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Abstract 

We show that the flow from the ultraviolet to the infrared sector of any multidimensional nonlinear field 

theory approaches chaotic dynamics in a universal way. This result stems from several independent routes 

to aperiodic behavior and implies that the infrared attractor of effective field theories is likely to replicate 

the geometry of multifractal sets. In particular, we find that the Einstein-Hilbert Lagrangian is 

characterized by a single generalized dimension ( 4GRD  ), while the Standard Model (SM) Lagrangian 

is defined by a triplet of generalized dimensions ( 2,3
SM

D   and 4 ). On the one hand, this finding 

disfavors any naïve field-theoretic unification of SM and General Relativity (GR). On the other, it hints 

that the continuous spectrum of generalized dimensions lying between 2D   and 4D   may naturally 

account for the existence of non-baryonic Dark Matter. 

1. Introduction 

Few theorists would dispute the compelling success enjoyed by the two pillars of 

contemporary science, the Standard Model of high-energy physics (SM) and General 

Relativity (GR). As effective field-theories, SM and GR describe remarkably well a 

wealth of phenomena, from sub-nuclear physics to the realm of astronomical scales and 

cosmology. However, several long-standing issues hint that either new physics or a 

deeper conceptual structure is required for a complete account of Nature beyond SM 

and GR [1-3, 26-27]. 
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Recently, H. Nicolai has summarized the main foundational challenges confronting both 

the SM and GR [4]. His critique targets the vastly uncharted territory lying beyond 

perturbative quantum field theory, as well as the inherent singularities of the strong 

gravity regime in GR:  

“But the real problem with the SM is theoretical: it is not clear whether it makes sense 

at all as a theory beyond perturbation theory, and these doubts extend to the whole 

framework of quantum field theory (QFT) (with perturbation theory as the main tool 

to extract quantitative predictions). The occurrence of “ultraviolet” (UV) divergences in 

Feynman diagrams, and the need for an elaborate mathematical procedure called 

renormalisation to remove these infinities and make testable predictions order-by-

order in perturbation theory, strongly point to the necessity of some other and more 

complete theory of elementary particles.  

On the GR side, we are faced with a similar dilemma. Like the SM, GR works extremely 

well in its domain of applicability and has so far passed all experimental tests with 

flying colours, most recently and impressively with the direct detection of 

gravitational waves (see "General relativity at 100"). Nevertheless, the need for a 

theory beyond Einstein is plainly evident from the existence of space–time 

singularities such as those occurring inside black holes or at the moment of the Big 

Bang. Such singularities are an unavoidable consequence of Einstein’s equations, and 

the failure of GR to provide an answer calls into question the very conceptual 

foundations of the theory.”  

In this work, we do not proceed along the path of Quantum Gravity, as suggested by 

Nicolai and pursued by many other researchers in the field. Working in the context of 

the emergence paradigm, we model the flow from the ultraviolet to the infrared regime 

http://cerncourier.com/cws/article/cern/67451
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of field theory starting from the universal behavior of far-from-equilibrium nonlinear 

dynamical systems. The bottom line of this approach is that globally stable strange 

attractors, along with their description in terms of multifractals, define the fabric of 

effective field theories (EFT).  

The paper is organized as follows: section two covers the long-term approach to chaos in 

nonlinear dynamics and section three presents a brief overview of multifractal analysis. 

This enables development of next sections, which reveal surprising connections between 

multifractal analysis and effective field theories, in particular the SM and GR. A brief 

discussion and concluding remarks form the topic of the last section. 

The reader is cautioned upfront on the preliminary nature of our investigation. 

Concurrent research is needed to support, expand or debunk these tentative ideas.     

2. The long-term approach to chaos in nonlinear dynamics 

Generic Quantum Field Theories (QFT) are known to become scale-invariant at large 

distances. Viewed in the context of conformal field theory, this property is customarily 

associated with the fixed-point structure of the Renormalization Group (RG) flow [5-6]. 

