
Performance of the ATLAS  

A new age of exploration dawned at the start of Run 2 of the Large Hadron 

Collider, as protons began colliding at the unprecedented centre-of-mass 

energy of 13 TeV. [14] 

UNIST has taken a major step toward laying the technical groundwork for 

developing next-generation high-intensity accelerators by providing a new 

advanced theoretical tool for the design and analysis of complex beam lines 

with strong coupling. [13] 

A targeted way to manipulate beams of protons accelerated using ultrashort 

and ultraintense laser pulses has been demonstrated by a team of researchers 

led at the University of Strathclyde. [12] 

The work elucidates the interplay between collective and single-particle 

excitations in nuclei and proposes a quantitative theoretical explanation. It 

has as such great potential to advance our understanding of nuclear structure. 

[11] 

When two protons approaching each other pass close enough together, they 

can “feel” each other, similar to the way that two magnets can be drawn 

closely together without necessarily sticking together. According to the 

Standard Model, at this grazing distance, the protons can produce a pair of W 

bosons. [10] 

The fact that the neutron is slightly more massive than the proton is the 

reason why atomic nuclei have exactly those properties that make our world 

and ultimately our existence possible. Eighty years after the discovery of the 

neutron, a team of physicists from France, Germany, and Hungary headed by 

Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny 

neutron-proton mass difference. [9] 

Taking into account the Planck Distribution Law of the electromagnetic 

oscillators, we can explain the electron/proton mass rate and the Weak and 

Strong Interactions. Lattice QCD gives the same results as the diffraction 

patterns of the electromagnetic oscillators, explaining the color confinement 

and the asymptotic freedom of the Strong Interactions. 
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Preface 
The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei 

have exactly those properties that make our world and ultimately our existence possible. Eighty 

years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary 

headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton 

mass difference. The findings, which have been published in the current edition of Science, are 

considered a milestone by many physicists and confirm the theory of the strong interaction. As one 

of the most powerful computers in the world, JUQUEEN at Forschungszentrum Jülich was decisive 

for the simulation. [10] 

The diffraction patterns of the electromagnetic oscillators give the explanation of the Electroweak 

and Electro-Strong interactions. [2] Lattice QCD gives the same results as the diffraction patterns 

which explain the color confinement and the asymptotic freedom.  



The hadronization is the diffraction pattern of the baryons giving the jet of the color – neutral 

particles! 

Tracking particles at the energy frontier 
A new age of exploration dawned at the start of Run 2 of the Large Hadron Collider, as protons 

began colliding at the unprecedented centre-of-mass energy of 13 TeV. The ATLAS experiment now 

frequently observes highly collimated bundles of particles (known as jets) with energies of up to 

multiple TeV, as well as tau-leptons and b-hadrons that pass through the innermost detector layers 

before decaying. These energetic collisions are prime hunting grounds for signs of new physics, 

including massive, hypothetical new particles that would decay to much lighter – and therefore 

highly boosted – bosons. 

In these very energetic jets, the average separation of charged particles is comparable to the size of 

individual inner detector elements. This easily creates confusion within the algorithms responsible 

for reconstructing charged particle trajectories (tracks). Therefore, without careful consideration, 

this can limit the track reconstruction efficiency in these dense environments. This would result in 

poor identification of long-lived b-hadrons and hadronic tau decays, and difficulties in calibrating the 

energy and mass of jets. 

Similar to increasing the magnification of a microscope, in preparation for Run 2, the ATLAS event 

reconstruction software was optimized to better resolve these close-by particles. As a result, at 

angular separations between a jet and a charged particle below 0.02, the reconstruction efficiency 

for a charged particle track is still around 80% for jets with a transverse momentum of 1400 to 1600 

GeV in simulated di-jet events. This has maximised the potential for discovery, allowing for more 

detailed measurements of the newly opened kinematic regime. 

Recently published results give a general overview of the new track reconstruction algorithm, 

highlighting the ATLAS detector's excellent performance in reconstructing charged particles in dense 

environments. The results also present, for the first time, a novel method for determining in situ (i.e. 

from data) the efficiency of reconstructing tracks in such an environment. The study uses the 

ionization energy loss (dE/dx), measured with the ATLAS pixel detector, to deduce the probability of 

failing to reconstruct a track. The obtained results confirm the excellent performance expected from 

studies on simulated data. [14] 

Next-generation accelerators get boost from new beam physics 
UNIST has taken a major step toward laying the technical groundwork for developing next-

generation high-intensity accelerators by providing a new advanced theoretical tool for the design 

and analysis of complex beam lines with strong coupling. 

