
Progressive Fourier (or trigonometric) interpolation

Andrej Liptaj∗

April 12, 2017

Abstract

Method of progressive trigonometric interpolation is presented.

1 Introduction
I did not find a dedicated text about progressive polynomial interpolation, yet such interpolation method is know and
mentioned in several texts. The task is simple: imagine one has a polynomial PN (x) which goes through N points
(xi, yi)

N
i=1 and one wants to extend the polynomial description to an additional (N + 1)-th point. The procedure is

straightforward: First, one constructs a polynomial p̃N (x) which vanishes for all (xi, yi)
N
i=1:

p̃N (x) = α
N∏
i=1

(x− xi) ,

where one is free to choose the value of α. Then, one writes down the new, extended interpolation polynomial

PN+1 (x) = PN (x) + p̃N (x)

and tunes the value of α so as to describe the additional point (xN+1, yN+1). Such extension, of course (by construction),
does not spoil the existing description of (xi, yi)

N
i=1 points. If one starts with one single point and the corresponding

polynomial P1 (x) = y1, one can apply the procedure repeatedly to get an interpolation polynomial describing all points
of interest.

The method may have some computational advantages (mainly smaller computer memory consumption), several
comments about it can be found in the (non-dedicated) text [1].

One may naturally wonder whether the “progressive approach“ can be extended to other, non-polynomial interpolations.
The Fourier series represent other important function form of data description and, in this text, I provide a complete
algorithm for progressive Fourier interpolation together with the corresponding SciLab program.

2 Preparatory considerations

2.1 Nomenclature
To proceed, let me first define some terms I will be using in this text. By “degree” of a Fourier series I will refer to “n” of
the highest frequency (non-vanishing) term present in the Fourier series

f (x) =

N∑
n=0

[an cos (nx) + bn sin (nx)] , (1)

independently on whether it is sine or cosine term. So, for example, the degree of

2 + 3 cos (x)− sin (x) + 7 sin (5x)

is 5 and the degree of
−1− 2 cos (2x)− sin (2x)

∗Institute of Physics, Bratislava, Slovak Academy of Sciences, andrej.liptaj@savba.sk
I am willing to publish any of my ideas presented here in a journal, if someone (an editor) judges them interesting enough. Journals in the
“Current Contents” database are strongly preferred.

1

is 2.
Note please, that I will be using a non-standard form of the Fourier series (1), where I include the a0 coefficient into

the cosine part, while keeping, in the sine part, the (arbitrary) coefficient b0 for formal reasons that will become clear
later.

I will further use the term “zero-crossing function” (ZCF) to point to the Fourier series which vanishes for certain set
of points (xi, yi)

N
i=1 and should be regarded as an analogy of the p̃N (x) polynomial. In equations I will write zcfN (x) and

from what was said one has
zcfN (x) = 0 for all xϵ {xi}Ni=1 .

The Fourier series describing the (xi, yi)
N
i=1 points will be noted FsN :

FsN (xi) = yi, 1 ≤ i ≤ N.

I will also use “automatic” abbreviation system for numerical constants

si ≡ sin (xi) ,

ci ≡ cos (xi) ,

ti ≡ tan (xi) .

2.2 What is tricky
The analogy with progressive polynomial interpolation is not really straightforward. For example, one might have the
idea to construct the ZCF in the following way

zcfN (x) = α

N∏
i=1

sin (x− xi) (2)

and use the formula
sin (x− xi) = si cos (x) + ci sin (x) .

Then, if the product
∏N

n=1 is expanded, one ends up with terms of the type

zj [cos (x)]
w1 [sin (x)]

w2 ,

where one can make use of the “trigonometric power formulas”

[sin (x)]
w1 =

∑
k

{
q
[s,s]
k sin (kx) + q

[s,c]
k cos (kx)

}
,

[cos (x)]
w2 =

∑
k

{
q
[c,s]
k sin (kx) + q

[c,c]
k cos (kx)

}
.

The explicit form of the coefficients q
[a,b]
k can be found, for example, of the web page [4]. The multiplication of the two

series leads to three possible combinations of trigonometric functions and each of them can be treated in such way as to
obtain a simple sum:

sin (mx) cos (nx) =
1

2
{sin [(m− n)x] + sin [(m+ n)x]} ,

sin (mx) sin (nx) =
1

2
{cos [(m− n)x]− cos [(m+ n)x]} ,

cos (mx) cos (nx) =
1

2
{cos [(m− n)x] + cos [(m+ n)x]} .

