Apollonius Circles of Rank -1

Prof. Ion Patrascu, "Fratii Buzesti" National College, Craiova, Romania
Prof. Florentin Smarandache, University of New Mexico, Gallup, USA

In this article, we highlight some properties of the Apollonius circles of rank 1 associated with a triangle.

We recall some essential notions.

Definition 1.

It is called cevian of rank k in the triangle $A B C$ a cevian $A D$ with $D \in B C$ and $\frac{B D}{D C}=\left(\frac{A B}{A C}\right)^{k}, k \in \mathbb{R}$.

Remark.

The median is a cevian of rank 0 . The bisector is a cevian of rank 1 .

Definition 2.

The cevian of rank -1 is called antibisector and it is isotomic to the bisector.
The external cevian of rank -1 is called external antibisector.

Definition 3.

The circle built on the segment determined by the feet of the antibisector in A and of the external antibisector in A as diameter is called A - Apollonius circle of rank -1 associated to the triangle $A B C$.

Remark.

Three Apollonius circles of rank -1 correspond to a triangle.

Theorem 1.

The A - Apollonius circle of rank -1 associated to the triangle $A B C$ is the geometric place of the points M from triangle's plane, with the property $\frac{M B}{M C}=\frac{A C}{A B}$.

For theorem proof, see [1].

Theorem 2.

The Apollonius circles of rank -1 associated to the triangle $A B C$ pass through two fixed points (they are part of a fascicle of the second type).

Theorem 3.

The A - Apollonius circle of rank -1 of the triangle $A B C$ intersects its circumscribed circle in two points that belong respectively to the median in A of the triangle and the parallel taken through A to the side $B C$.

Proof.

Let Q be the intersection to a parallel taken through A to the $B C$ with the circumscribed circle of the triangle $A B C$. Therefore, the quadrilateral $Q A C B$ is an isosceles trapezoid, so $Q C=A B$ and $Q B=A C$.

Because $\frac{Q B}{Q C}=\frac{A C}{A B}$, it follows that the point Q belongs to the A - Apollonius circle of rank -1 . We denote by P the intersection of median $A M$ of the triangle $A B C$ with its circumscribed circle. Because the median divides the triangle in two equivalent triangles, we have that the area of $\triangle A B M$ is equal with the area of $\triangle A C M$ and the area $\triangle P B M$ is equal with the area of $\triangle P C M$. By addition, it follows that the area $\triangle A B P$ is equal with $\triangle A C P$. But the area of $\triangle A B P=\frac{1}{2} \cdot A B \cdot P B \cdot \sin \widehat{A B P}$, and
the area of $\triangle A C P=\frac{1}{2} \cdot A C \cdot P C \cdot \sin \widehat{A C P}$. As the angles $A C P$ and $A B P$ are supplementary, their sinuses are equal and consequently we obtain that $A B \cdot P B=$ $A C \cdot P C$, i.e. $\frac{P B}{P C}=\frac{A C}{A B}$, and we such obtain that the point P belongs to the $A-$ Apollonius circle of rank -1 .

Proposition 1.

The A - Apollonius circle of rank -1 of the triangle $A B C$ is an Apollonius circle for the triangle $Q B C$, where Q is the intersection with the circumscribed circle of the triangle $A B C$ with the parallel taken through A to $B C$.

Proof.

The quadrilateral $A Q B C$ is an isosceles trapezoid; therefore, $\Varangle B A C \equiv \Varangle Q B C$, so $Q D^{\prime}$ is bisector in $Q B C$ (D^{\prime} is symmetric towards M, the middle of $(B C)$, of the bisector feet taken from A of the triangle $A B C$. Since $D^{\prime \prime} Q \perp D^{\prime} Q$, we have that $D^{\prime \prime} Q$ is an external bisector for $\Varangle B Q C$ and therefore the A - Apollonius circle of rank -1 is the Apollonius circle of the $Q B C$ triangle.

Remarks.

1. From the previous proposition, it follows that $Q P$ is a simedian in the triangle $Q B C$, therefore the quadrilateral $Q B P C$ is a harmonic quadrilateral.
2. The quadrilateral $Q B P C$ being harmonic, it follows that $P Q$ is a simedian in the triangle $P B C$.
3. The Brocard circles of the triangles $A B C$ and $Q B C$ are congruent. Indeed, if O is the center of the circumscribed circle of the triangle $A B C$ and M the middle of the side $B C$, we have that the triangles $A B C$ and $Q B C$ are symmetric to $O M$. Therefore, the simetric of K - the simedian center of $A B C$ towards $O M$, will be K^{\prime} the simedian center of $Q B C$. The Brocard circles with diameters $O K$ respectively $O K^{\prime}$, from $O K=O K^{\prime}$, it follows that they are congruent (they are symmetrical towards $O M$).

Bibliography

[1]. I. Patraşcu, F. Smarandache. Apollonius Circles of rank \boldsymbol{k}. In Recreații matematice, year XVIII, no. 1/2016, Iassi, Romania.
[2]. I. Patrascu, F. Smarandache. Complements to Classic Topics of Circles Geometry. Pons Editions, Brussels, 2016.

