12 

0.4             3.21718 × 10−10             9.17597 × 10−10             1.77000 × 10−10 

0.5             3.74529 × 10−9             1.06822 × 10−8             2.06056 × 10−9 

0.6             2.78278 × 10−8             7.93699 × 10−8             1.53101 × 10−8 

0.7             1.51668 × 10−7             4.32584 × 10−7             8.34435 × 10−8 

0.8             6.58878 × 10−7             1.87924 × 10−6             3.62497 × 10−7 

0.9             2.40704 × 10−6             6.86530 × 10−6             1.32429 × 10−6 

1             7.67035 × 10−6             2.18772 × 10−5             4.22002 × 10−6 
 

       From the table, it can be seen that the RPS technique provides us with the accurate approximate solution for 

Eqs. (19) and (20). Also, we can note that the approximate solution more accurate at the beginning values of the 

independent interval [0,1]. 

       Numerical comparisons are studied next. Figure 2, shows a comparison between the numerical solution of 

Genesio system for 10th-order RPS approximation together with Runge-Kutta method (RKM) of order four and 

Predictor-Corrector method (PCM) of order four. Throughout this figure, the step size for the RKM and PCM is 

fixed at 0.01. The starting values of the PCM obtained from the classical fourth-order RKM. It is demonstrated 

that the RPS solutions agree very well with the solutions obtained by the RKM and PCM. 
 

      
Figure 2. Plots of RPS solution vs. RKM and PCM solutions for Genesio system (19) and (20) versus time: a) 

solid line: 10th terms RPS approximations, dashed-dot-dotted line: RKM solution; b) solid line: 10th terms RPS 

approximations, dashed line: PCM solution. 
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Example 3.3. Consider the nonlinear system of second-order IVP [45]: 

   

𝑥1
′′(𝑡) = −4𝑡2𝑥1(𝑡) −

2𝑥2(𝑡)

√𝑥1
2(𝑡) + 𝑥2

2(𝑡)
,

𝑥2
′′(𝑡) = −4𝑡2𝑥2(𝑡) +

2𝑥1(𝑡)

√𝑥1
2(𝑡) + 𝑥2

2(𝑡)
,

   (21) 

subject to the initial conditions 

   𝑥1(0) = 1, 𝑥1
′ (0) = 0, 𝑥2(0) = 0, 𝑥2

′ (0) = 0.   (22) 
 

       As we mentioned earlier, if we select the initial guesses approximations as 𝑥1,0(𝑡) = 1, 𝑥1,1(𝑡) = 0, 𝑥2,0(𝑡) =

0, and 𝑥2,1(𝑡) = 0, then the first few terms approximations of the RPS solution for Eqs. (21) and (22) are 

      
𝑥1,2(𝑡) = 0, 𝑥1,3(𝑡) = 0, 𝑥1,4(𝑡) = −

1

2
𝑡4, 𝑥1,5(𝑡) = 0, … ,

𝑥2,2(𝑡) = 𝑡2, 𝑥2,3(𝑡) = 0, 𝑥2,4(𝑡) = 0, 𝑥2,5(𝑡) = 0, … .
 

       If we collect the above results, then the 20th-truncated series of the RPS solution for 𝑥1(𝑡) and 𝑥2(𝑡) are as 

follows: 

      

𝑥1
20(𝑡) = 1 −

1

2
𝑡4 +

1

24
𝑡8 −

1

720
𝑡12 +

1

40320
𝑡16 −

1

3628800
𝑡20 = ∑(−1)𝑗

(𝑡2)2𝑗

(2𝑗)!

5

𝑗=0

,

𝑥2
20(𝑡) =

1

2
𝑡2 −

1

6
𝑡6 +

1

120
𝑡10 −

1

5040
𝑡14 +

1

362880
𝑡18 = ∑(−1)𝑗

(𝑡2)1+2𝑗

(1 + 2𝑗)!

4

𝑗=0

.

 

Thus, the exact solutions of Eqs. (21) and (22) have the general form which are coinciding with the exact 

solutions 

      

𝑥1(𝑡) = ∑(−1)𝑗
(𝑡2)2𝑗

(2𝑗)!

∞

𝑗=0

= cos 𝑡2 ,

𝑥2(𝑡) = ∑(−1)𝑗
(𝑡2)1+2𝑗

(1 + 2𝑗)!

∞

𝑗=0

= sin 𝑡2 .

 

       Let us now carry out the error analysis of the RPS technique for this example. Figure 3 shows the exact 

solution 𝑥1,exact(𝑡), 𝑥2,exact(𝑡) and the four iterates approximations 𝑥1
𝑘(𝑡), 𝑥2

𝑘(𝑡) for 𝑘 = 5,10,15,20. These graphs 

exhibit the convergence of the approximate solutions to the exact solutions with respect to the order of the 

solutions. 
 

      

Figure 3. Plots of RPS solution for Eqs. (21) and (22) blue, brown, green, and red solid lines, denote four iterates 

approximations when 𝑘 = 5,10,15,20, respectively, and black dashed-dot-dotted line, denote exact solution: a) 

𝑥1
𝑘(𝑡) and 𝑥1,exact(𝑡), b) 𝑥2

𝑘(𝑡) and 𝑥2,exact(𝑡). 
 

       In Figure 4, we plot the error functions Ext1
𝑘(𝑡) and Ext2

𝑘(𝑡) for  𝑘 = 5,10,15,20 which are approaching the 

axis 𝑦 = 0 as the number of iterations increase. These graphs show that the exact errors are getting smaller as the 

order of the solutions is increasing, in other words, as we progress through more iterations. On the other hand, 
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Figure 5 shows the residual error functions Res1
𝑘(𝑡) and Res2

𝑘(𝑡) for  𝑘 = 5,10,15,20 for the two consecutive 

solutions. These error indicators confirm the convergence of the method with respect to the order of the solutions. 
 