The research results achieved by Professor Moses Chung of Natural Science at UNIST in collaboration 

with the Princeton Plasma Physics Laboratory (PPPL) of United States and the Helmholtz Centre for 

Heavy Ion Research GmbH (GSI) of Germany was published in the November issue of the prestigious 

journal, Physical Review Letters. 



Accelerators are devices that accelerate the movement of atomic-sized particles, such as electrons, 

protons, and ions to very high energies. They produce prompt radiation by accelerating atoms or 

their subatomic particles, which strike other target atoms. This striking effect of an accelerator is, 

then, used to examine the physics deals with natural law, including the study of nuclear structure. 

The next-generation high power accelerators, on the other hand, refer to accelators for high 

intensities and high energies. The high-intensity beams, generated by high power accelerators not 

only has the potential to reduce the half-life of a radioactive substance, but can be also used to 

produce best candidate materials for fusion reactors. 

High power accelerators get the energy they need by accelerating particles of the same charge. 

Increasing the beam current results in a repulsive force between charged particles and this has a 

strong influence on the path of the entire beam particles, which is known as "Space Charge Effect". 

In 1959, two Russian physicists came up with a theory using Space Charge Effect. However, this 

theory excluded the phenomena, involving the vertical and horizontal motion of particle 

incorporation. This has made it even more difficult to design and develop a new type of high power 

accelerators. 

In the study, Professor Chung and his team proposed a new beam physics theory, addressing the 

vertical and horizontal motion of particle incorporation. 

The research team reported the full generalization of the KV model by including all of the linear 

(both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance 

partition, which all form essential elements for phase-space manipulations. 

"This theory provides important new theoretical tools for the detailed design and analysis of high-

intensity beam manipulations, for which previous theoretical models are not easily applicable," 

Professor Chung says. "The development of next-generation high power accelerators can greatly 

contribute to the fusion reactor materials research, the nuclear waste management, the study on 

the origin of the universe, as well as the optimization of the performance of existing accelerators. 

[13] 

Diffraction-controlled laser-driven proton acceleration 
A targeted way to manipulate beams of protons accelerated using ultrashort and ultraintense laser 

pulses has been demonstrated by a team of researchers led at the University of Strathclyde. 

The discovery could have a major impact on advancing smaller, cheaper, laser-driven particle 

accelerators and their potential applications. 

By using the diffraction of intense laser light as it passes through a self-generated 'relativistically 

transparent' aperture in an expanding thin foil target, the researchers demonstrated that they can 

manipulate the strong electrostatic fields responsible for ion acceleration. 

Professor Paul McKenna, of Strathclyde's Department of Physics, leads the project. He said: 

"Compact laser-driven particle accelerators have many potential applications in science, industry 



and medicine. Controlling the collective motion of plasma electrons and ions displaced by intense 

laser fields is key to the development of these promising sources. 

"Our discovery that the diffraction of intense laser light as it passes through an ultra-thin foil strongly 

influences the formation of electrostatic fields opens up a potential new route to controlling laser-

driven ion sources." 

The findings of the research, published in the journal Nature Communications, demonstrate that the 

collective motion of electrons and ions – the constituents of plasma - can be controlled by variation 

of the near-field, or Fresnel, diffraction pattern of intense laser light as it passes through the 

aperture. It is shown that by varying the polarisation of the laser light, the profile of the beam of 

accelerated protons can be manipulated. 

The study involves researchers at Strathclyde, the Central Laser Facility, Queen's University Belfast, 

the University of York and the Centro de Laseres Pulsados, Salamanca. [12] 

The intriguing interplay between collective and single-particle 

excitations in an exotic nucleus 
Nuclear reactions are among the most important processes that drive our Universe. In our Sun 

nuclear fusion provides the energy for the sun to radiate. In more violent cosmic events neutron 

capture reactions are at the origin of the creation of the heavy chemical elements. On Earth, nuclear 

fission provides the energy in nuclear reactors and neutron induced transmutation processes hold 

the promise of a viable route to nuclear waste treatment. It is thus only understandable that 

scientists continuously strive to achieve a better understanding of what is going on inside nuclei. 