One can so finally transform the zcfN (x) into the “standard Fourier” form and add it (term by term) to the existing
description of previous points

FsN+1 (x) = FsN (x) + zcfN (x),

tuning, of course, α such as to describe the point (xN+1, yN+1). After the torturous transformations one is however not
satisfied with the result: one obtains a valid Fourier series but the series in not of the minimal degree. Indeed, each
multiplication by sin (x− xi) increases the degree by one, which is too much. The “minimal” form is, of course, something
what one naturally asks for.

So what should be the correct degree of the final Fourier series? As I pointed out in my previous texts [3, 2] (and is
widely known anyway), the Fourier series naturally describes an odd number of points: the coefficients ai and bi come

2

in pairs with the exception of i = 0 where the coefficient b0 is arbitrary (but a0 is not). So, if one has an odd number
2M +1 of points to describe then the appropriate degree is M . If the number of points is even, 2M , then the right degree
is (also) M with however cutoff freedom: one can reach the (highest) degree by a single cosine term, by a single sine term
or by an appropriate combination of both. In other words, one has a common constraint on the two coefficients aN and
bN : when changing one of them, one can satisfy the constraint by accordingly modifying the other.

2.3 Two zeros with cosine expression
Producing the ZCF using sin (x− xi) terms needs to be modified. In this short paragraph my aim is to write down a
trigonometric term (useful later), which becomes zero for two points, xi and xi+1. One possibility (which I will adopt
from now on) is

cos (x+ φ) +K

with
φ = −xi + xi+1

2
and

K = − cos (xi + φ) .

I will use the expanded form of this expression

cos (x+ φ) +K = cos (φ) cos (x)− sin (φ) sin (x) +K

= A cos (x) +B sin (x) +K

with

A = cos (φ) ,

B = − sin (φ) .

For the rest of this text I will fix the meaning of the three capital letters A, B and K always to this context, i.e. A means
the numerical factor in front of the cosine, B the one in front of the sine and K is the absolute (x independent) term. The
same notation applied to sine terms gives

sin (x− xi) = sin (x+ φ)

= cos (φ) sin (x) + sin (φ) cos (x)

= sin (φ) cos (x) + cos (φ) sin (x)

thus

φ = −xi,

A = sin (φ) ,

B = cos (φ) ,

K = 0.

2.4 Multiplying Fourier series with A cos (x) +B sin (x) +K

Multiplication of a Fourier series by the A cos (x)+B sin (x)+K expression is an important step in the progressive Fourier
interpolation and deserves a dedicated paragraph. First of all, the Fourier series should be understood as two sequences
of coefficients a0 · · · aN and b0 · · · bN and the procedure of the intended multiplication should be seen as an operation on
these sequences.

Let me start by the most simple: multiplication by K is trivial and leads to

ai → Kai,

bi → Kbi.

Next, one can study the remaining possibilities:

an cos (nx)×A cos (x) =
anA

2
{cos [(n− 1)x] + cos [(n+ 1)x]}

bn sin (nx)×A cos (x) =
bnA

2
{sin [(n+ 1)x] + sin [(n− 1)x]}

an cos (nx)×B sin (x) =
anB

2
{sin [(n+ 1)x]− sin [(n− 1)x]}

bn sin (nx)×B sin (x) =
bnB

2
{cos [(n− 1)x]− cos [(n+ 1)x]}

3

So what is the algorithm to generate the new “after-multiplication” coefficients? Clearly, each term has two “offsprings”:
one in the lower (n− 1) and one in the higher (n+ 1) frequency. Reciprocally it means, that each new term has two
“parents”, one from the lower and one from the higher frequency terms (plus the one of the same frequency resulting from
the multiplication by K). After little bit of thinking one can write:

anewi =
A

2
(ai−1 + ai+1) +

B

2
(−bi−1 + bi+1) +Kai (3)

and
bnewi =

B

2
(ai−1 − ai+1) +

A

2
(bi−1 + bi+1) +Kbi. (4)

