The asymptotic behavior of defocusing nonlinear Schrödinger equations

En-Lin Liu

October 10, 2016

Abstract

This article is concerned with the scattering problem for the defocusing nonlinear Schrödinger equations (NLS) with a power nonlinear $|u|^{p} u$ where $2 / n<p<4 / n$. We show that for any initial data in $H_{x}^{0,1}$ the solution will eventually scatter, i.e. $U(-t) u(t)$ tends to some function u_{+}as t tends to infinity.

We consider the defocusing nonlinear Schrödinger equations (NLS)

$$
\begin{equation*}
i u_{t}+\frac{1}{2} \triangle u=|u|^{p} u, \quad u(0)=u_{0}, \tag{1}
\end{equation*}
$$

where u is a complex value function $u: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{C}, u_{0} \in H_{x}^{0,1}$, and $\frac{2}{n}<p<\frac{4}{n}$.
There are many papers on the scattering theory for the NLS. For both focusing or defocusing problems, it is well known that for $p \leq \frac{2}{n}$ there will be no scattering[1]. For $p>\frac{2}{n}$, it is known that $U(-t) u(t)$ converges weakly in H_{x}^{1} for any finite energy solution of NLS[7], if we assume additionally that $u_{0} \in H_{x}^{1,1}$, then it is know that $U(-t) u(t)$ converges strongly in $L_{x}^{2}[11]$. For the asymptotic completeness problem, when $n \geq 3$, for any free solution in L_{x}^{2} or H_{x}^{1} there exists a solution of NLS which appoaches the free solution in the same space as t tends to infinity[6]. In the defocusing case, if $p>8 /\left(\sqrt{(n+2)^{2}+8 n}+n-2\right)$, then we have the asymptotic completeness in $H^{1,1}[4,10,8]$. In present paper we combining methods used in [11, 5], which gives similar result for a wider class of solutions. When $u_{0} \in H_{x}^{0,1}$, we have $U(-t) u(t)$ converges strongly in L_{x}^{2} and converging rate $t^{\frac{1}{2}-\frac{n p}{4}}$ which was implicitly indicate in [11]. Our main result follows:

Theorem 1 : Consider the equation (1) with $u_{0} \in H_{x}^{0,1}$, then there exists a unique global solution u with regularity $U(-t) u(t) \in C\left(\mathbb{R} ; H_{x}^{0,1}\right)$, and a function $u_{+} \in L_{x}^{2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|U(-t) u(t)-u_{+}\right\|_{L_{x}^{2}} \lesssim \lim _{t \rightarrow \infty} t^{\frac{1}{2}-\frac{n p}{4}}=0 \tag{2}
\end{equation*}
$$

Notation:

Let $\mathcal{F} \varphi$ and $\hat{\varphi}$ be the Fourier transform of φ defined by

$$
\mathcal{F} \varphi(\xi)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} \varphi(x) d x
$$

Let $U(t)$ be the free Schrödinger group defined by

$$
U(t) \phi=(2 \pi i t)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{i|x-y|^{2} / 2 t} \varphi(y) d y
$$

Note that $U(t)=M(t) D(t) \mathcal{F} M(t)$, where $D(t)$ is the dilation operator $D(t) f(x)=i^{-\frac{n}{2}} t^{-\frac{n}{2}} f\left(\frac{x}{t}\right)$, and $M(t)=e^{\frac{i|x|^{2}}{2 t}}$. Hence $U(-t)=M(-t) \mathcal{F}^{-1} D^{-1}(t) M(-t)$.

Let $P_{\leq N} \phi, P_{\geq N} \phi$ be the Littlewood-Paley projections:

$$
P_{\leq N} \phi=\mathcal{F}^{-1} \mathcal{X}\left(\frac{\xi}{N}\right) \hat{\phi}(\xi), \quad P_{\geq N}=\phi-P_{\leq N} \phi
$$

where \mathcal{X} is a Schwartz radial symmetry bump function.
Let $H^{m, k}$ be the norm define by

$$
\|\varphi\|_{H^{m, k}}^{2}=\left\|(1-\triangle)^{\frac{m}{2}} \varphi\right\|_{L^{2}}^{2}+\left\|\left(1+|x|^{2}\right)^{\frac{k}{2}} \varphi\right\|_{L^{2}}^{2}, \quad m, k \geq 0
$$