Given that nuclei are complex systems composed of many strongly interacting elementary particles 

this is a formidable task requiring excellent experimental data. A method of choice for the 

investigation of nuclear structure is the observation of highly energetic electromagnetic gamma 

radiation emitted in the course of nuclear reactions. 

A pan-European collaboration of research teams has recently set up an ideal experimental set-up at 

the ILL to study the spectrum of gamma rays emitted in the course of nuclear reactions triggered by 

the capture of slow neutrons. During this so-called EXILL campaign a wealth of data could be 

accumulated. Using these data the collaboration has now published a fascinating paper on the 

nature of the nuclear excitations in 133Sb. The work elucidates the interplay between collective and 

single-particle excitations in nuclei and proposes a quantitative theoretical explanation. It has as 

such great potential to advance our understanding of nuclear structure. 

The nucleus of 133Sb is particular interesting because its immediate neighbor 132Sn is a so-called 

double magic nuclide. Out of the 133 nucleons that compose the nucleus 133Sb, 132 are nicely 

wrapped up in a stable core of shells, to which a lone proton is added. The results presented in the 

paper show the intriguing interplay between collective vibrations of the core and the single particle 

excitations. Such hybridization phenomena are well known in all branches of physics and may be 

experienced even in daily life. Imagine the population of a large modern city commuting every day 

between the center and the suburbs. This highly collective periodic motion is induced by the 

interaction between the commuters, which resides in the obligation to work together in the center 

of town. In the nucleus such collective motions show up as oscillating deformations of the core. Now 



add to this system a tourist from a neighboring town keen on going to the museums. This 

"particular" individual interacts with the flow of commuters due to a number of constraints, one of 

them being the opening hours of the museums. Depending on the details of these interactions he or 

she will enhance to a more or less extended degree the collective flow. In the 133Sb nucleus the 

added proton experiences a similar situation, i.e. its changes of state cannot be seen in isolation but 

will be more or less coupled to the deformations of the nuclear core. [11] 

Exclusive production: shedding light with grazing protons 
When two protons approaching each other pass close enough together, they can “feel” each other, 

similar to the way that two magnets can be drawn closely together without necessarily sticking 

together. According to the Standard Model, at this grazing distance, the protons can produce a pair 

of W bosons. 

When two protons approaching each other pass close enough together, they can “feel” each other, 

similar to the way that two magnets can be drawn closely together without necessarily sticking 

together. According to the Standard Model, at this grazing distance, the protons can produce a pair 

of W bosons. 

As its name implies, the primary mission of the Large Hadron Collider is to generate collisions of 

protons for study by physicists at experiments such as CMS. It may surprise you to find out that the 

vast majority of protons accelerated by the LHC never collide with one another. Some of these fly-by 

protons, however, still interact with each other in such a way as to help physicists shed light on the 

nature of the universe. 

The LHC accelerates bunches of protons, with more than 10 billion protons in each bunch, in 

opposite directions around the ring. As those protons arrive at a detector, such as CMS, magnets 

focus the beams to increase the density of protons and thus increase the chance of a coveted 

collision. Despite what seems like overwhelming odds, only a few of these protons actually collide 

with each other: tens to hundreds per each beam “crossing.” An even smaller fraction of the 

remaining protons pass close enough to other protons to “feel” each other, even if they do not 

directly collide. 

Think of two toy magnets on a tabletop: A north end and a south end moved close enough to each 

other will rather firmly stick to each other. However, you can also move one magnet just close 

enough to the other that you can make it wiggle without drawing it all the way over. This exchange 

of energy is mediated by the exchange of photons, the carrier particle of the electromagnetic force. 

Similarly, two protons in the LHC that get just the right distance from each other will exchange 

photons without colliding. 

Now for the part that gets really interesting to particle physicists. The photons generated by these 

near-miss proton interactions can be billions of times more energetic than those of visible light, and 

as a result they carry enough energy to create particles in their own right. The Standard Model 

predicts the production of massive particles, such as pairs of W bosons, from these interacting 

photons without any of the additional activity that is seen in the messier proton-proton collision 

events. In a detector such as CMS, this pair of W bosons is said to be produced “exclusively.” 