These two equations should be seen as a recipe for a computer implementation of such a multiplication1.
The two expressions deserve, however, additional attention. Clearly, the multiplication leads to a broadening of the

series, it grows to higher frequencies, but also to lower and negative frequencies! The last behavior needs to be treated
specifically and explains why it is important to consistently keep in memory the value of the “artificial” b0 coefficient. The
treatment is simple: once a negative frequency term is obtained, it can be turned into a positive frequency one:

cos (−x) = cos (x)

sin (−x) = − sin (x)

which leads to a dedicated treatment of the i = 1 coefficient :

anew1 =
A

2
(a0 + a2) +

B

2
(−b0 + b2) +Ka1 +

A

2
a0 +

B

2
b0,

bnew1 =
B

2
(a0 − a2) +

A

2
(b0 + b2) +Kb1 +

B

2
a0 −

A

2
b0,

which one must not forget to implement.

3 Progressive Fourier interpolation
In this paragraph I provide an algorithm for the progressive Fourier interpolation of N points. It is, naturally, a recursive
algorithm with some complexity arising from odd/even number of points and the cutoff freedom. I believe it is more clear
to use separate sections to describe it.

3.1 Describing first point i = 1

The recursive approach is initiated by describing a single point (the “first” one, i = 1) using the absolute term

Fs1 (x) = a0 = y1.

The coefficient b0 is arbitrary (I initiate it in my program to zero, see Appendix) and all other coefficients are considered
to be zero. The ZCF can be also represented by its cosine czcfi and sine szcfi coefficients (because it is Fourier series) and
is initiated to

czcf0 = 1,

(szcf0 = 0).

3.2 Describing middle points 1 < i < N

The steps to take when describing the i-th point depends on the parity of the numbers of points previously described.

3.2.1 Existing Fourier series describes an odd number of points (i is even)

In this case multiply the existing ZCF by sin (x− xi−i):

̂zcfi−1 (x) = zcfi−2 (x)× sin (x− xi−1)

1The “overflowing” or “underflowing” indices (non-existing ai+1, bi+1 for i = N and non-existing ai−1, bi−1 for i = 0) should be, of course,
considered as pointing to zero-valued coefficients.

4

and for that purpose use the “coefficient” representation of the ZCF, the “ABK” representation of the sine term and the
approach described in the section 2.4. Once completed, determine the value of the αi coefficient so as to fit the point
(xi, yi):

αi =
yi − Fsi−1 (xi)̂zcfi−1 (xi)

.

With αi known, compute the new Fourier series coefficients {an}n=i/2
n=0 , {bn}n=i/2

n=0 using a term-by-term addition of the
coefficient-represented functions:

Fsi (x) = Fsi−1 (x) + αi
̂zcfi−1 (x) .

Finally, forget the function ̂zcfi−1 (x).

3.2.2 Existing Fourier series describes an even number of points (i is odd)

In this case multiply the last remembered ZCF, i.e. zcfi−3 (x) by [cos (x+ φ) +K]:

zcfi−1 (x) = zcfi−3 (x)× [cos (x+ φ) +K] ,

where
φ = −xi−2 + xi−1

2

and
K = − cos (xi−1 + φ) .

For that purpose use the “coefficient” representation of the ZCF, the “ABK” representation the cosine term and the
approach described in the section 2.4. Once completed, determine the value of the αi coefficient so as to fit the point
(xi, yi):

αi =
yi − Fsi−1 (xi)

zcfi−1 (xi)
.

With αi known, compute the new Fourier series coefficients {an}n=(i−1)/2
n=0 , {bn}n=(i−1)/2

n=0 using a term-by-term addition
of the coefficient-represented functions:

Fsi (x) = Fsi−1 (x) + αizcfi−1 (x) .

Remember the function zcfi−1 (x).
One can now see why the degree of the Fourier series remains minimal: when multiplying by sin (x− xi) the degree rises

(previous section), but the multiplication by the cosine term does not increase the degree. This is because the expression
which is multiplied (i.e. the previously remembered ZCF) is the same as for the sine multiplication (we take the ZCF
from two steps back), it is not of a higher degree. Its multiplication by the cosine term produces the same degree as its
multiplication by the sine term. So, combining the “sine” with “cosine” multiplication we are able to describe two points
by rising the degree only by one (which, of course, means two coefficients).

3.3 Describing the last point i = N

3.3.1 The total number of points is odd (i,N are odd)

In this case one should follow the prescription from the section 3.2.2.

