Three sequences of primes obtained using the digital root and the digital sum of a prime

Marius Coman email: mariuscoman13@gmail.com

Abstract. In this paper I make the following three conjectures: (I) The set of the primes which are obtained concatenating to the left a prime with its digital sum is infinite; (II) The set of the primes which are obtained concatenating to the left a prime with its digital root is infinite; (III) The set of the primes which are equal to the sum of a prime p with the number obtained concatenating to the left p with its digital sum and the number obtained concatenating to the left p with its digital root is infinite.

Conjecture I:

The set of the primes which are obtained concatenating to the left a prime with its digital sum is infinite.

The sequence of these primes:

:	211	(11 c	concatenated	to	the	left	with	s(11)	=	2);
:	1019	(19 c	concatenated	to	the	left	with	s(19)	=	10);
:	523	(23 c	concatenated	to	the	left	with	s(23)	=	5);
:	1129	(29 c	concatenated	to	the	left	with	s(29)	=	11);
:	431	(31 c	concatenated	to	the	left	with	s(31)	=	4);
:	541	(41 c	concatenated	to	the	left	with	s(41)	=	5);
:	743	(43 c	concatenated	to	the	left	with	s(43)	=	7);
:	853	(53 c	concatenated	to	the	left	with	s(53)	=	8);
:	1459	(59 c	concatenated	to	the	left	with	s(59)	=	14);
:	761	(61 c	concatenated	to	the	left	with	s(61)	=	7);
:	1367	(67 c	concatenated	to	the	left	with	s(67)	=	13);
:	1789	(89 c	concatenated	to	the	left	with	s(89)	=	17);
:	1697	(97 c	concatenated	to	the	left	with	s(97)	=	16);
:	5113	(113	concatenated	d to	b the	e left	t with	n s(113	3)	= 5);
:	14149	(149 c	concatenated	to	the	left	with	s(149)) =	= 14);
:	7151	(151	concatenated	d to	b the	e left	t with	n s(152	1)	= 7);
:	10163	(163 c	concatenated	to	the	left	with	s(163)) =	= 10);
	()									

Conjecture II:

The set of the primes which are obtained concatenating to the left a prime with its digital root is infinite.

The	sequenc	ce of these primes:
:	211	(11 concatenated to the left with $r(11) = 2$);
:	523	(23 concatenated to the left with $r(23) = 5$);
:	229	(29 concatenated to the left with $r(29) = 2$);
:	431	(31 concatenated to the left with $r(31) = 4$);
:	137	(37 concatenated to the left with r(37) = 1);
:	541	(41 concatenated to the left with $r(41) = 5$);
:	743	(43 concatenated to the left with $r(43) = 7$);
:	853	(53 concatenated to the left with $r(53) = 8$);
:	761	(61 concatenated to the left with $r(61) = 7$);
:	467	(67 concatenated to the left with $r(67) = 4$);
:	173	(73 concatenated to the left with $r(73) = 1$);
:	283	(83 concatenated to the left with $r(83) = 2$);
:	797	(97 concatenated to the left with $r(97) = 7$);
:	1109	(109 concatenated to the left with $r(109) = 1$),
:	5113	(113 concatenated to the left with $r(113) = 5$),
:	2137	(137 concatenated to the left with $r(137) = 2$),
:	4139	(139 concatenated to the left with $r(139) = 4$),
:	7151	(151 concatenated to the left with $r(151) = 7$),
:	4157	(157 concatenated to the left with $r(157) = 4$),
:	1163	(163 concatenated to the left with $r(163) = 1$),
	()	

Conjecture III:

The set of the primes which are equal to the sum of a prime p with the number obtained concatenating to the left p with its digital sum and the number obtained concatenating to the left p with its digital root is infinite.

The sequence of these primes:

:	433	(=	11	+	211	+	211);	
:	839	(=	13	+	413	+	413	3);	
:	1069	(=	23	+	523	+	523	3);	
:	1123	(=	41	+	541	+	541);	
:	1759	(=	53	+	853	+	853	3);	
:	1583	(=	61	+	761	+	761);	
:	1901	(=	67	+	136	7 +	46	57);	
:	1319	(=	73	+	107	3 +	17	73);	
:	1549	(=	83	+	118	3 +	28	33);	
:	2767	(=	89	+	178	9 +	88	39);	
:	2591	(=	97	+	169	7 +	79	97);	
:	17417	(=	139) +	- 13	139	+	4139);
:	19447	(=	149) +	- 14	149	+	5149);
:	17471	(=	157	7 +	- 13	157	+	4157);
:	11489	(=	163	3 +	- 10	163	+	1163);
	()								