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It is commonly believed that the self-rotation angular momentum of planets is due to

an original angular momentum of dense interstellar clouds at the formation stage of
the stars. However, the study shows something completely different: a test planet in

free-fall, in fact, follows two geodesics; the first is the usual Schwarzschild path, and

the second is a Schwarzschild-like path, defined (spatially) locally: an elliptical orbit
in the plane (U(1)-variable, azimuthal angle). The analysis leads to the fact that: the

motion along these geodesics (physically) is exactly the self-rotation of a charged test

planet in Reissner-Nordstrom spacetime. The results reveal a more general understanding
of Einstein equivalence principle: locally, gravitational field can be (in the Reissner-

Nordstrom space) replaced with an accelerated and rotated local frame.

1. Introduction

In general theory of relativity,1,2 an exact solution of Einstein equations is the math-

ematical relation relating the spacetime coordinates and the stress-energy tenor in.

In literature, several types of solutions have been studied, including: (a) Vacuum

solutions,3 (b) Electro-vacuum solutions whose the mass-energy considered is the

electromagnetic field,4 (c) Null dust solutions whose the only mass-energy tensor

considered is that of mass-less radiation,5 and (d) Fluid solutions whose the stress-

energy tensor is produced totally by the momentum, mass, and a density of fluid.6

Having said that, the physical understanding of the solutions does not parallel the

theoretical progress, so the case of the ReissnerNordstrom solution.8 In the present

paper we show that the ReissnerNordstrom metric leads naturally to the observed

self-rotation angular momentum of planets.

2. Reissner-Nordstrom spacetime

The ReissnerNordstrom metric corresponds to the gravitational field of a non-

rotating, charged, spherically symmetric gravity-source. The metric takes the form

ds2 = −
(

1 − rs
r

+
a

r2

)
dt2 +

1

1 − rs
r + a

r2
dr2 + r2dϕ2 (1)

where rs = 2GM
c2 , c is the speed if light, M the mass of the gravity source, G is the

constant of Newton, a = Q2G
4πε0c4

, Q the electric charge of the gravity-source, 1
4πε0

1
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is the coulomb force constant. Of course, taking the limit of the value a to zero

recovers the Schwarzschild solution, so the case of rs: taking the value of rs to zero

(or fixing it at a given spatial point on the usual Schwarzschild geodesic) gives the

solution corresponding to the geometric-electromagnetic field, which has the form

ds2 = −
(

1 +
a

r2

)
dt2 +

1

1 + a
r2
dr2 + r2dϕ2 (2)

3. The physical understanding of the solution

It is clear that gravity is a geometric theory defined with the group SL(2, C), and

cannot be observed locally according to Einstein equivalence principle. Also, we

know that classical electromagnetism is a U(1)–group theory, i.e. it corresponds to

rotations on two-dimensional space. Thus, the last equation defines the curvature of

the spacetime resulting from the stress-energy tensor of the electromagnetic sector

(the charge in the gravity-source), i.e. the last equation corresponds to a free-fall

on geodesics, but it takes place (spatially) locally.

On the other hand, the rotation (i.e. U(1)) can be defined with an angle variable

ϕ, thus we deal with the variable ŕ = r0ϕ, where r0 is constant (with respect to

the study). Also, we denote the proper time as ś, the time as t́ and the angle

phi as ϕ́. The angle ϕ́ should not be confused with ϕ. The second is related to

the electromagnetic rotation, and the first to the usual phi-coordinate. The metric,

therefor, takes the form:

ds2 = −
(

1 +
a

ŕ2

)
dt́2 +

1

1 + a
ŕ2
dŕ2 + ŕ2dϕ́2 (3)

where we have used the prime on the coordinates in order not the study to be

confused with the usual coordinates in the Schwarzschild spacetime, because the

two metrics affect the test particle at the same time: locally the metric of the

primed coordinates, and globally the usual Schwarzschild metric. Consequently, the

ReissnerNordstrom spacetime has two Schwarzschild metrics. Simply, a test particle

in free-fall in the ReissnerNordstrom spacetime follows to paths: one in the plane

(r0, ϕ́), and the other in the plane (ŕ, ϕ́). The manifestation of the first motion is

the observed planetary motion around sun, and that of the second is the observed

self-rotation of planets. The fact that the term 1/ŕ corresponds to 1/ŕ2 in the new

Schwarzschild metric is that: we are (globally) dealing with the variable r0ϕ (not ϕ

alone), thus the factor r0 results in the term of the curvature as a curvature-factor

with the value f = 1/ŕ, thus f · 1/ŕ = 1/ŕ2 see Ref. 7 for more details.