3.3.2 The total number of points is even (i,N are even)

If one does not care about the high-frequency cutoff, one can use the procedure from the section 3.2.1. I want, however,
present an approach where a cutoff strategy is implemented. In this case one should recall the formulas (3) and (4), and
see how the highest-frequency sine and cosine terms are created. Clearly, they get no contributions from the previous
same frequency terms, neither from the previous higher frequency terms. The later is obvious, the last version of the ZCF
was of a not higher degree then the one we are going to get, so it does not contain higher frequency terms. Less obvious
are the same frequency terms: they do not contribute because, when i is even, then the degree of the new ZCF is always
higher then the degree of the previous ZCF. In other words: the last ZCF has no terms with the frequency corresponding
to the highest frequency term in the new ZCF. So the formulas look like

anewi =
1

2
(Aai−1 −Bbi−1) ,

bnewi =
1

2
(Bai−1 +Abi−1) .

5

To have enough parametric freedom to profit from these expressions one cannot use the standard multiplication by a single
sine term. Rather, one has to use a multiplication by a cosine term

cos (x+ φ) +K = cos (φ) cos (x)− sin (φ) sin (x) +K

and, when creating the “new” ZCF, tune the values of φ and K so as to

• make vanish the (new) ZCF at xi−1 and

• reach the desired cutoff.

One has
A = cos (φ)

B = − sin (φ)

Cutting away the highest-frequency sine (cosine remains)
One requires

bnewi = 0

Bai−1 +Abi−1 = 0

cos (φ) bi−1 − sin (φ) ai−1 = 0

bi−1 − tan (φ) ai−1 = 0

tan (φ) =
bi−1

ai−1

φ = arctan

(
bi−1

ai−1

)
where one needs to use the highest-frequency coefficients (ai−1 and bi−1) from the previous ZCF.

Cutting away the highest-frequency cosine (sine remains)
One requires

anewi = 0

Aai−1 −Bbi−1 = 0

cos (φ) ai−1 + sin (φ) bi−1 = 0

ai−1 + tan (φ) bi−1 = 0

tan (φ) = −ai−1

bi−1

φ = − arctan

(
ai−1

bi−1

)
where one needs to use the highest-frequency coefficients (ai−1 and bi−1) from the previous ZCF.

Symmetric cutoff
One requires

anewi = bnewi

anewi − bnewi = 0

Aai−1 −Bbi−1 −Bai−1 −Abi−1 = 0

cos (φ) ai−1 + sin (φ) bi−1 + sin (φ) ai−1 − cos (φ) bi−1 = 0

ai−1 + tan (φ) bi−1 + tan (φ) ai−1 − bi−1 = 0

tan (φ) (bi−1 + ai−1) = bi−1 − ai−1

tan (φ) =
bi−1 − ai−1

bi−1 + ai−1

φ = arctan

(
bi−1 − ai−1

bi−1 + ai−1

)
where one needs to use the highest-frequency coefficients (ai−1and bi−1) from the previous ZCF.

6

Finalizing the computations
Once the φ is know, K can be directly computed:

K = − cos (xN−1 + φ)

With A (=− sinφ), B (=cosφ) and K known (in any cutoff situation), one constructs the new ZCF (section 2.4) and
finds the appropriate value of α, so that the last point is described

yi=N = FsN−1 (xi) + α× zcfN−1 (xi) .

The final step consists in performing a term-by-term summation of the two series.

FsN (x) = FsN−1 (x) + α× zcfN−1 (x) .

4 Final remarks
My first remark concerns the creation of the ZCF. Clearly, the described procedure leads to a progressive creation of
the ZCF and is thus is not really ready to extend an existing Fourier series to a new point (situation where no previous
ZCF was constructed). If one asks for it, the ZCF is not difficult to construct and I plan to address this issue in some
of my future texts. However, an example of creating an (inappropriate) ZCF from scratch (in a “non-progressive” way)
is actually presented in this text in the “how not to do things” section 2.2. The term “non-progressive” is yet little bit
misleading, because one can always perform a progressive multiplication of successive sines in the formula 2.

The second remark concerns cutoff procedure. One could actually implement a cutoff of a middle-frequency term, the
complication would arise from additional contributions originating in the previous higher-frequency and same-frequency
terms. Such a cutoff would be untypical: one usually wants the data to be described by low frequencies (as low as possible),
not skipping one in the middle.