Starting from this observation, we conjecture below that all field theories evaluated at 

sufficiently low-energy scales emerge from an underlying system of coupled high-energy 

entities called primary variables. Let the ultraviolet (UV) sector of field theory be 

described by a large set of such variables  , 1,2,...,,ix x i n  , 1n  , whose dynamics 

is far-from-equilibrium. The specific nature of the UV variables is irrelevant to our 

context, as they can take the form of irreducible objects such as, but not limited to, 

strings, branes, loops, knots, bits of information and so on. 
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The downward flow of  ix x  may be mapped to a system of ordinary differential 

equations having the universal form  

 ' ( ( ), ( ), , ( ))x f x D       (1) 

Here, , , D   denote, respectively, the control parameters vector  , 1,2,...j j m   , 

the evolution parameter and the dimension of the embedding space. If the dimension of 

the embedding space is taken to be independent variable or control parameter, the 

system (1) further reduces to 

 ' ( ( ), ( ), )x f x      (2) 

It is reasonable to assume that the flow (1) and (2) occurs in the presence of non-

vanishing perturbations induced by far-from-equilibrium conditions. These may arise, 

for example, from primordial density fluctuations in the early Universe or from 

unbalanced vacuum fluctuations in the high-energy regime of QFT. 

To make explicit the effect of perturbations, we resolve ( )x   into a reference stable state 

( )sx   and a deviation generated by perturbations, i.e.,       

 ( ) ( ) ( )sx x y     (3) 

Direct substitution in (1) yields the set of homogeneous equations 

 ' ({ }, ) ({ }, )s sy f x y f x      (4) 

Further expanding around the reference state leads to 
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 ' ( , ) ({ }, )i j s j i j

j

y L x y h y     (5) 

where i jL  and ih  denote, respectively, the coefficients of the linear and nonlinear 

contributions induced by the deviations from the reference state. Here, i jL  represents a 

n n  matrix dependent on the reference state and on the control parameters vector. 

Under the assumption that parameters   stay close to their critical values ( )c  , it 

can be shown that either (1) or (2) undergoes bifurcations and it can be mapped to a 

closed set of universal equations referred to as normal forms [7]. If, at c   

perturbations are non-oscillatory (steady-state), the normal form equations are 

 2' ( )cz uz      (6) 

 3' ( )cz z uz      (7) 

 2' ( )cz z uz      (8) 

If perturbations are oscillatory (periodic) at c  , the normal form equation is instead 

given by 

 
2

0' [( ) ]cz i z uz z        (9) 

which relates to the complex Ginzburg-Landau equation [8-9]. Either way, the outcome 

of this brief analysis is that the multivariable dynamics contained in (1) and (2) reduces 

to a lower dimensional system of equations, with the emerging variable z  playing the 

role of an effective order parameter. 
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It can be further shown that, as the control parameter scans a sequence of critical values 

defined through 

 l

l c K      (10) 

where K  and   are constants and 1,2,...,l N  ( 1N  ), (6)–(8) undergo universal 

transition to chaos via a cascade of period-doubling bifurcations called the Feigenbaum 

scenario [10-11]. In general, the transition to chaos in multivariable systems of 

nonlinear equations either confines trajectories to a strange attractor or drives them 

away from a strange repeller [12-13]. Likewise, (9) can be shown to lead to 

spatiotemporal chaos through collective bifurcations and pattern formation outside 

equilibrium [14].  

It has been long known that the asymptotic onset of chaos in (1) or (2) can develop 

through alternative mechanisms that do not involve reduction to normal forms. Among 

them we mention quasi-periodicity, intermittency and crises, as well as chaotic 

transients and homoclinic orbits [15].  

Taken together, these considerations suggest that the flow from the ultraviolet to the 

infrared sector of any high-dimensional nonlinear field theory is prone to transition to 

chaos, regardless of the specific content of (1) and (2) or their boundary conditions. 

Since multifractals are the natural descriptors of strange attractors, it follows that the 

infrared attractor (or repeller) of effective field theories is likely to replicate the 

geometry of multifractal sets. 

It is important to also recall that strange attractors, as fingerprints of chaos, share deep 

roots with equilibrium statistical mechanics via ergodicity, global stability and invariant 

probability distributions [16]. As a result, the connection between equilibrium statistical 
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mechanics and field theory [17] reinforces the view that effective field theories emerge as 

the most likely infrared endpoint of either (1) or (2).    

3. Multifractals: a concise overview 

As it is known, the box-counting dimension defines the main scaling property of fractal 

structures and is a measure of their self-similarity. Multifractals are global mixtures of 

fractal structures, each characterized by its local box-counting dimension. Self-similarity 

of multifractals is accordingly defined in terms of a multifractal spectrum describing the 

overall distribution of dimensions. In the language of chaos and complexity theory, 

multifractal analysis is the study of invariant sets and is a powerful tool for the 

characterization of generic dynamical systems. 