1 Well-posedness and energy estimate.

The equation (1) is locally L_{x}^{2} well-posed with $u_{0} \in L_{x}^{2}$ by Strichartz estimate for the linear inhomogeneous problem

$$
\left(i \partial_{t}+\frac{1}{2} \triangle\right) u=f, \quad u(0)=u_{0}
$$

which gives us

$$
\|u\|_{L_{t}^{\infty} L_{x}^{2}}+\|u\|_{L_{t}^{a} L_{x}^{2+p}} \lesssim\left\|u_{0}\right\|_{L_{x}^{2}}+\|f\|_{L_{t}^{a^{\prime}} L_{x}^{(2+p)^{\prime}}}
$$

where $a=\frac{4(2+p)}{n p}$ satisfying the equation $\frac{2}{a}+\frac{n}{2+p}=\frac{n}{2}$. Appying Hölder inequality to the inhomogeneous term we obtain the unique local solution via the contraction principle in the space $L_{t}^{\infty}\left(0, T ; L_{x}^{2}\right) \bigcap L_{t}^{a}\left(0, T ; L_{x}^{2+p}\right)$ provided that T is small enough. The global well-posedness of u is due to the conservation of the mass $\|u(t)\|_{L_{x}^{2}}=\left\|u_{0}\right\|_{L_{x}^{2}}$.

Denoting $L_{x} u$ be the vector field $L=x+i t \nabla$, which is the conjugate of x with respect to the linear flow, $L_{x}=U(t) x U(-t)$. Naturally we have

$$
\left[i \partial_{t}+\frac{1}{2} \triangle, L_{x}\right]=0
$$

and the equation of $L_{x} u$ has the form

$$
\left(i \partial_{t}+\frac{1}{2} \triangle\right) L_{x} u=\left(1+\frac{p}{2}\right)|u|^{p} L_{x} u-\frac{p}{2} u^{2}|u|^{p-2} \overline{L_{x} u},
$$

which is the linearization of (1). The well-posedness of the $L_{x} u$ equation is also obtained by the same Strichartz estimate and conservation of the mass. This shows the globally well-posed for initial data in $H^{0.1}$. See [3, 4]. Denoting

$$
\begin{equation*}
w(t, v)=t^{\frac{n}{2}} e^{-i t|v|^{2} / 2} u(t, t v) \tag{3}
\end{equation*}
$$

we have $i t^{\frac{n}{2}} e^{-i t|v|^{2} / 2}\left(L_{x} u\right)(t, t v)=\partial_{v} w(t, v)$, hence $w \in C\left(\mathbb{R} \backslash\{0\} ; H_{v}^{1}\right)$ and also globally wellposed.. It can also be written as $w(t, v)=i^{-\frac{n}{2}} D^{-1}(t) M(-t) u$ and gives the differential equation

$$
\begin{equation*}
i w_{t}+\frac{1}{2 t^{2}} \Delta w=t^{-\frac{n p}{2}}|w|^{p} w \tag{4}
\end{equation*}
$$

for $t \in \mathbb{R} \backslash\{0\}$. Multiplying (4) with \bar{w}_{t} and takes the real part, this leads us to the following equation, the formal calculation of which can be justified by the regularizing technique of Ginibre and Velo [3]

$$
\begin{equation*}
\partial_{t}\left(\frac{1}{4}\|\nabla w\|_{L_{v}^{2}}^{2}+\frac{1}{2+p} t^{2-\frac{n p}{2}}\|w\|_{L_{v}^{2+p}}^{2+p}\right)=\frac{4-n p}{4+2 p} t^{1-\frac{n p}{2}}\|w\|_{L_{v}^{2+p}}^{2+p} \tag{5}
\end{equation*}
$$

and use the relation $\nabla w=-i t^{\frac{n}{2}} L_{x} u(t, t v)$ to rewrite (5) into the form

$$
\begin{equation*}
\frac{1}{4}\left\|L_{x} u(t)\right\|_{L_{x}^{2}}^{2}+\frac{1}{2+p} t^{2}\|u(t)\|_{L_{x}^{2+p}}^{2+p}=\frac{1}{4}\left\|x u_{0}\right\|_{L_{x}^{2}}^{2}+\int_{0}^{t} \frac{4-n p}{4+2 p} s\|u(s)\|_{L_{x}^{2+p}}^{2+p} d s \tag{6}
\end{equation*}
$$