The question arises also about the performance of different existing methods for trigonometric interpolation (speed,
memory consumption, numerical precision). I will try to address these questions in some of my future texts.

References
[1] J. M. Dias Pereira, O. Postolache, and P.M. Girão. Pdf-based progressive polynomial calibration method for smart

sensors linearization. IEEE Trans. on Instrumentation and Measurement, 58(9):3245–3252, September 2009.

[2] A. Liptaj. Cosine and sine interpolation. interpolation for arbitrary series with multiplicative co-
efficients. https://www.scribd.com/document/289673276/Cosine-and-sine-interpolation-Interpolation-for-arbitrary-
series-with-multiplicative-coefficients, http://vixra.org/abs/1704.0066, 2015.

[3] A. Liptaj. Short notice on (exact) trigonometric interpolation. https://www.scribd.com/document/270904435/Short-
notice-on-exact-trigonometric-interpolation, http://vixra.org/abs/1704.0048, 2015.

[4] Wolfram MathWorld. Trigonometric power formulas. http://mathworld.wolfram.com/TrigonometricPowerFormulas.html.

7

A Appendix: SciLab program
The program serves two aims:

• Gives the reader an out-of-the-box implementation of the progressive Fourier interpolation.

• Contains the algorithm and so, in case something is unclear or missing in the text, the algorithm can be read-out
from the program.

A difference one should be aware of is the indexing: in SciLab the array indices (unfortunately) start at one and so a shift
in indexing had to be done on some places with respect to what is written in the text.

The program also contains the function “tsfData” which is meant to re-scale the data (in the x and y directions
proportionally). Indeed, the whole algorithm is based on the 2π period. It could be, of course, scaled to any (finite) period
length, but it seems to me easier to scale the data. The middle argument “f” of the function is a flag: when equal to 0
then the point with the maximal x coordinate will be scaled to exactly match the upper boundary chosen by the user.
This usually happens in a situation when one wishes to scale the data to a smaller interval then [0, 2π]. If one desires to
scale the data to the [0, 2π] interval, then “f”=1 introduces a separation between the highest x point (after re-scaling) and
2π. Not implementing the separation, one would run (after re-scaling) into a pathology for y0 ̸= yN because the Fourier
interpolation is 2π periodic.

One should also keep in mind that, for what concerns frequency analysis, an appropriate re-scaling is needed. If
one tries to interpolate (without re-scaling) points for which xmax − xmin ≪ 2π, then one usually runs into numerical
problems, because coefficients become quickly very large. One is, of course, allowed to ask for such an interpolation, but
with “wavelengths” larger then the data spread, one can hardly interpret the results as a “frequency analysis”.

The program also incorporates an alternative expression the interpolation can take. The described method of interpo-
lation can be sketched as follows (for practical illustration I demonstrate it on 7 and 8 points):

Fs7{8} (x) = α0

+ α1 sin (x+ φ1)

+ α2 [cos (x+ φ2) +K2]

+ α3 [cos (x+ φ2) +K2] sin (x+ φ3)

+ α4 [cos (x+ φ2) +K2] [cos (x+ φ4) +K4]

+ α5 [cos (x+ φ2) +K2] [cos (x+ φ4) +K4] sin (x+ φ5)

+ α6 [cos (x+ φ2) +K2] [cos (x+ φ4) +K4] [cos (x+ φ6) +K6]

+
{
α7 [cos (x+ φ2) +K2] [cos (x+ φ4) +K4] [cos (x+ φ6) +K6]

[
cos (x+ φ̃7) + K̃7

]}
,

where the tilde in the last line represents the cutoff dependency of the coefficients. Using abbreviations ci ≡ cos (x+ φi),
si ≡ sin (x+ φi) the expression can be transformed into a nested factorized form

F7 = α0 + α1s1 + (c2 +K2) {α2 + α3s3 + (c4 +K4) [α4 + α5s5 + α6 (c6 +K6)]}

for an odd number (=7) of points and in the form

F8 = α0 + α1s1 + (c2 +K2)
(
α2 + α3s3 + (c4 +K4)

{
α4 + α5s5 + (c6 +K6)

[
α6 + α7

(
c7̃ + K̃7

)]})
for an even number (=8) of points. The program remembers progressively the numbers

α0, α1, φ1, α2, φ2,K2, α3, φ3, α4, φ4,K4 . . .

and is able to compute the interpolation value using the nested form. Unlike the standard form, the nested form contains
the information about the data points and this makes the computational time grow. I checked this behavior placing the
corresponding code at the and of the program. I decided to keep it, but only as an option: an “abort” command is used
before. If interested in the speed comparison between the standard and the nested form, the user needs to comment this
line off. The nested form may still be interesting, it allows to compute the interpolation with less transformations.