In the recursive construction of multifractal sets from 1,2...,i N  local scales 
ir  with 

probabilities
ip , the definition of the box-counting dimension leads to [18-19]   

 ( )

1

1
N

q q

i i

i

p r




   (11) 

in which 

 
1

1
N

i

i

p


   (12) 

Here, q  and ( )q  are two arbitrary exponents and the latter is typically presented as 

 ( ) (1 )
q

q q D     (13) 

where qD   plays the role of a generalized dimension.  
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The closure relationship (11) may be extended to a continuous distribution of scales in 

D - dimensional space time. It reads 

 
( )( ) ( ) 1q q Dp x r x d x   (14) 

4. GR as topological analogue of SM  

Consider now the field makeup of the SM, formed by 16 independent “flavors”: two 

massive gauge bosons ( , )W Z , gluon ( )g , the Higgs scalar ( )H , neutrinos, charged 

leptons and quarks. The SM structure can be conveniently organized in the 4 4  matrix 

 

 
 
 
 
 
 

e
g

W e

Z u c b

H d s t

SM

 
  

 
  (15) 

The photon ( ) is absent from (15) as it is built from the underlying components of the 

electroweak sector, whereby 
3( , )W B    and 

3( , )B B W Z    [19]. 

It was shown in [20-21] that, when evaluated at the global electroweak scale EWM , the 

spectrum of particle masses 
im  entering the SM satisfies the “closure” relation 

 
16

2

1

( ) 1i

i EW

m

M

   (16) 

It is apparent that (15) shares the same formal structure with the metric tensor of GR, 

that is, 
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

 
 
 
 
 
 

g g g g

g g g g

g g g g

g g g g

GR   (17) 

where there are only 10 independent entries under the standard assumption g = g . 

Starting from the GR definitions of interval and proper time leads to ( 1c  ) 

 
3 3

0 0

1
dx dx

g
d d

 



    

  (18) 

subject to the constraint 

 
3

0

1,

0,
g g

 

  



 


 


 







   (19) 

Comparing (11), (12) to (16) and (18), (19) reveals the following mapping 

1:
2

( , , 4i qGR p g g q D

   , ( ) 2q  ) 

(20) 

: ( 1, 0, ( ) 2i qSM p q D q    ) 

It is instructive to note that 0 2D   coincides with the fractal dimension of quantum 

mechanical paths in free space [22], whereas 1 2 4D   recovers the four-dimensionality 

of geodesic paths in classical spacetime. 

A couple of conclusions may be drawn from (20):  
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1) GR may be viewed as topological analogue of the SM, defined by a half-unitary 

exponent q  and a dimension that is twice the SM dimension (that is, 1/2 02D D ). 

 2) The spectrum of particle mass scales ( i

EW

m
M

) and the four-vector of differential 

coordinates ( dx
d




) form the basis for the multifractal description of SM and GR, 

respectively. 

5. Multifractal formulation of effective field theories 

Effective Lagrangians in field theory may be represented as sums of polynomial terms 

having the generic form  

 , , 1 1, 1

, , , ,

( , ) [ ( ) ( ) ( ) ( ) ]k l m n

i i i i i i

i k l m n

L c c c              (21) 

To simplify notation, we focus below on the basic unit entering (21), namely on  

 11 12 22 11 1 12 1 2 22 2( , ) ( ) ( ) ( ) ( ) 1k l m n k l m n

uL c c c c z c z z c z                (22) 

in which 

 
   

1 1 2 2, , ,
( , ) ( , )( , ) ( , )

k l m n
k l m nz z z z

L LL L

   

      

 
   

  
 (23) 

1,2,3c  are constants at given setting, for example, at a given energy scale. Therefore, 

 11 12 21 22 1k l m nr r r r    (24) 

where 
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11 11 1 12 12 1, ,k k l lr c z r c z  21 12 2 22 22 2,m m n nr c z r c z   

If 1,2,3c  depend on the field content or their derivatives, (24) assumes the general form 

 31 2

11 11 11 12 12 21 12 21 22 22 22( ) ( , ) ( ) 1
qq qk l m nc r r c r r r r c r r    (25) 

where 1,2,3q  are non-vanishing exponents and 

 11 12 22 1c c c    (26) 

Comparing (25) and (26) to (11) and (12) leads to the conclusion that effective field 

theories may be formally cast in the language of multifractals. Next two sections apply 

this formalism to GR and the SM, respectively. 