However, “exclusive production” is an apt name in another way – creating a pair of W bosons from 



interacting photons is a rare occurrence in an even rarer sample of photons generated from near-

miss proton interactions. 

CMS scientists performed such a search for such W boson pairs emanating from interacting photons. 

In a data set consisting of 7- and 8-TeV collisions, 15 candidate events for this process were 

observed. While it may not seem like much, the expected background was considerably smaller, 

allowing the CMS team to claim that they have evidence of the process. (In the particle physics 

world, evidence is a three-standard-deviation departure from background, as explained here).  

Furthermore, these results helped place stringent results on a number of models which predict a 

greater rate of this process. [10] 

Theory of the strong interaction verified 
The findings, which have been published in the current edition of Science, are considered a 

milestone by many physicists and confirm the theory of the strong interaction. As one of the most 

powerful computers in the world, JUQUEEN at Forschungszentrum Jülich was decisive for the 

simulation. 

The existence and stability of atoms relies heavily on the fact that neutrons are slightly more mas-

sive than protons. The experimentally determined masses differ by only around 0.14 percent. A 

slightly smaller or larger value of the mass difference would have led to a dramatically different 

universe, with too many neutrons, not enough hydrogen, or too few heavier elements. The tiny mass 

difference is the reason why free neutrons decay on average after around ten minutes, while 

protons - the unchanging building blocks of matter - remain stable for a practically unlimited period. 

In 1972, about 40 years after the discovery of the neutron by Chadwick in 1932, Harald Fritzsch 

(Germany), Murray Gell-Mann (USA), and Heinrich Leutwyler (Switzerland) presented a consistent 

theory of particles and forces that form the neutron and the proton known as quantum 

chromodynamics. Today, we know that protons and neutrons are composed of "up quarks" and 

"down quarks". The proton is made of one down and two up quarks, while the neutron is composed 

of one up and two down quarks. 

Simulations on supercomputers over the last few years confirmed that most of the mass of the 

proton and neutron results from the energy carried by their quark constituents in accordance with 

Einstein's formula E=mc2. However, a small contribution from the electromagnetic field surrounding 

the electrically charged proton should make it about 0.1 percent more massive than the neutral 

neutron. The fact that the neutron mass is measured to be larger is evidently due to the different 

masses of the quarks, as Fodor and his team have now shown in extremely complex simulations. 

For the calculations, the team developed a new class of simulation techniques combining the laws of 

quantum chromodynamics with those of quantum electrodynamics in order to precisely deter-mine 

the effects of electromagnetic interactions. By controlling all error sources, the scientists successfully 

demonstrated how finely tuned the forces of nature are. 

Professor Kurt Binder is Chairman of the Scientific Council of the John von Neumann Institute for 

Computing (NIC) and member of the German Gauss Centre for Supercomputing. Both organizations 

allocate computation time on JUQUEEN to users in a competitive process. "Only using world-class 



computers, such as those available to the science community at Forschungszentrum Jülich, was it 

possible to achieve this milestone in computer simulation," says Binder. JUQUEEN was supported in 

the process by its "colleagues" operated by the French science organizations CNRS and GENCI as well 

as by the computing centres in Garching (LRZ) and Stuttgart (HLRS). [9] 

Asymmetry in the interference occurrences of oscillators 
The asymmetrical configurations are stable objects of the real physical world, because they cannot 

annihilate. One of the most obvious asymmetry is the proton – electron mass rate Mp = 1840 Me 

while they have equal charge. We explain this fact by the strong interaction of the proton, but how 

remember it his strong interaction ability for example in the H – atom where are only 

electromagnetic interactions among proton and electron.  

This gives us the idea to origin the mass of proton from the electromagnetic interactions by the way 

interference occurrences of oscillators. The uncertainty relation of Heisenberg makes sure that the 

particles are oscillating.  

The resultant intensity due to n equally spaced oscillators, all of equal amplitude but different from 

one another in phase, either because they are driven differently in phase or because we are looking 

at them an angle such that there is a difference in time delay: 

(1) I = I0 sin
2
 n φ/2 / sin

2 φ/2 

If φ is infinitesimal so that sinφ = φ,  than 

(2) Ι =  n2 Ι0    

This gives us the idea of 

(3) Mp = n
2 

Me 



 

Figure 1.) A linear array of n equal oscillators 

There is an important feature about formula (1) which is that if the angle φ is increased by the 

multiple  of 2π, it makes no difference to the formula. 