Finally, let me note that the program requires as data input a text file with two columns containing the x (first column)
and y (second column) coordinates. I insert the program code using a very small font: it can be copy-pasted when needed
(or zoomed on the screen), yet the document is not too long to print.

8

function [newX,newY]=tsfData(xmin,xmax,f,xDat,yDat)

//f=0 - xmax occupied

//f=1 - xmax empty

L = length(xDat)

oldMin = min(xDat)

oldMax = max(xDat)

if f==1 then

xmax = xmax-(xmax-xmin)/L

end

deriv = (xmax-xmin)/(oldMax-oldMin)

for i=1:L

newX(i) = xmin+deriv*(xDat(i)-oldMin)

newY(i) = deriv*yDat(i)

end

endfunction

function [f] = fourier(c,s,x)

f = 0

L = length(c)

for i=1:L

n=i-1

f = f + c(i)*cos(n*x) + s(i)*sin(n*x)

end

endfunction

function [c,s] = trigMultiply(cs,sn,K,A,B)

L = length(cs)

// multiply by K

cs_0 = K*cs

sn_0 = K*sn

cs_0(L+1) = 0

sn_0(L+1) = 0

// multiply by cos and sin

for i=1:L+1

j = i-1

k = i+1

if j<1 then

leftTerm_c = 0

leftTerm_s = 0

else

leftTerm_c = cs(j)

leftTerm_s = sn(j)

end

if k>L then

rightTerm_c = 0

rightTerm_s = 0

else

rightTerm_c = cs(k)

rightTerm_s = sn(k)

end

cs_cc = A*(leftTerm_c+rightTerm_c)/2

cs_ss = B*(-leftTerm_s+rightTerm_s)/2

sn_sc = A*(leftTerm_s+rightTerm_s)/2

sn_cs = B*(leftTerm_c-rightTerm_c)/2

c(i) = cs_0(i)+cs_cc+cs_ss

s(i) = sn_0(i)+sn_sc+sn_cs

if i==2 then // left term treated as right (index 1 left from 2 but right from 0)

c(i) = c(i) + A*(leftTerm_c)/2

c(i) = c(i) + B*(leftTerm_s)/2

s(i) = s(i) - A*(leftTerm_s)/2 // because sin(-x) = -sin(x)

s(i) = s(i) - B*(-leftTerm_c)/2 // because sin(-x) = -sin(x)

end

end

endfunction

function [c,s,nestedFactors] = progTrigoInterpol(X,Y,f)

N = length(X)

zc_fun_c = []

zc_fun_s = []

for i=1:N // Loop over data points

if i==1 then

c(1)=Y(1)

s(1)=0

zc_fun_c(1)=1

zc_fun_s(1)=0

// Line related to the nested scheme

nestedFactors(1) = Y(1)

continue

elseif i<N then

if modulo(i,2)==1 then // cos(x+phi) + K

phi = -(X(i-2)+X(i-1))/2

K = -cos(X(i-1)+phi)

A = cos(phi)

B = -sin(phi)

// Two lines related to the nested scheme

nestedFactors = cat(2,nestedFactors,phi)

nestedFactors = cat(2,nestedFactors,K)

9

else // sin(x+phi)

phi = -X(i-1)

K = 0

A = sin(phi)

B = cos(phi)

// Line related to the nested scheme

nestedFactors = cat(2,nestedFactors,phi)

end

else

if modulo(i,2)==1 then // Odd number of points, "standard" situation

phi = -(X(i-2)+X(i-1))/2

K = -cos(X(i-1)+phi)

A = cos(phi)

B = -sin(phi)

else // Even number of points, arbitrary cutoff needed

L_zcf = length(c)

s_left = zc_fun_s(L_zcf)

c_left = zc_fun_c(L_zcf)

if f==0 then // high sine cutoff

phi = atan(s_left/c_left)

elseif f==1 then // high cosine cutoff

phi = atan(-c_left/s_left)

else // symmetric cutoff

phi = atan((s_left-c_left)/(s_left+c_left))

end

K = -cos(X(i-1)+phi)

