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Abstract

This article is concerned with the scattering problem for the defocusing nonlinear Schrödinger

equations (NLS) with a power nonlinear |u|p u where 2/n < p < 4/n. We show that for any

initial data in H0,1
x the solution will eventually scatter, i.e. U(−t)u(t) tends to some function

u+ as t tends to in�nity.

We consider the defocusing nonlinear Schrödinger equations (NLS )

iut +
1

2
4u = |u|p u, u(0) = u0, (1)

where u is a complex value function u : R× Rn → C, u0 ∈ H0,1
x , and 2

n
< p < 4

n
.

There are many papers on the scattering theory for the NLS. For both focusing or defocusing
problems, it is well known that for p ≤ 2

n
there will be no scattering[1]. For p > 2

n
, it is known

that U(−t)u(t) converges weakly in H1
x for any �nite energy solution of NLS[7], if we assume

additionally that u0 ∈ H1,1
x , then it is know that U(−t)u(t) converges strongly in L2

x[11]. For the
asymptotic completeness problem, when n ≥ 3, for any free solution in L2

x or H1
x there exists a

solution of NLS which appoaches the free solution in the same space as t tends to in�nity[6]. In the

defocusing case, if p > 8/
(√

(n+ 2)2 + 8n+ n− 2
)
, then we have the asymptotic completeness

in H1,1[4, 10, 8]. In present paper we combining methods used in [11, 5], which gives similar result
for a wider class of solutions. When u0 ∈ H0,1

x , we have U(−t)u(t) converges strongly in L2
x and

converging rate t
1
2
−np

4 which was implicitly indicate in [11]. Our main result follows:
Theorem 1 : Consider the equation (1) with u0 ∈ H0,1

x , then there exists a unique global
solution u with regularity U(−t)u(t) ∈ C(R;H0,1

x ), and a function u+ ∈ L2
x(Rn) satisfying

lim
t→∞
‖U(−t)u(t)− u+‖L2

x
. lim

t→∞
t
1
2
−np

4 = 0. (2)

Notation:

Let Fϕ and ϕ̂ be the Fourier transform of ϕ de�ned by

Fϕ(ξ) = (2π)−
n
2

ˆ
Rn
e−ix·ξϕ(x)dx.
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Let U(t) be the free Schrödinger group de�ned by

U(t)φ = (2πit)−
n
2

ˆ
Rn
ei|x−y|

2/2tϕ(y)dy.

Note that U(t) = M(t)D(t)FM(t), where D(t) is the dilation operator D(t)f(x) = i−
n
2 t−

n
2 f
(
x
t

)
,

and M(t) = e
i|x|2
2t . Hence U(−t) = M(−t)F−1D−1(t)M(−t).

Let P≤Nφ, P≥Nφ be the Littlewood-Paley projections:

P≤Nφ = F−1X
(
ξ

N

)
φ̂(ξ), P≥N = φ− P≤Nφ

where X is a Schwartz radial symmetry bump function.
Let Hm,k be the norm de�ne by

‖ϕ‖2Hm,k =
∥∥∥(1−4)

m
2 ϕ
∥∥∥2
L2

+

∥∥∥∥(1 + |x|2
) k

2 ϕ

∥∥∥∥2
L2

, m, k ≥ 0.

1 Well-posedness and energy estimate.

The equation (1) is locally L2
x well-posed with u0 ∈ L2

x by Strichartz estimate for the linear
inhomogeneous problem (

i∂t +
1

2
4
)
u = f, u(0) = u0,

which gives us
‖u‖L∞

t L
2
x

+ ‖u‖LatL2+p
x

. ‖u0‖L2
x

+ ‖f‖
La

′
t L

(2+p)′
x

,

where a = 4(2+p)
np

satisfying the equation 2
a

+ n
2+p

= n
2
. Appying Hölder inequality to the inho-

mogeneous term we obtain the unique local solution via the contraction principle in the space
L∞t (0, T ;L2

x)
⋂
Lat (0, T ;L2+p

x ) provided that T is small enough. The global well-posedness of u is
due to the conservation of the mass ‖u(t)‖L2

x
= ‖u0‖L2

x
.