4. Results

The physical understanding of the ReissnerNordstrom solution is crucial: a test

particle, in fee-fall along a ReissnerNordstrom geodesic, in fact follows two elliptical

orbits: one in the plane (ŕ, ϕ́) and the second in the plane (r0, ϕ́).
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4.1. Geodesics equations

Using the geodesic equations together with the metric of the interval in Eq. (3), we

get the differential-system

ds2 = −(1 +
a

ŕ2
)dt́2 +

1

1 + a
ŕ2
dŕ2 + ŕ2dϕ́2, (4)

d2t́

dś2
=

2a

ŕ(ŕ2 + a)

dt́

dś

dŕ

dś
, (5)

d2ϕ́

dś2
=

−2

r

d ´́ϕ

dś

dŕ

dś
, (6)

d2ŕ

dś2
=

−a
ŕ(ŕ2 + a)

(
dŕ

dś

)2

+
ŕ2 + a

ŕ

(
dϕ́

dś

)2

+
a(ŕ2 + a)

ŕ5

(
dt́

dś

)2

, (7)

which give

dt́

dś
= β

ŕ2

ŕ2 + a
, (8)

dϕ́

dś
=

γ

ŕ2
, (9)

and

d2ŕ

dś2
=

−a
ŕ(ŕ2 + a)

[
1 + β2 +

a

ŕ2
− a+ ŕ2

ŕ4
γ2

]
+

(
ŕ +

a

ŕ

) γ2

ŕ4
+
a(ŕ2 + a)

ŕ5

ŕ4

(ŕ2 + a)2
β2

(10)

where γ, β are constants: particularly, γ represents the angular momentum of the

test particle; since the test particle rotates around itself at a any spatial point of

the manifold, the constant of angular momentum can be written as γ = Iω, where

I is the moment of inertia of the test particle (or planet) and ω is the corresponding

angular velocity (i.e. dϕdś ).

4.2. The Newtonian approximation

Using the Newtonian approximation (that is dealing with the elliptical orbits in the

context of the newton approximation: aŕ ≈ 0, γŕ ≈ 0), we get the following equation

of motion

d2ŕ

dś2
= − a

ŕ3
+
γ2

ŕ3
(11)

or

r0
d2ϕ

dś2
= − a

ŕ3
+
γ2

ŕ3
(12)

Using Einstein equivalence principle: for a free-fall motion, the angular acceleration

is equivalent to the gravitational field, we get our main result:

a = γ2 (13)
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this is the equation of the conservation of angular momentum (a is constant; γ

represents the angular momentum of the test planet), i.e. the angular momentum

of the planet (γ = Iω) is conserved along the full orbit.

4.3. The physical interpretation

physically, the above analysis can be understood using the tangential velocity (to

the curve), which is r0dϕ́
dś = v, thus Eq.(12) becomes:

− a

r3
0

+
σ2v2

r0
(14)

where γ = σJ , and J is the orbital angular momentum (note that in this dynamic,
dϕ́
dś = γ

ŕ2 , also in the Schwarzschild dynamic the change in ϕ́ is defined with the

same mathematical equation dϕ́
ds = J

r20
– with respect to r0 –; from this consistency

the constant σ can be understood).

The right hand side of Eq. (14) is the centripetal force. The left hand side of

Eq. (14) is the electromagnetic force.

Note that: the fact that the electromagnetic force is proportional to 1
r30

is ex-

pected; the electromagnetic stress-energy tensor in the case of the ReissnerNord-

strom spacetime is proportional to 1
r20

, thus the gradient of the potential results the

proportionality in question.
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