6. GR as multifractal set 

Four-dimensional GR is characterized by the gravitational action [23] 

 4S R g d x   (27) 

Einstein’s field equations follow upon applying small variations g  to the metric and 

holding g  and their first derivatives constant on the boundary of the four-dimensional 

volume.  The scalar curvature is given by 

 
, ,( )R g R g       

                    (28) 

and the gravitational Lagrangian by  
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 ( )GL g    

         (29) 

where 

  represent the Christoffel symbols of the second kind. Combined use of (28) 

and (29) leads to 

 
4

( ) 1G

G

dS
L g g

Lgd x

   

        

   

   
       


 (30) 

It is seen that the gravitational Lagrangian contains terms having the symbolic form 

 ( ) ( )GR g g g g g      (31) 

On account of (19), the components of the metric tensor g  act as probability 

amplitudes in (11) and (12). Comparing (30) with (11), (12), as well as with (25), (26), 

enables one to retrieve the generalized dimension of GR found in (20), namely 1 2 4D  . 

In short, 

 1
2

1: , ( ) 2, 4
2

GR q q D    (32) 

Finally, a glance at (11) and (25) shows that the role of local scales in (30) is being played 

by the product of Christoffels normalized to the gravitational Lagrangian GL .  

7. SM as multifractal set 

Consider now the SM Lagrangian [24] 

 †1
( . .) ( ) ( ) V( )

4

a a i i i i i j

SM L L R R ij L R

V

L V V f i D f f i D f Y f Hf h c D H D H H   

            (33) 
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Here, the summation convention over repeated indices is assumed, with ( , ) 1,2,3i j 

extending over the three fermion families. The vector fields V corresponds to the three 

gauge groups of the SM, namely (1) , (2)Y LU SU  and (3)CSU , 

  1,2,3 1....8, ,a aV B W G   (34) 

to which we associate the field-strength tensors 

 a a a b c

abcV V V g f V V           (35) 

and covariant derivative operators 

 
a a

V V

V

D i g t V       (36) 

The last couple of terms denote the kinetic and potential contributions of the Higgs 

field, 

 2 † † 2V( ) ( )HH m H H H H    (37) 

In 3+1 dimensions, all mass and coupling charges act as free scalar parameters that are 

independent of fields or their derivatives. 

In symbolic form, it is seen that the SM Lagrangian (33) contains terms including only 

field derivatives (  ), a mix of fields and their derivatives (  ) and terms with only 

fields ( ). The composition of the (33) is shown in Tab. 1 below, side by side with the 

corresponding composition of the gravitational Lagrangian (30). Since (33) contains 



14 
 

terms that are quadratic, trilinear and quadrilinear in fields and their derivatives, SM is 

characterized by a triplet of generalized dimensions, that is,   

 

1

0

2

0

3

0

0, ( ) 2, 2

: 0, ( ) 3, 3

0, ( ) 4, 4

q q D

SM q q D

q q D







  


  


  

 (38) 

Comparing (38) with (20) reveals that the SM Lagrangian displays a much richer 

multifractal structure than its overall field makeup embodied in (15). 

EFT (  ) term (  ) term ( ) term 

GR - ( ) ( )g g g g g       - 

SM 

V V    

H H   

V V V   ; f f

H V   

V V ; 2( )V V

f f V  ; H V

f f H  ; H H  
2( )H H  

Tab 1: The symbolic structure of GR and SM in terms of fields and their derivatives 

8. Discussion and concluding remarks  

Our study points out that effective field theories (EFT) replicate the properties of 

strange attractors. In particular, the geometric structure of both SM and GR can be 

formulated using the language of multifractals. It is found that the GR Lagrangian is 

characterized by a single generalized dimension ( 4GRD  ), whereas the SM Lagrangian 

requires a triplet of generalized dimensions ( 2,3SMD   and 4 ). The only generalized 

dimension where GR and SM overlap is 4D  , which suggests a deeper topological 

connection between gauge bosons, the Higgs scalar and classical gravity. For example, 
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the Higgs scalar may be regarded as a short-range condensate of gauge bosons [25, 29-

30], whereas classical gravity may emerge as ultra-weak and long-range excitation of 

the Higgs scalar [25]. Our findings also suggest that the continuous spectrum of 

generalized dimensions lying between 2D   and 4D   may naturally account for the 

existence of non-baryonic Dark Matter, viz. the long-range manifestation of Cantor Dust 

[28]. 

 Parameter/Theory GR SM 

qD  1
2

4D   1
2

4D   1

0 2D   2

0 3D   3

0 4D   

Source 
( )   

Tab.1 

3 3

0 0

1
dx dx

g
d d

 



    

  

Eq. (18) 

( )  

Tab. 1 

( )   

Tab.1 

( )  

Tab. 1 

Tab. 2: Generalized GR and SM dimensions along with their sources 
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