Formula to generate a set of Poulet numbers from a Poulet number P and its factor d lesser than sqr P

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following observation: Let d be a factor (not necessarily prime) of the Poulet number P such that $d<s q r P$ and m the least number such that $m^{*} d^{*}(d-1)>(P-1) / 2$. Let n be equal to $P-m * d^{*}(d$ - 1). Then often exist a set of Poulet numbers Q such that $\mathrm{Q} \bmod \left(\mathrm{m}\right.$ * $\left.\mathrm{d}^{*}(\mathrm{~d}-1)\right)=\mathrm{n}$. For example, for $\mathrm{P}=2047=23 * 89$ and $d=23$, where $d \quad<$ sqr 2047, the least m such that $m * 23 * 22>(\mathrm{P}-1) / 2$ is equal to 3 (1518 > 1023, while, for 2,1012 < 1023); so, $\mathrm{n}=2047-3 * 23 * 22=2047-1518=529$ and indeed there exist a set of Poulet numbers Q such that Q mod $1518=529$; the formula 1518*x +529 gives the Poulet numbers 2047, 6601, 15709, 30889 (...) for $x=1,4,10,20$ (...).

Observation:

Let d be a factor (not necessarily prime) of the Poulet number P such that $d<s q r ~ P$ and m the least number such that $m^{*} d^{*}(d-1)>(P-1) / 2$. Let n be equal to $P-m * d^{*}(d$ - 1). Then often exist a set of Poulet numbers Q such that $\mathrm{Q} \bmod \left(\mathrm{m}^{*} \mathrm{~d}^{*}(\mathrm{~d}-1)\right)=\mathrm{n}$.

Example: for $P=2047=23 * 89$ and $d=23$, where $d<$ sqr 2047, the least m such that m*23*22 > (P - 1)/2 is equal to 3 (1518 > 1023, while, for 2, 1012 < 1023); so, n = 2047 $3 * 23 * 22=2047-1518=529$ and indeed there exist a set of Poulet numbers Q such that $Q \bmod 1518=529$; the formula 1518*x + 529 gives the Poulet numbers 2047, 6601, 15709, 30889 (...) for $x=1,4,10,20(. .).$.

Few sets of Poulet numbers obtained:

: for $\mathrm{P}=341=11 * 31, \mathrm{~d}=11, \mathrm{~d}<\mathrm{sqr} 341$; the least m such that $\mathrm{m} * 110>170$ is $\mathrm{m}=2$ so $\mathrm{n}=341$ - $220=121$; then $Q \bmod 220=221$ and formula $220 * x+121$ gives the Poulet numbers 341, 561, 8481 (...) for $x=1,2,38$ (...);
: for $\mathrm{P}=561=3 * 11 * 17, \mathrm{~d}=11, \mathrm{~d}<$ sqr 561; the least m such that $m * 110>280$ is $m=3$ so $n=561-330=$ 231; then $Q \bmod 330=231$ and formula $330 * x+231$ gives the Poulet numbers 561, 8481 (...) for $x=1,25$ (...);
: for $P=645=3 * 5 * 43, d=15, d<\operatorname{sqr} 645$; the least m such that m*210 > 322 is $m=2$ so $n=645-420=225$; then Q mod $420=225$ and formula $420 * x+225$ gives the Poulet numbers 645, 1905 (...) for $x=1,4$ (...);
: for $P=1105=5 * 13 * 17, \mathrm{~d}=13, \mathrm{~d}<$ sqr 1105; the least m such that $m * 156>552$ is $m=4$ so $n=1105$ $624=481$; then $Q \bmod 624=481$ and formula $624 * x+$ 481 gives the Poulet numbers 1105, 1729, 16705 (...) for $x=1,2,26$ (...);
: for $\mathrm{P}=1729=7 * 13 * 19, \mathrm{~d}=13, \mathrm{~d}<\mathrm{sqr} 1729$; the least m such that $m * 156>864$ is $m=6$ so $n=1729$ $936=793$; then $Q \bmod 936=793$ and formula $936 * x+$ 793 gives the Poulet numbers 1729, 16705 (...) for $\mathrm{x}=$ 1, 17 (...);
: for $\mathrm{P}=1729=7 * 13 * 19, \mathrm{~d}=19, \mathrm{~d}<\mathrm{sqr} 1729$; the least m such that $m * 342>864$ is $m=3$ so $n=1729$ $1026=703$; then $Q \bmod 1026=703$ and formula $1026 *_{x}+$ 703 gives the Poulet numbers 1729, 8911 (...) for $\mathrm{x}=$ 1, 8 (...);
: for $\mathrm{P}=2701=37 * 73, \mathrm{~d}=37, \mathrm{~d}<$ sqr 2701; the least m such that $\mathrm{m} * 1332>1350$ is $\mathrm{m}=2$ so $\mathrm{n}=2701$ - 2664 $=37$; then $Q \bmod 2664=37$ and formula $2664 * x+37$ gives the Poulet numbers 2701, 29341 (...) for $x=1$, 11 (...);
: for $P=2821=7 * 13 * 31, d=31, d<\operatorname{sqr} 2821$; the least m such that $m * 930>1410$ is $m=2$ so $n=2821$ $1860=961$; then $Q \bmod 1860=961$ and formula $1860 *_{x}+$ 961 gives the Poulet numbers 2821, 4681, 10261, 13981, 15841, 75361, 93961, 172081, 285541 (...) for $\mathrm{x}=1$, $2,5,7,8,40,50,92,153$ (...).