      

Figure 4. Plots of exact error functions for Eqs. (21) and (22) when 𝑘 = 5,10,15,20: a) Ext1
𝑘(𝑡), b) Ext2

𝑘(𝑡). 
 

      
 

Figure 5. Plots of residual error functions for Eqs. (21) and (22) when 𝑘 = 5,10,15,20: a) Res1
𝑘(𝑡), b) Res2

𝑘(𝑡). 
 

Example 3.4. Consider the nonlinear system of second-order IVP [46]: 

   

𝑥1
′′(𝑡) = 1 − cos 𝑡 + sin 𝑥2

′ (𝑡) + cos 𝑥2
′ (𝑡),

𝑥2
′′(𝑡) =

1

4 + 𝑥1
2(𝑡)

−
5

5 − sin2 𝑡
,

 (23) 

subject to the initial conditions 

   𝑥1(0) = 1, 𝑥1
′ (0) = 0, 𝑥2(0) = 0, 𝑥2

′ (0) = 𝜋.   (24) 
 

       Assuming that the initial guesses approximations have the form 𝑥1,0(𝑡) = 1 + 𝑡 and 𝑥2,0(𝑡) = 𝜋𝑡. Then, the 

10th-truncated series of the RPS solutions of 𝑥1(𝑡) and 𝑥2(𝑡) for Eqs. (23) and (24) are as follows: 

      
𝑥1

10(𝑡) = 1 −
𝑡2

2
+

𝑡4

24
−

𝑡6

720
+

𝑡8

40320
−

𝑡10

3628800
= ∑(−1)𝑗

(𝑡)2𝑗

(2𝑗)!

5

𝑗=0

 𝑥1
10(𝑡) = 𝜋𝑡.

 

       It easy to see that, the 10th-truncated series of the RPS solutions for 𝑥1(𝑡) and 𝑥2(𝑡) above agree well with 

the general form 

      
𝑥1(𝑡) = ∑(−1)𝑗

(𝑡)2𝑗

(2𝑗)!

∞

𝑗=0

= cos(𝑡) ,

𝑥2(𝑡) = 𝜋𝑡.

 

So, the exact solutions of Eqs. (23) and (24) will be 𝑥1(𝑡) = cos(𝑡) and 𝑥2(𝑡) = 𝜋𝑡. 

       Our next goal is to show how the value of 𝑘 in the truncation series (3) affects the RPS approximate solutions. 

To determine this effect an error analysis is performed. We calculate the approximations 𝑥1
𝑘(𝑡) and 𝑥2

𝑘(𝑡) for 

various 𝑘 and obtain the exact error functions. The maximum and average errors when 𝑘 = 5,10,20 for Eqs. (23) 

and (24) have been listed in Table 2 for 𝑡𝑖 =
1

10
𝑖, 𝑖 = 0,1,2, … ,10.  
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5(𝑡) Ext2

10(𝑡) Ext2
15(𝑡) 

Ext2
20(𝑡) 

Res1
5(𝑡) 
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Res1
10(𝑡) Res1
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Res1
20(𝑡) 
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5(𝑡) Res2

10(𝑡) Res2
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Res2
20(𝑡) 
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Table 2: The maximum error functions of 𝑥1(𝑡) and 𝑥2(𝑡) when 𝑘 = 5,10,15,20. 

Description 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 

max{Ext1
𝑘(𝑡𝑖)} 1.36436 × 10−3 2.07625 × 10−9 4.77396 × 10−14 1.11022 × 10−16 

max{Ext2
𝑘(𝑡𝑖)} 0 0 0 0 

max{Res1
𝑘(𝑡𝑖)} 4.03023 × 10−2 2.73497 × 10−7 1.12955 × 10−11 7.99893 × 10−12 

max{Res2
𝑘(𝑡𝑖)} 8.01106 × 10−5 1.21799 × 10−10 2.82828 × 10−12 7.07071 × 10−13 

max{Rel1
𝑘(𝑡𝑖)} 2.52518 × 10−3 3.84276 × 10−9 8.83572 × 10−14 2.05483 × 10−16 

max{Rel2
𝑘(𝑡𝑖)} 0 0 0 0 

Ext1
𝑘(𝑡𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 4.51099 × 10−4 2.58193 × 10−10 3.63598 × 10−15 2.11471 × 10−17 

Ext2
𝑘(𝑡𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0 0 0 0 

Res1
𝑘(𝑡𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 4.89750 × 10−3 1.94374 × 10−8 2.08501 × 10−12 1.46313 × 10−12 

Res2
𝑘(𝑡𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 8.13844 × 10−6 8.42147 × 10−12 3.05697 × 10−13 3.05595 × 10−13 

Rel1
𝑘(𝑡𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  2.15903 × 10−4 2.39813 × 10−10 4.99000 × 10−15 3.09419 × 10−17 

Rel2
𝑘(𝑡𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0 0 0 0 

 

4. Conclusion 
 

The main concern of this work has been to propose an efficient algorithm for the solutions of system of IVPs. The 

main goal has been achieved by introducing the RPS technique to solve this class of differential equations. We 

can conclude that the RPS technique is powerful and efficient technique in finding approximate solution for linear 

and nonlinear IVPs. The proposed algorithm produced a rapidly convergent series with easily computable 

components using symbolic computation software. There is an important point to make here, the results obtained 

by the RPS technique are very effective and convenient in linear and nonlinear cases with less computational 

work and time. This confirms our belief that the efficiency of our technique gives it much wider applicability for 

general classes of linear and nonlinear problems. 
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