AAFrempong Conjecture

(Prize for proof: To be determined)

Abstract

The above conjecture states that if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers, $x, y, z>2$, and $A \neq B \neq C \neq 2$, then A, B, and C cannot be the lengths of the sides of a triangle. This conjecture evolved when after proving the Beal conjecture algebraically (viXra:1702.0331), the author attempted to prove the same conjecture geometrically. A proof of the above conjecture may shed some light on the relationships between similar equations and the lengths of the sides of polygons. Counterexamples could be added to the exceptions.

AAFrempong Conjecture

(Prize for proof: To be determined)
The above conjecture evolved when after proving the Beal conjecture algebraically (viXra:1702.0331), the author attempted to prove the same conjecture geometrically.
The conjecture states that if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers, $x, y, z>2$, and $A \neq B \neq C \neq 2$, then A, B, and C cannot be the lengths of the sides of a triangle Examples:

1. Since $3^{3}+6^{3}=3^{5}, 3,6$ and 3 ; cannot be the lengths of the sides of a triangle.
2. Similarly, since $2^{9}+8^{3}=4^{5}, 2,8$, and 4 cannot be the lengths of the sides of a triangle. However, for $2^{3}+2^{3}=2^{4}, 2,2$ and 2 can be the lengths of the sides of a triangle since the sum of the lengths of any two sides is greater than the length of the third side. (Note: $2+2>2$)

Note the following::
In any triangle, the sum of the lengths of any two sides is greater than the length of the third side. For A, B, and C to form a triangle, 1. $A+B>C, 2 . A+C>B$, and 3. $B+C>A$.

Main Dish

The requirement is that one should prove that if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers, $x, y, z>2$, and $A \neq B \neq C \neq 2$, then A, B, and C cannot be the lengths of the sides of a triangle.
A proof of the above conjecture may shed some light on the relationships between similar equations and the lengths of the sides of polygons.

PS:

An interesting observation, above, is the prime number, 2. In the Pythagorean theorem, each exponent equals 2 , but in the exception to the above conjecture, each base equals 2 , $\left(2^{3}+2^{3}=2^{4}\right.$ is true), but the exponent on the second term on the left is a repetition of the first exponent. Generally, $a^{n}+a^{n}=a^{n+1}$ is true only if $a=2$.

Adonten