Hence by Gronwall's inequality we get the growth

$$
\begin{equation*}
\left\|L_{x} u\right\|_{L_{x}^{2}}=\|\nabla w\|_{L_{v}^{2}} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} t^{1-\frac{n p}{4}}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{\frac{n p}{2}}\|u\|_{L_{x}^{2+p}}^{2+p}=\|w\|_{L_{v}^{2+p}}^{2+p} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} 1 \tag{8}
\end{equation*}
$$

Note that $0<1-\frac{n p}{4}<\frac{1}{2}$.

2 Wave packets and the asymptotic equation.

To study the global decay properties of solutions we use the method of testing by wave packets developing by Ifrim and Tataru [5]. A wave packet is an approximate solution localized in both space and frequency on the scale of the uncertainty principle. We define a wave packet Ψ_{v} adapted to the ray $\Gamma_{v}:=\{x=v t\}$ and measure u along Γ_{v} by considering

$$
\gamma(t, v)=\int u(t, x) \overline{\Psi_{v}}(t, x) d x
$$

The test function Ψ_{v} is of the form

$$
\Psi_{v}(t, x)=\mathcal{X}\left(\frac{x-v t}{\sqrt{t}}\right) e^{i \phi}
$$

where the phase function $\phi=\frac{|x|^{2}}{2 t}$. Here for the computation purpose, rewrite γ as

$$
\gamma=P_{\leq \sqrt{t}} w
$$

which is the same definition as the original one.

A direct computation yields

$$
\begin{equation*}
i \gamma_{t}=\mathcal{F}\left[D \mathcal{X}\left(\frac{\xi}{\sqrt{t}}\right) \cdot \frac{\xi}{2 t^{\frac{3}{2}}}+\frac{|\xi|^{2}}{2 t^{2}} \mathcal{X}\left(\frac{\xi}{\sqrt{t}}\right)\right] \hat{w}+t^{-\frac{n p}{2}} P_{\leq \sqrt{t}}|w|^{p} w:=I_{1}+I_{2} \tag{9}
\end{equation*}
$$

We apply the similar arguement of Tsutsumi and Yajima [11] by computing the decaying rate of $\|\gamma(t)-\gamma(s)\|_{L_{v}^{2}}^{2}$ when t, s goes to infinity to prove that γ converges to some function. Since

$$
I_{1}=\mathcal{F}\left[D \mathcal{X}\left(\frac{\xi}{\sqrt{t}}\right) \cdot \frac{\xi}{2 t^{\frac{3}{2}}}+\frac{|\xi|^{2}}{2 t^{2}} \mathcal{X}\left(\frac{\xi}{\sqrt{t}}\right)\right] \hat{w}
$$

and \mathcal{X} is a Schwartz function, we get

$$
\begin{equation*}
\left\|I_{1}(t)\right\|_{L_{x}^{2}} \lesssim t^{-\frac{3}{2}}\||\xi| \hat{w}\|_{L_{\xi}^{2}}=t^{-\frac{3}{2}}\left\|L_{x} u\right\|_{L_{x}^{2}} \tag{10}
\end{equation*}
$$