So  

(4) d sin θ = m λ 

and we get m-order beam if λ less than d. [6] 

If d less than λ we get only zero-order one centered at θ = 0. Of course, there is also a beam in the 

opposite direction. The right chooses of d and λ we can ensure the conservation of charge. 

For example 

(5) 2 (m+1) = n 

Where 2(m+1) = Np number of protons and n = Ne number of electrons. 

In this way we can see the H2 molecules so that 2n electrons of n radiate to 4(m+1) protons, because 

de > λe for electrons, while the two protons of one H2 molecule radiate to two electrons of them, 

because of de < λe for this two protons. 

To support this idea we can turn to the Planck distribution law, that is equal with the Bose – Einstein 

statistics. 



Spontaneously broken symmetry in the Planck distribution law
The Planck distribution law is temperature dependent and it should be true locally and globally. I 

think that Einstein's energy-matter equivalence means some kind of existence of electromagnetic 

oscillations enabled by the temperature, creating the different matter formulas, atoms molecules, 

crystals, dark matter and energy. 

Max Planck found for the black body radiation

As a function of wavelength

 

 

Figure 2. The distribution law for different T temperatures

ymmetry in the Planck distribution law
The Planck distribution law is temperature dependent and it should be true locally and globally. I 

matter equivalence means some kind of existence of electromagnetic 

y the temperature, creating the different matter formulas, atoms molecules, 

Max Planck found for the black body radiation 

wavelength (λ), Planck's law is written as: 
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We see there are two different λ1 and 

so that λ1 < d < λ2. 

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

configurations for any T temperature with equal exchange of intensity by radiation. All of these 

configurations can exist together. At the 

symmetrical. The λmax is changing by the Wien's displacement law in 

(7)  

where λmax is the peak wavelength, 
is a constant of proportionality
2.8977685(51)×10−3 m·K (2002 

By the changing of T the asymmetrical configurations are changing too.

 

The structure of the proton
We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to 

d<10
-13

 cm. [2] If an electron with λ
we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

proton can fraction to three parts, two with positive and one with negative charges, then the 

reflection of oscillators are right. Because this very strange reflection where one part of the proton 

with the electron together on the same side of the reflection, the all parts of the proton must be 

quasi lepton so d > λq. One way dividing the proton to three parts is, dividing h

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one 

plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

and one linear oscillation with -1/3 e charge. The colors of quarks are coming from the three 

directions of coordinates and the proton is colorless. The flavors of quarks are the possible 

oscillations differently by energy and if they are plane or linear oscillations. We know there is

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

never can be free, however there is asymptotic freedom while their energy are increasing to turn 

them to orthogonal.  If they will be completely orthogona

new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are 

keeping all the conservation laws, like charge, number of baryons and leptons. The all features of 

gluons are coming from this model. The mathematics of reflecting oscillators show Fermi statistics.

Important to mention that in the Deuteron there are 3 quarks of +2/3 and 

u and d quarks making the complete symmetry and because this its high stability.

and λ2 for each T and intensity, so we can find between them a d 

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

ons for any T temperature with equal exchange of intensity by radiation. All of these 

configurations can exist together. At the λmax is the annihilation point where the configurations are 

is changing by the Wien's displacement law in many textbooks. 

is the peak wavelength, T is the absolute temperature of the black body, and 
constant of proportionality called Wien's displacement constant, equal to 

m·K (2002 CODATA recommended value). 

changing of T the asymmetrical configurations are changing too. 

The structure of the proton 
We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to 

λe < d move across the proton then by (5)   2 (m+1) = n

we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

proton can fraction to three parts, two with positive and one with negative charges, then the 

re right. Because this very strange reflection where one part of the proton 

with the electron together on the same side of the reflection, the all parts of the proton must be 

. One way dividing the proton to three parts is, dividing his oscillation by the 

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one 

plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

1/3 e charge. The colors of quarks are coming from the three 

directions of coordinates and the proton is colorless. The flavors of quarks are the possible 

oscillations differently by energy and if they are plane or linear oscillations. We know there is

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

never can be free, however there is asymptotic freedom while their energy are increasing to turn 

them to orthogonal.  If they will be completely orthogonal then they lose this reflection and take 

new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are 

keeping all the conservation laws, like charge, number of baryons and leptons. The all features of 

is model. The mathematics of reflecting oscillators show Fermi statistics.