Denoting Lxu be the vector �eld L = x+ it∇, which is the conjugate of x with respect to the
linear �ow, Lx = U(t)xU(−t). Naturally we have[

i∂t +
1

2
4, Lx

]
= 0

and the equation of Lxu has the form(
i∂t +

1

2
4
)
Lxu =

(
1 +

p

2

)
|u|p Lxu−

p

2
u2 |u|p−2 Lxu,

which is the linearization of (1). The well-posedness of the Lxu equation is also obtained by the
same Strichartz estimate and conservation of the mass. This shows the globally well-posed for
initial data in H0.1. See [3, 4]. Denoting
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w(t, v) = t
n
2 e−it|v|

2/2u(t, tv), (3)

we have it
n
2 e−it|v|

2/2 (Lxu) (t, tv) = ∂vw(t, v), hence w ∈ C (R\ {0} ;H1
v ) and also globally well-

posed.. It can also be written as w(t, v) = i−
n
2D−1(t)M(−t)u and gives the di�erential equation

iwt +
1

2t2
4w = t−

np
2 |w|pw (4)

for t ∈ R\ {0} . Multiplying (4) with wt and takes the real part, this leads us to the following
equation, the formal calculation of which can be justi�ed by the regularizing technique of Ginibre
and Velo [3]

∂t

(
1

4
‖∇w‖2L2

v
+

1

2 + p
t2−

np
2 ‖w‖2+p

L2+p
v

)
=

4− np
4 + 2p

t1−
np
2 ‖w‖2+p

L2+p
v

(5)

and use the relation ∇w = −itn2Lxu(t, tv) to rewrite (5) into the form

1

4
‖Lxu(t)‖2L2

x
+

1

2 + p
t2 ‖u(t)‖2+p

L2+p
x

=
1

4
‖xu0‖2L2

x
+

ˆ t

0

4− np
4 + 2p

s ‖u(s)‖2+p
L2+p
x

ds. (6)

Hence by Gronwall's inequality we get the growth

‖Lxu‖L2
x

= ‖∇w‖L2
v
.‖xu0‖L2

x
t1−

np
4 , (7)

and
t
np
2 ‖u‖2+p

L2+p
x

= ‖w‖2+p
L2+p
v

.‖xu0‖L2
x

1. (8)

Note that 0 < 1− np
4
< 1

2
.

2 Wave packets and the asymptotic equation.

To study the global decay properties of solutions we use the method of testing by wave packets
developing by Ifrim and Tataru [5]. A wave packet is an approximate solution localized in both
space and frequency on the scale of the uncertainty principle. We de�ne a wave packet Ψv adapted
to the ray Γv := {x = vt} and measure u along Γv by considering

γ(t, v) =

ˆ
u(t, x)Ψv(t, x)dx.

The test function Ψv is of the form

Ψv(t, x) = X
(
x− vt√

t

)
eiφ

where the phase function φ = |x|2
2t
. Here for the computation purpose, rewrite γ as

γ = P≤
√
tw,

which is the same de�nition as the original one.
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A direct computation yields

iγt = F

[
DX

(
ξ√
t

)
· ξ

2t
3
2

+
|ξ|2

2t2
X
(
ξ√
t

)]
ŵ + t−

np
2 P≤

√
t |w|

pw := I1 + I2. (9)

We apply the similar arguement of Tsutsumi and Yajima [11] by computing the decaying rate of
‖γ(t)− γ(s)‖2L2

v
when t, s goes to in�nity to prove that γ converges to some function. Since

I1 = F

[
DX

(
ξ√
t

)
· ξ

2t
3
2

+
|ξ|2

2t2
X
(
ξ√
t

)]
ŵ,

and X is a Schwartz function, we get

‖I1(t)‖L2
x
. t−

3
2 ‖|ξ| ŵ‖L2

ξ
= t−

3
2 ‖Lxu‖L2

x
. (10)

For the nonlinear part

I2 = t−
np
2 P≤

√
t |w|

pw,

by using (8) and Hölder's inequality, we have for any s ≥ r ≥ 1 and any T ≥ 1∣∣∣∣〈ˆ r

s

I2(σ)dσ, γ(T )

〉∣∣∣∣ =

∣∣∣∣ˆ r

s

σ−
np
2

〈
P≤√σ |w|pw(σ), γ(T )

〉
dσ

∣∣∣∣
.
ˆ r

s

σ−
np
2 ‖w(σ)‖1+p

L2+p
v
‖γ(T )‖L2+p

v
dσ

.
ˆ r

s

σ−
np
2 ‖w(σ)‖1+p

L2+p
v
‖w(T )‖L2+p

v
dσ

.‖xu0‖L2
x
s1−

np
2 − r1−

np
2 .