A = cos(phi)

B = -sin(phi)

end

// Two lines related to the nested scheme

nestedFactors = cat(2,nestedFactors,phi)

nestedFactors = cat(2,nestedFactors,K)

end

// K, A, B are settled

// Now construct zero-crossing function

[coef_c,coef_s] = trigMultiply(zc_fun_c,zc_fun_s,K,A,B)

if modulo(i,2)==1 then //remember last series

zc_fun_c = coef_c

zc_fun_s = coef_s

end

// Find appropriate multiplicative coefficient to match new data point

upToNow = fourier(c,s,X(i))

toBeAdded = fourier(coef_c,coef_s,X(i))

coef = (Y(i)-upToNow)/toBeAdded

// Line related to the nested scheme

nestedFactors = cat(2,nestedFactors,coef)

// Add fourier series

L_four = length(c)

L_coef = length(coef_c)

for j=1:L_coef

if j<L_coef then

c(j)=c(j)+coef*coef_c(j)

s(j)=s(j)+coef*coef_s(j)

elseif L_coef==L_four

c(j)=c(j)+coef*coef_c(j)

s(j)=s(j)+coef*coef_s(j)

else

c(j)=coef*coef_c(j)

s(j)=coef*coef_s(j)

end

end

end

endfunction

function [f] = nestedForm(fcts,nData,x)

L = length(fcts)

if modulo(nData,2)==1 then // Odd number of data points

f = fcts(L-3)*sin(x+fcts(L-4)) + fcts(L)*(cos(x+fcts(L-2))+fcts(L-1))

pos = L-5

else // Even number of data points

f = fcts(L)*(cos(x+fcts(L-2))+fcts(L-1))

pos = L-3

end

while 1==1

f = fcts(pos-3)*sin(x+fcts(pos-4))+(cos(x+fcts(pos-2))+fcts(pos-1)).*(fcts(pos)+f)

pos = pos-5

if pos==1 then

f = f + fcts(pos)

break

end

end

endfunction

function [minX,maxX,minY,maxY]=winSize(datX,datY)

minX = min(datX)

maxX = max(datX)

minY = min(datY)

maxY = max(datY)

deltaX = maxX-minX

10

deltaY = maxY-minY

minX = minX-0.2*deltaX

maxX = maxX+0.2*deltaX

minY = minY-0.2*deltaY

maxY = maxY+0.2*deltaY

endfunction

// Start of the profram flow

dataSet = read("twoColumnData.dat",-1,2)

nDat = length(dataSet)/2

datX = dataSet(:,1)

datY = dataSet(:,2)

nDat = length(datX)

// Transform data to a more appropriate interval - uncomment following

//datX = tsfData(0,2*%pi,1,datX,datY)

//datX = tsfData(-%pi/4,%pi/4,0,datX,datY)

[minX,maxX,minY,maxY] = winSize(datX,datY)

// Compute coefficients

[c,s,nf] = progTrigoInterpol(datX,datY,2)

nPts = 1000

xAx = linspace(minX,maxX,nPts)

yAx = fourier(c,s,xAx)

disp(" COSINE COEFS: ")

disp(c)

disp(" SINE COEFS: ")

disp(s)

scf(1)

plot2d(datX,datY,-2,rect=[minX,minY,maxX,maxY])

plot2d(xAx,yAx,rect=[minX,minY,maxX,maxY])

// Nested-factors scheme tested

y2_Ax = nestedForm(nf,nDat,xAx)

scf(2)

plot2d(datX,datY,-2,rect=[minX,minY,maxX,maxY])

plot2d(xAx,y2_Ax,rect=[minX,minY,maxX,maxY])

// Time test comparing the standard and the nested form

abort() // Comment-out if interested in computation speed comparison

N = 1000

rand(’uniform’)

tic()

for i=1:N

test_x = 2*%pi*rand()

void = fourier(c,s,test_x)

end

t1 = toc()

tic()

for i=1:N

test_x = 2*%pi*rand()

void = nestedForm(nf,test_x)

end

t2 = toc()

mprintf("Standard = %f seconfd\n",t1)

mprintf("Nested = %f seconds\n",t2)

mprintf("Nested is %f time slower\n",t2/t1)

11