For the nonlinear part

$$
I_{2}=t^{-\frac{n p}{2}} P_{\leq \sqrt{t}}|w|^{p} w
$$

by using (8) and Hölder's inequality, we have for any $s \geq r \geq 1$ and any $T \geq 1$

$$
\begin{align*}
\left|\left\langle\int_{s}^{r} I_{2}(\sigma) d \sigma, \gamma(T)\right\rangle\right| & \left.=\left|\int_{s}^{r} \sigma^{-\frac{n p}{2}}\left\langle P_{\leq \sqrt{\sigma}}\right| w\right|^{p} w(\sigma), \gamma(T)\right\rangle d \sigma \mid \\
& \lesssim \int_{s}^{r} \sigma^{-\frac{n p}{2}}\|w(\sigma)\|_{L_{v}^{2+p}}^{1+p}\|\gamma(T)\|_{L_{v}^{2+p}} d \sigma \tag{11}\\
& \lesssim \int_{s}^{r} \sigma^{-\frac{n p}{2}}\|w(\sigma)\|_{L_{v}^{2+p}}^{1+p}\|w(T)\|_{L_{v}^{2+p}} d \sigma \\
& \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} s^{1-\frac{n p}{2}}-r^{1-\frac{n p}{2}}
\end{align*}
$$

By the relation $\gamma(T)=\gamma(1)-i \int_{1}^{T} I_{1}(\sigma) d \sigma-i \int_{1}^{T} I_{2}(\sigma) d \sigma$ which directly gives

$$
\begin{equation*}
\gamma(r)-\gamma(s)=-i \int_{s}^{r} I_{1}(\sigma) d \sigma-i \int_{s}^{r} I_{2}(\sigma) d \sigma \tag{12}
\end{equation*}
$$

Since $\|\gamma(T)\|_{L_{v}^{2}} \leq\|u(T)\|_{L_{x}^{2}}=\left\|u_{0}\right\|_{L_{x}^{2}}$, and by (7), (10) display

$$
\int_{s}^{r}\left\|I_{1}(\sigma)\right\|_{L_{v}^{2}} d \sigma \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} \int_{s}^{r} \sigma^{-\frac{1}{2}-\frac{n p}{4}} d \sigma \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} s^{\frac{1}{2}-\frac{n p}{4}}-r^{\frac{1}{2}-\frac{n p}{4}}
$$

and (11) which gives us

$$
\begin{equation*}
\langle\gamma(r)-\gamma(s), \gamma(r)-\gamma(s)\rangle \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}}\|\gamma(r)-\gamma(s)\|_{L_{v}^{2}}\left(s^{\frac{1}{2}-\frac{n p}{4}}-r^{\frac{1}{2}-\frac{n p}{4}}\right)+s^{1-\frac{n p}{2}}-r^{1-\frac{n p}{2}} \tag{13}
\end{equation*}
$$

From above equations there $\exists g \in L_{v}^{2}$ such that $\lim _{t \rightarrow \infty}\|\gamma(t)-g\|_{L_{v}^{2}}=0$, moreover we have $\|\gamma(t)-g\|_{L_{v}^{2}}^{2} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} t^{\frac{1}{2}-\frac{n p}{4}}\|\gamma(t)-g\|_{L_{v}^{2}}+t^{1-\frac{n p}{2}}$ which gives us

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|\gamma(t)-g\|_{L_{v}^{2}} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} \lim _{t \rightarrow \infty} t^{\frac{1}{2}-\frac{n p}{4}}=0 \tag{14}
\end{equation*}
$$

At last, if we take $u_{+}=i^{\frac{n}{2}} \mathcal{F}^{-1} g$, then there is the estimation

$$
\begin{align*}
& \left\|U(-t) u(t)-u_{+}\right\|_{L_{x}^{2}}=\left\|i^{\frac{n}{2}} M(-t) \mathcal{F}^{-1} w(t)-i^{\frac{n}{2}} \mathcal{F}^{-1} g\right\|_{L_{\xi}^{2}} \\
\lesssim & \left\|M(-t) \mathcal{F}^{-1}(w(t)-\gamma(t))\right\|_{L_{\xi}^{2}}+\left\|M(-t) \mathcal{F}^{-1} \gamma(t)-\mathcal{F}^{-1} \gamma\right\|_{L_{\xi}^{2}} \tag{15}\\
& \quad+\left\|\mathcal{F}^{-1} \gamma(t)-\mathcal{F}^{-1} g\right\|_{L_{\xi}^{2}} \\
:= & R_{1}+R_{2}+R_{3} .
\end{align*}
$$