(11)

By the relation γ(T ) = γ(1)− i
´ T
1
I1(σ)dσ − i

´ T
1
I2(σ)dσ which directly gives

γ(r)− γ(s) = −i
ˆ r

s

I1(σ)dσ − i
ˆ r

s

I2(σ)dσ. (12)

Since ‖γ(T )‖L2
v
≤ ‖u(T )‖L2

x
= ‖u0‖L2

x
, and by (7), (10) display

ˆ r

s

‖I1(σ)‖L2
v
dσ .‖xu0‖L2

x

ˆ r

s

σ−
1
2
−np

4 dσ .‖xu0‖L2
x
s

1
2
−np

4 − r
1
2
−np

4 ,

and (11) which gives us

〈γ(r)− γ(s), γ(r)− γ(s)〉 .‖xu0‖L2
x
‖γ(r)− γ(s)‖L2

v

(
s

1
2
−np

4 − r
1
2
−np

4

)
+ s1−

np
2 − r1−

np
2 . (13)

From above equations there ∃g ∈ L2
v such that limt→∞ ‖γ(t)− g‖L2

v
= 0, moreover we have

‖γ(t)− g‖2L2
v
.‖xu0‖L2

x
t
1
2
−np

4 ‖γ(t)− g‖L2
v

+ t1−
np
2 which gives us

lim
t→∞
‖γ(t)− g‖L2

v
.‖xu0‖L2

x
lim
t→∞

t
1
2
−np

4 = 0. (14)
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At last, if we take u+ = i
n
2F−1g, then there is the estimation

‖U(−t)u(t)− u+‖L2
x

=
∥∥in2M(−t)F−1w(t)− i

n
2F−1g

∥∥
L2
ξ

.
∥∥M(−t)F−1 (w(t)− γ(t))

∥∥
L2
ξ

+
∥∥M(−t)F−1γ(t)−F−1γ

∥∥
L2
ξ

+
∥∥F−1γ(t)−F−1g

∥∥
L2
ξ

:=R1 +R2 +R3.

(15)

It's obvious that R3(t) = ‖γ(t)− g‖L2
v
. For R1, by direct computation which yields

R1(t) = ‖w(t)− γ(t)‖L2
v

=
∥∥P≥√tw(t)

∥∥
L2
v
. t−

1
2 ‖∇w‖L2

v
.‖xu0‖L2

x
t
1
2
−np

4 . (16)

Use the Taylor expansion of eixwe have that

R2(t) =

∥∥∥∥(e− i|ξ|22t − 1

)
F−1γ(t)

∥∥∥∥
L2
ξ

.

∥∥∥∥ |ξ|√tX
(
ξ√
t

)
ŵ(t)

∥∥∥∥
L2
ξ

(17)

= t−
1
2 ‖∇w(t)‖L2

v
.‖xu0‖L2

x
t
1
2
−np

4

Together by (14), (15), (16), and (17)

lim
t→∞
‖U(−t)u(t)− u+‖L2

x
.‖xu0‖L2

x
lim
t→∞

t
1
2
−np

4 = 0. (18)

By the time symmetry property of NLS, we have the same result when t→ −∞.
From coservation of mass we have ‖u+‖L2

x
= ‖g‖L2

v
= ‖u0‖L2

x
and (14), (18) display ‖∇γ‖L2

v
.

‖Lxu‖L2
x
.u0 t

1−np
4 , 0 < α ≤ np

2
− 1

‖〈x〉α u+‖L2
x

= lim
t→∞
‖〈∇〉α γ‖L2

v
.u0 1. (19)
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