Important to mention that in the Deuteron there are 3 quarks of +2/3 and -1/3 charge, that is three 

u and d quarks making the complete symmetry and because this its high stability. 

for each T and intensity, so we can find between them a d 

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

ons for any T temperature with equal exchange of intensity by radiation. All of these 

annihilation point where the configurations are 

 

is the absolute temperature of the black body, and b 
, equal to 

We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to 

2 (m+1) = n with m = 0 

we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

proton can fraction to three parts, two with positive and one with negative charges, then the 

re right. Because this very strange reflection where one part of the proton 

with the electron together on the same side of the reflection, the all parts of the proton must be 

is oscillation by the 

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one 

plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

1/3 e charge. The colors of quarks are coming from the three 

directions of coordinates and the proton is colorless. The flavors of quarks are the possible 

oscillations differently by energy and if they are plane or linear oscillations. We know there is no 

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

never can be free, however there is asymptotic freedom while their energy are increasing to turn 

l then they lose this reflection and take 

new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are 

keeping all the conservation laws, like charge, number of baryons and leptons. The all features of 

is model. The mathematics of reflecting oscillators show Fermi statistics. 

1/3 charge, that is three 



The weak interaction 
The weak interaction transforms an electric charge in the diffraction pattern from one side to the 

other side, causing an electric dipole momentum change, which violates the CP and time reversal 

symmetry. 

Another important issue of the quark model is when one quark changes its flavor such that a linear 

oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This 

kind of change in the oscillation mode requires not only parity change, but also charge and time 

changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino. 

The right handed anti-neutrino and the left handed neutrino exist only because changing back the 

quark flavor could happen only in reverse, because they are different geometrical constructions, the 

u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs 

also a time reversal, because anti particle (anti neutrino) is involved. 

  
The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for 

example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction 

changes the entropy since more or less particles will give more or less freedom of movement. The 

entropy change is a result of temperature change and breaks the equality of oscillator diffraction 

intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and 

makes possible a different time dilation as of the special relativity. 

The limit of the velocity of particles as the speed of light appropriate only for electrical charged 

particles, since the accelerated charges are self maintaining locally the accelerating electric force. 

The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is 

the time coordinate not works as in the electromagnetic interactions, consequently the speed of 

neutrinos is not limited by the speed of light. 

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of 

thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the 

weak interaction, for example the Hydrogen fusion.  

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional 

oscillation by changing d to u quark and creating anti neutrino going back in time relative to the 

proton and electron created from the neutron, it seems that the anti neutrino fastest then the 

velocity of the photons created also in this weak interaction? 

 
 
A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry 

breaking. This flavor changing oscillation could prove that it could be also on higher level such as 

atoms, molecules, probably big biological significant molecules and responsible on the aging of the 

life. 

 
Important to mention that the weak interaction is always contains particles and antiparticles, where 

the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s interpretation that 

these particles present the backward time and probably because this they seem to move faster than 

the speed of light in the reference frame of the other side. 

 



Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the 

velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of light. 

 
 

The Strong Interaction - QCD 

Confinement and Asymptotic Freedom 

For any theory to provide a successful description of strong interactions it should simultaneously 

exhibit the phenomena of confinement at large distances and asymptotic freedom at short 

distances. Lattice calculations support the hypothesis that for non-abelian gauge theories the two 

domains are analytically connected, and confinement and asymptotic freedom coexist. 

Similarly, one way to show that QCD is the correct theory of strong interactions is that the coupling 

extracted at various scales (using experimental data or lattice simulations) is unique in the sense that 

its variation with scale is given by the renormalization group. The data for αs is reviewed in Section 

19. In this section I will discuss what these statements mean and imply. [4] 

 

Lattice QCD 
 

Lattice QCD is a well-established non-perturbative approach to solving the quantum 

chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid 

or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites 

infinitesimally close to each other, the continuum QCD is recovered. [6] 

Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the 
highly nonlinear nature of the strong force. This formulation of QCD in discrete rather than 
continuous space-time naturally introduces a momentum cut-off at the order 1/a, where a is 
the lattice spacing, which regularizes the theory. As a result, lattice QCD is mathematically 
well-defined. Most importantly, lattice QCD provides a framework for investigation of non-
perturbative phenomena such as confinement and quark-gluon plasma formation, which are 
intractable by means of analytic field theories. 