It's obvious that $R_{3}(t)=\|\gamma(t)-g\|_{L_{v}^{2}}$. For R_{1}, by direct computation which yields

$$
\begin{equation*}
R_{1}(t)=\|w(t)-\gamma(t)\|_{L_{v}^{2}}=\left\|P_{\geq \sqrt{t}} w(t)\right\|_{L_{v}^{2}} \lesssim t^{-\frac{1}{2}}\|\nabla w\|_{L_{v}^{2}} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} t^{\frac{1}{2}-\frac{n p}{4}} \tag{16}
\end{equation*}
$$

Use the Taylor expansion of $e^{i x}$ we have that

$$
\begin{align*}
R_{2}(t) & =\left\|\left(e^{-\frac{i|\xi|^{2}}{2 t}}-1\right) \mathcal{F}^{-1} \gamma(t)\right\|_{L_{\xi}^{2}} \lesssim\left\|\frac{|\xi|}{\sqrt{t}} \mathcal{X}\left(\frac{\xi}{\sqrt{t}}\right) \hat{w}(t)\right\|_{L_{\xi}^{2}} \tag{17}\\
& =t^{-\frac{1}{2}}\|\nabla w(t)\|_{L_{v}^{2}} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} t^{\frac{1}{2}-\frac{n p}{4}}
\end{align*}
$$

Together by (14), (15), (16), and (17)

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|U(-t) u(t)-u_{+}\right\|_{L_{x}^{2}} \lesssim\left\|x u_{0}\right\|_{L_{x}^{2}} \lim _{t \rightarrow \infty} t^{\frac{1}{2}-\frac{n p}{4}}=0 \tag{18}
\end{equation*}
$$

By the time symmetry property of NLS, we have the same result when $t \rightarrow-\infty$.
From coservation of mass we have $\left\|u_{+}\right\|_{L_{x}^{2}}=\|g\|_{L_{v}^{2}}=\left\|u_{0}\right\|_{L_{x}^{2}}$ and (14), (18) display $\|\nabla \gamma\|_{L_{v}^{2}} \lesssim$ $\left\|L_{x} u\right\|_{L_{x}^{2}} \lesssim_{u_{0}} t^{1-\frac{n p}{4}}, 0<\alpha \leq \frac{n p}{2}-1$

$$
\begin{equation*}
\left\|\langle x\rangle^{\alpha} u_{+}\right\|_{L_{x}^{2}}=\lim _{t \rightarrow \infty}\left\|\langle\nabla\rangle^{\alpha} \gamma\right\|_{L_{v}^{2}} \lesssim u_{0} 1 \tag{19}
\end{equation*}
$$

References

[1] J. E. Barab. Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation. J. Math. Phys., 23:3270-3273, 1984.
[2] T. Cazenave. Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics. 10. New York University, Courant Institute of Mathematical Sciences, AMS, 2003.
[3] G. Velo J. Ginibre. On a class of nonlinear Schrödinger equations. i: the cauchy problem. J. Funct. Anal., 32:1-32, 1979.
[4] G. Velo J. Ginibre. On a class of nonlinear Schrödinger equations. ii: Scattering theory, general case. J. Funct. Anal., 32:33-71, 1979.
[5] D. Tataru M. Ifrim. Global bounds for the cubic nonlinear Schrödinger equations in one space dimension. arXiv:1404.7581, 2014.
[6] K. Nakanishi. Asymptotically-free solutions for the short-range nonlinear Schrödinger equation. SIAM J. Math. Anal., 32 No. 6:1265-1271, 2001.
[7] W. Strauss. Nonlinear wave equations. 73. CBMS Reg. Conf. Ser. MAth. Providence. RI, 1989.
[8] F. B. Weissler T. Cazenave. Rapidly decaying solutions of the nonlinear Schrödinger equation. Comm. Math. Phys., 47:75-100, 1992.
[9] T. Tao. Nonlinear dispersive equations: local and global analysis. 106. Regional Conference Series in Mathmatics, AMS, 2006.
[10] Y. Tsutsumi. Scattering problem for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor., pages 321-347, 43(1985).
[11] K. Yajima Y. Tsutsumi. The asymptotic behavior of nonlinear Schrödinger equations. Bull. Amer. Math. Soc. (N. S.), pages 186-188, 11(1984).

