Conjecture on primes obtained concatenating p, n and $p+n$, where p and $p+n$ primes

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following conjecture: For any n even there exist an infinity of primes which can be deconcatenated in three numbers, i.e., from left to right, p, n and $p+n$, where p and $p+n$ are primes. Examples: for $\mathrm{n}=2$, the least such prime is 11213 (11 +2 $=13)$; for $\mathrm{n}=4$, the least such prime is 347 (3 + 4 = 7); for $\mathrm{n}=6$, the least such prime is 11617 (11 + $6=17$); for $\mathrm{n}=8$, the least such prime is $5813(5+8=13)$; for $\mathrm{n}=$ 10, the least such prime is $31013(3+10=13)$; for $\mathrm{n}=$ 12, the least such prime is $51217(5+12=17)$; for $\mathrm{n}=$ 14, the least such prime is $51419(5+14=19)$; for $\mathrm{n}=$ 16, the least such prime is $431659(43+16=59)$.

Conjecture:

For any n even there exist an infinity of primes which can be deconcatenated in three numbers, i.e., from left to right, p, n and $p+n$, where p and $p+n$ are primes.

The least five primes which can be deconcatenated in three numbers, i.e., from left to right, p, n and $p+n$, where p and p +n are primes, for each n from 2 to 14:
: For $\mathrm{n}=2$ we have:

```
: 11213 (11 + 2 = 13 and 11, 13 are primes);
: 29231 (29 + 2 = 31 and 29, 31 are primes);
: 41243 (41 + 2 = 43 and 41, 43 are primes);
: 1012103 (101 + 2 = 103 and 101, 103 are primes);
: 1372139 (137 + 2 = 139 and 137, 139 are primes).
```

: For $\mathrm{n}=4$ we have:

```
: 347 (3 + 4 = 7 and 3, 7 are primes);
: 7411 (7 + 4 = 11 and 7, 11 are primes);
: 13417 (13 + 4 = 17 and 13, 17 are primes);
: 19423 (19 + 4 = 23 and 19, 23 are primes);
: 37441 (37 + 4 = 41 and 37, 41 are primes).
```

: For $\mathrm{n}=6$ we have:

```
: 11617 (11 + 6 = 17 and 11, 17 are primes);
: 13619 (13 + 6 = 19 and 13, 19 are primes);
: 17623 (17 + 6 = 23 and 17, 23 are primes);
: 23629 (23 + 6 = 29 and 23, 29 are primes);
: 37643 (37 + 6 = 43 and 37, 43 are primes).
```

: For $\mathrm{n}=8$, we have:

$:$	$5813(5+8=13$ and 5,13 are primes $) ;$
$:$	$23831(23+8=31$ and 23,31 are primes $) ;$
$:$	$29837(29+8=37$ and 29,37 are primes $) ;$
$:$	$53861(53+8=61$ and 53,61 are primes $) ;$
$:$	$71879(71+8=79$ and 71,79 are primes $)$.

: For $\mathrm{n}=10$, we have:
: $31013(3+10=13$ and 3, 13 are primes);
: $131023(13+10=23$ and 13, 23 are primes);
: $311041(31+10=41$ and 31,41 are primes);
: 611071 (61 + $10=71$ and 61, 71 are primes);
: $1213101223(1213+10=1223$ and 1213, 1223 are
primes).
: For $\mathrm{n}=12$, we have:

$:$	$51217(5+12=17$ and 5,17 are primes $) ;$
$:$	$191231(19+12=31$ and 19,31 are primes $) ;$
$:$	$411253(41+12=53$ and 41,53 are primes $) ;$
$:$	$471259(47+12=59$ and 47,59 are primes $) ;$
$:$	$591271(59+12=71$ and 59,71 are primes $)$.

: For $\mathrm{n}=14$, we have:
: $51419(5+14=19$ and 5, 19 are primes);
: $291443(7+14=11$ and 7, 11 are primes);
: 1019141033 (1019 + 14 = 1033 and 1019, 1033 are primes);
: $1187141201(1187+14=1201$ and 1187, 1201 are primes);
: $1223141237(1223+14=1237$ and 1223, 1237 are primes).