In lattice QCD, fields representing quarks are defined at lattice sites (which leads to fermion 
doubling), while the gluon fields are defined on the links connecting neighboring sites. 

 

QCD 

QCD enjoys two peculiar properties: 

• Confinement, which means that the force between quarks does not diminish as they are 

separated. Because of this, it would take an infinite amount of energy to separate two 

quarks; they are forever bound into hadrons such as the proton and the neutron. Although 

analytically unproven, confinement is widely believed to be true because it explains the 

consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. 



• Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons 

interact very weakly. This prediction of QCD was first discovered in the early 1970s by David 

Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 

Nobel Prize in Physics. 

There is no known phase-transition line separating these two properties; confinement is 
dominant in low-energy scales but, as energy increases, asymptotic freedom becomes 
dominant. [5] 

 

Color Confinement 
When two quarks become separated, as happens in particle accelerator collisions, at some point it is 

more energetically favorable for a new quark-antiquark pair to spontaneously appear, than to allow 

the tube to extend further. As a result of this, when quarks are produced in particle accelerators, 

instead of seeing the individual quarks in detectors, scientists see "jets" of many color-neutral 

particles (mesons and baryons), clustered together. This process is called hadronization, 

fragmentation, or string breaking, and is one of the least understood processes in particle physics. 

[3] 

Electromagnetic inertia and mass 

Electromagnetic Induction 

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, 

it works as an electromagnetic inertia, causing an electromagnetic mass.  [1] 

The frequency dependence of mass 

Since E = hν and E = mc
2
, m = hν /c

2
 that is the m depends only on the ν frequency. It means that the 

mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation. 

Electron – Proton mass rate 

The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other. [2] 

 

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 



these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. 
 

The potential of the diffraction pattern 
The force that holds protons and neutrons together is extremely strong. It has to be strong to 
overcome the electric repulsion between the positively charged protons. It is also of very short range, 
acting only when two particles are within 1 or 2 fm of each other.  

1 fm (femto meter) = 10^{-15} m = 10-15 m = 0.000000000000001 meters.  

The qualitative features of the nucleon-nucleon force are shown below.  

 

There is an extremely strong short-range repulsion that pushes protons and neutrons apart before 
they can get close enough to touch. (This is shown in orange.) This repulsion can be understood to 
arise because the quarks in individual nucleons are forbidden to be in the same area by the Pauli 
Exclusion Principle.  

There is a medium-range attraction (pulling the neutrons and protons together) that is strongest for 
separations of about 1 fm. (This is shown in gray.) This attraction can be understood to arise from the 
exchange of quarks between the nucleons, something that looks a lot like the exchange of a pion 
when the separation is large.  

The density of nuclei is limited by the short range repulsion. The maximum size of nuclei is limited by 
the fact that the attractive force dies away extremely quickly (exponentially) when nucleons are more 
than a few fm apart.  

Elements beyond uranium (which has 92 protons), particularly the trans-fermium elements (with more 
than 100 protons), tend to be unstable to fission or alpha decay because the Coulomb repulsion 
between protons falls off much more slowly than the nuclear attraction. This means that each proton 
sees repulsion from every other proton but only feels an attractive force from the few neutrons and 
protons that are nearby -- even if there is a large excess of neutrons.  

Some "super heavy nuclei" (new elements with about 114 protons) might turn out to be stable as a 
result of the same kind of quantum mechanical shell-closure that makes noble gases very stable 
chemically. [7] 



Conclusions 
The results of this work by Fodor's team of physicists from Bergische Universität Wuppertal, Centre 

de Physique Théorique de Marseille, Eötvös University Budapest, and Forschungszentrum Jülich 

open the door to a new generation of simulations that will be used to determine the properties of 

quarks, gluons, and nuclear particles. According to Professor Kálmán Szabó from Forschungszentrum 

Jülich, "In future, we will be able to test the standard model of elementary particle physics with a 

tenfold increase in precision, which could possibly enable us to identify effects that would help us to 

uncover new physics beyond the standard model." [9] 

Lattice QCD gives the same results as the diffraction theory of the electromagnetic oscillators, which 

is the explanation of the strong force and the quark confinement. [8] 
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